
S. B0dker, M. Kyng, and K. Schmidt (eds.). Proceedings of the Sixth European Conference on
Computer-Supported Cooperative Work, 12-16 September 1999, Copenhagen, Denmark
©1999 Kluwer Academic Publishers. Printed in the Netherlands 291

WebDAV
A network protocol for remote collaborative authoring
on the Web

E. James Whitehead, Jr.f & Yaron Y. Goland*
'Dept. of Info, and Computer Science, U.C. Irvine, USA, ejw@ics.uci.edu
'Microsoft Corporation, Redmond, WA, USA, yarong@microsoft.com

Abstract. Collaborative authoring tools generate network effects, where each tool's value
depends not just on the tool itself, but on the number of other people who also have
compatible tools. We hypothesize that the best way to generate network effects and to
add collaborative authoring capability to existing tools is to focus on the network protocol.
This paper explores a protocol-centric approach to collaborative authoring by examining
the requirements and functionality of the WebDAV protocol. Key features of the protocol
are non-connection-oriented concurrency control, providing an upward migration path for
existing non-collaborative applications, support for remote' manipulation of the
namespace of documents, and simultaneous satisfaction of a wide range of functional
requirements.

Introduction
Despite many compelling research examples of collaborative authoring, so far
their impact on actual authoring practice has been limited. While BSCW (Bentley
et al., 1997) and HYPER-G (Maurer, 1996) have developed communities of use,
electronic mail remains the dominant technology used for collaborative authoring,
mainly due to its ubiquity.

In order to perform collaborative authoring, all collaborators need to use
compatible authoring tools—typically all collaborators use the same tools, tailor-
made to support collaboration. To collaborate using PREP (Neuwirth et al., 1994),
all collaborators need to use PREP, likewise for GROVE (Ellis et al., 1989) and

mailto:ejw@ics.uci.edu
mailto:yarong@microsoft.com

292

DUPLEX (Pacull et al., 1994).
The economics of compatibility drive network effects (Rohlfs, 1974), where

the utility of each tool depends not just on the tool itself, but on the number of
other people who also own compatible tools. If there were just one telephone in
the world, its utility would be small, with two or three not much more useful. But
when millions, or hundreds of millions of people own telephones, their utility is
immense. Like the telephone, one collaborative authoring tool by itself has
limited collaborative value, but when millions have compatible collaboration
technology, the utility of each tool is great. When a common network protocol
ensures interoperability between collaborative authoring tools and authoring
servers, as each tool adopts the protocol, the value of servers that support the
collaboration protocol increases, since without any further investment in the
server, they can now support an additional tool. The reverse is true as well. As
more servers become available, the value of the authoring tools increases without
any further investment in the tools, since there are now more individuals and
organizations capable of collaboration. By creating a network protocol with a
focus on interoperability, it is possible to generate network effects among
compatible collaborative authoring technologies.

Users of existing applications have invested significant time in gaining
expertise in the applications they, frequently use, hence the cost to users of
switching to another tool is high. Yet users must switch tools to gain the
advantages of existing collaborative authoring systems. Exceptions to this rule are
BSCW and MESSIE (Sasse and Haridley, 1993), which leverage standard
network protocols to allow the use of existing non-collaborative tools with the
system; the Hypertext Transfer Protocol, HTTP, (Fielding et al., 1997) is
employed this way by BSCW, while MESSIE piggybacks on the Simple Mail
Transfer Protocol (Postel, 1982). .CONTACT (Kirby and Rodden, 1995) also
supports collaborative authoring while remaining compatible with the
heterogeneous non-collaborative tools in the user's environment. Like BSCW,
CONTACT provides a Web forms interface to a collaboration support system, but
does not provide BSCW's HTTP upload/download support. BSCW, MESSIE,
and CONTACT share our view that collaborative authoring capability is not, by
itself, sufficient to overcome the costs of switching authoring tools. Unlike these
systems, we go further and assert that collaborative authoring capability must be
added to existing tools.

Our hypothesis is the best way to generate network effects and to add
collaborative authoring capability to existing tools is to focus on the network
protocol, the mechanism by which collaborative tools communicate. There are
many reasons for focusing attention on the network protocol that underlies a
remote collaborative authoring system. From a technical viewpoint, focusing on
the network protocol elevates the protocol's behavior across the Internet to a first-
class concern. This ensures that thorny issues are addressed up-front, such as how

293

to ensure efficient behavior under high-latency conditions, the provision of
adequate security and authentication, and giving the protocol good scalability and
extensibility characteristics. If addressed poorly, these factors can cripple the
widespread adoption of a remote authoring technology.

The Web Distributed Authoring and Versioning (W E B D A V) working group of
the Internet Engineering Task Force (IETF) has adopted this protocol-centric
approach, and developed a novel network protocol, the W E B D A V DISTRIBUTED

AUTHORING PROTOCOL (hereafter called the W E B D A V protocol), which supports
interoperable remote, asynchronous, collaborative authoring. The W E B D A V

protocol, a detailed specification of which can be found in Goland et al. (1999), is
a set of extensions to HTTP which provide facilities for concurrency control,
namespace operations, and property management. The protocol allows users to
collaboratively author their content directly to an HTTP server, allowing the Web
to be viewed not just as a read-only way to download information, but as a
writeable, collaborative medium.

IETF protocol specifications foster interoperability by providing a concrete
specification used to develop multiple applications. Indeed, for a specification to
advance along the standards track within the IETF, it must demonstrate two
interoperable implementations of every protocol feature. This requirement,
combined with the group review process within the IETF, works to ensure that the
semantics of the protocol are precise. Furthermore, the focus on interoperability
across many applications helps limit the likelihood that the concerns of any one
program will bias the protocol's design.

Since IETF specifications can be retrieved free of charge, and there are no
licensing fees for using IETF technology, IETF network protocols are very
attractive to both corporate and open-source developers. This freedom of the
intellectual property rights aids in the adoption of the protocol by a wide variety
of tools.

One use scenario for the W E B D A V protocol is collaborative authoring of an
academic paper by a geographically dispersed authoring team. When the project
begins, one member of the project uses server-specific mechanisms to create
username/password pairs for each collaborator, and then creates the shared
document with a WEBDAV-enabled word processor by saving it to a URL. After
giving each collaborator write access, they communicate the URL of the
document to the rest of the team using email, or perhaps in a teleconference. The
authors take turns working on the document, using email, telephone
conversations, and other out-of-band communications to negotiate editing slots.
During each editing pass, an author loads the document from the URL, causing it
to be locked. They then work within the editor, saving directly back to the URL.
When done, they perform a final save to the URL, then unlock the document. At
all times, other authors can load the document directly from the URL using either
their word processor (it will be read-only if locked) or their Web browser (if it

294

can view the word processor format), to see its current status. When done, they
can give the URL to colleagues interested in the paper, and create hyperlinks to
the paper in other Web pages. , ,

This paper reports on the W E B D A V protocol, presenting the requirements it
satisfies, and how these requirements, combined with the constraints of operating
in the Internet environment, guided its design. Key contributions of the W E B D A V

protocol include:
Protocol focus: The focus of this work is a network protocol, the abstractions

and semantics which inform the syntax of octets transmitted during a TCP/IP
connection. This contrasts with existing work on remote collaborative authoring
which focus on user interface, awareness, and other concerns.

Providing an upward migration, path for existing non-collaborative
applications: There are many applications that have no support for remote,
collaborative authoring. The W E B D A V protocol provides these applications a
way to add remote authoring support without dramatically modifying the input
processing of the application, as would be necessary if the application were
modified to support fine-grain synchronous authoring. Furthermore, its grain size
for concurrency control is compatible with most existing file-oriented tools.

Non-connection-oriented protocol for concurrency control: The W E B D A V

protocol provides long-duration exclusive and shared write locks, a well-known
concurrency control technique. To achieve robust Internet-scale collaboration,
where network connections may be disconnected arbitrarily, and for scalability,
since each open connection consumes server resources, the duration of W E B D A V

locks is independent of any individual network connection.
Support for remotely manipulating the namespace of documents: The

W E B D A V protocol provides copy and move operations, and provides support for
listing the members of Web collections, similar to a directory listing in a file
system. Though these operations have appeared before in numerous systems, their
appearance in remote collaborative authoring systems is unusual, reflecting the
awareness that these systems need to provide mechanisms for navigating to the
document which will be authored, and for maintaining logical groupings of
documents in collections.

Simultaneous satisfaction of requirements: The W E B D A V protocol
simultaneously satisfies a wide range of difficult requirements, a non-trivial
engineering activity in which tradeoffs amongst goals impacted the protocol.
W E B D A V addressed several concerns which are critical to adoption of a remote
collaboration technology, but which are either not mentioned, or not addressed in
the collaborative authoring literature, including connection security, strong
authentication, internationalization,, and independence from authoring
environment. While W E B D A V benefited by adopting existing technologies such
as Transport Layer Security' (TLS) (Dierks and Allen, 1999), Digest
Authentication (Franks et al., 1997), and XML (Bray et al., 1998), the

295

identification of the requirements, and the integration of these technologies to
satisfy those requirements is unique.

Extensibility: The W E B D A V protocol recognized that it would not be able to
address all features that an authoring system would need. Thus extensibility
became a critical feature. The protocol has been designed with well defined
feature namespaces that allow for new features to be added later on. Existing
systems will always be able to recognize new commands and have sufficient
information to determine if they should ignore the unknown command or fail.

The remainder of this paper presents requirements for remote collaborative
authoring of Web content, then describes the W E B D A V protocol and how it meets
these requirements. The key attributes of the W E B D A V protocol, discussed in the
Introduction above, will be expanded in this section. Following sections will
briefly describe the existing servers and clients that implement the W E B D A V

protocol, and discuss the W E B D A V protocol in relation to other existing work.

Requirements in support of collaboration

Requirements given below are an abridged version of those found in Slein et al.
(1998), the consensus requirements document of the W E B D A V working group.

Equal support for all content types

The Web is composed of documents, images, and objects of many content, or
Internet media types (Freed et al., 1996). A Web authoring protocol must treat all
content types equally.

A Web authoring protocol which only provides operations .for resources of
one preferred content type, such as HTML, or which requires authoring-specific
extensions to support features such as versioning, would have limited
applicability due to its lack of support for the wide variety of other content types.
Furthermore, since many common content types are in constant evolution, in
order to ensure stability of the protocol a strict separation between the protocol,
and the format of the objects operated upon by the protocol, must be maintained.
For example, during the development of the W E B D A V protocol itself, new
standards for HTML 3.2, 4.0, and XML were issued, highlighting how quickly
these document formats can develop and evolve. Tailoring an authoring protocol
too closely to any one content type would rapidly make the protocol obsolete.

Concurrency control support

Since the Web is inherently multi-user, a Web authoring protocol must mediate
concurrent access by multiple authors.

Early Web authoring tools encountered the "lost update problem" which

296

occurs when two or more simultaneous authors of a Web page clobber each
other's work with successive saves to the same URL, without first merging
changes by other authors. Although HTTP 1.1 added support for detecting lost
updates through the use of unique identifiers associated with the document state,
no support was provided for preventing lost updates in the first place.

Early on, W E B D A V decided to use long duration, whole resource locking as its
concurrency control mechanism (the rationale for this choice is discussed in the
section on Locking)., This then allowed the W E B D A V requirements to focus on
desired properties of locks:

Lock independence:, the lock operation must be independent of other
operations. For example, it should not be necessary to retrieve the resource to
lock it (e.g., as would be the case with a GET with lock operation). The primary
motivation for this requirement is to maintain a separation of concerns between
locking and other.HTTP operations.

Multi-resource locking: the protocol must support an atomic operation to lock
multiple resources on the same server. Documents often consist of many separate
files. For example, Web pages are composed of text, images, and executable
content stored as separate Web resources. Hence an authoring tool needs the
ability to prevent lost updates on all the components of these multi-part
documents, so the document can be authored as a unit. A multi-resource lock
guarantees this. The atomicity restriction ensures that if two people are trying to
lock the same group of resources, only one will be granted a lock.

Write locks: the protocol is only required to support a write lock, and no read
lock is necessary (or provided by the W E B D A V protocol). On the Web, by default
a resource is readable, although,it may be protected by access control. Therefore,
HTTP does not require that a Web browser obtain a lock in order to read a
resource, as is the case with traditional database locking, and retrofitting the Web
with this capability was not feasible, or desirable.

Lock discovery: it must be possible to discover whether a resource is locked.
This allows a user interface to be constructed which indicates whether a resource
is locked.

i

Support for properties (metadata)

Since there is a significant amount of information about Web resources which is
not directly stored in the contents of the resource, a Web authoring protocol must
provide facilities to create, modify, read, and delete arbitrary properties
(metadata) on all Web resources, irrespective of content type.

Most Web resources have associated descriptive information, such as its
author, title, publisher, keywords, copyright status, content rating, etc. While
HTML, with its META tags provides a way to embed this information within
HTML documents, many Web resource types have no capability for storing

i

297

metadata in their data formats. For those that do, their capabilities and storage
locations vary by content type, making them awkward to use. Properties,
essentially name, value pairs, are useful for recording bibliographic information,
which can later be used in searches on property values, a capability currently
being developed by the DAV Searching and Locating (DASL) working group
within the IETF (DASL, 1999).

Properties can be viewed as an assertion about a resource. For example, an
author property asserts that the author of the resource is given in the value of the
property. In a distributed system, the issue of consistency maintenance for
properties is important—if a new author starts editing a resource, the author
property must be updated, or it will be inconsistent. A Web server can
automatically maintain the consistency of property values that it can compute,
such as a property that records the length of the resource. Other properties, such
as copyright status, can only be maintained by the client. < W E B D A V terms
properties whose syntax and semantics are enforced by the server as "live
properties", and properties which are stored without processing, and without
automatic consistency maintenance, as "dead properties." This leads to the
requirement that a Web authoring protocol must support both live and dead
properties. • •

Support for content-type independent links

As Web resources have a wide variety of relationships between them, and since
existing Web links are unidirectional, and are supported by only a few content
types, a Web authoring protocol must provide operations to create, modify, read,
and delete typed links (relationships) between Web resources of any content type.
Links can be used to capture a wide variety of relationships, such as the print
ordering of a set of HTML documents, or related documents such as a table of
contents, an index, or a glossary.

Retrieval of unprocessed source for editing

When a Web resource is retrieved using HTTP, the transmitted octets (known as
the response entity body) are a representation of the state of the resource, and
there is no guarantee that the actual state of the resource is being returned. Many
Web resources exploit this, providing a representation that differs greatly from the
underlying state of the resource. Examples include HTML with server-side-
include directives and active server pages, which are both processed by the server
before creating the response entity body, as well as CGI scripts, where the
response entity body typically has no correlation with the persistent state of the
resource, the code of the CGI script itself. Since HTTP GET always returns a
response entity body after the server has performed its processing, a Web
authoring protocol must provide support to retrieve an aiithoring-suitable

298

representation of the source of a Web resource.

Namespace manipulation

Since resources may need to be copied, or moved as a Web site evolves, a Web
authoring protocol must provide support for copying and moving Web resources.

There are ramifications beyond mere renaming—the behavior of a server's
namespace may not be uniform, and policies such as freedom from automatic
download by robot, or different cache expiration dates may vary across the
namespace. This requirement also follows from our user metaphor of saving to a
Web site just like any, other filesystem, since most "Save As" dialog boxes
provide the ability to list directories and manipulate names.

The key insight is that focusing on facilities for authoring a single resource is
insufficient. Web resources exist within a space of URL names, and a Web
authoring protocol needs to provide support for manipulating this environment.

Support for collections ;

A Web authoring protocol must provide support for creating and deleting a
collection, adding and removing members to/from a collection, and for listing the
members of a collection.

Collections are resources which act as containers of other resources, including
other collections. They provide an abstraction that can group resources, and thus
reduce the burden of authoring within a large corpus of documents. Collections
are also used for navigation within large document spaces, as evidenced by the
ubiquitous file navigation windows within the "Save As" and "Open" dialog
boxes of current tools. Web authoring protocols need to support this navigation
style. With DASL, collections will support navigation-by-query as well.

The WebDAV protocol

This section describes in detail the major features of the W E B D A V protocol—
properties, locking, and namespace management—that were designed to satisfy
the Web collaborative authoring requirements given in the previous section.

Properties

W E B D A V properties are name, value pairs. A property name is a Uniform
Resource Identifier (URI), as defined in Berners-Lee et al. (1998). Property
values are expressed as XML elements. Two methods are provided to manipulate
properties, PROPFIND and PROPPATCH.

299

The PROPFIND method is used to retrieve properties, and supports three
operations: retrieve all property names and values, retrieve selected names and
values, or retrieve only the property names. When applied to a collection resource
PROPFIND can be instructed to act recursively against the collection resource and
its members. By recursively we mean that if any of the members of the collection
are themselves collections then PROPFIND will be executed against the members of
the sub-collections, and so on. Note that even when used recursively, only a
single request is sent, and only a single response, with property information for all
affected resources, is returned.

The PROPPATCH method can set or remove multiple properties on a resource in
an atomic operation. That is, all the set and remove commands in the PROPPATCH
will either be successfully applied in the order submitted, or none will. To support
dead properties, W E B D A V servers are capable of supporting arbitrary properties,
as client-maintained "dead" values. Like PROPFIND, PROPPATCH can also be
applied recursively against collection resources.

For example, DAV:source is one normative property defined in the W E B D A V

protocol. If present, it provides a link from a resource to a URL where a
representation suitable for authoring can be retrieved.

Design rationale for properties '

Several different designs were considered for properties. The first design used
typed links: a set of URLs that expressed a relationship between two or more
resources. To express the relationship "is-author-of", a link would be defined
from the document being authored to a separate resource that contained the name
of the author. Though powerful, this link-based design was rejected for
performance reasons, since it resulted in many network requests, and because
consistency maintenance of linked metadata is difficult.

The approach which was finally adopted flowed from the notion of allowing
"links" to record metadata strings directly. Thus small properties could be
recorded directly inside of the property's value, while large values could be
accessed indirectly through a URL. This design better suits the preponderance of
metadata which consists of "small" data items, such as an author's name.

The PROPFIND method allows multiple property values to be retrieved at once,
thus satisfying performance requirements. XML is used for the default property
syntax as a simple, yet structured format for property values. In addition,
W E B D A V s additional rule that any XML elements not understood must be
ignored allows property values to be extended while retaining backward
compatibility. XML also allows properties to contain arbitrary data with less
complexity than the dual method design. . •

The ultimate argument in favor of this design for PROPPATCH is the
interdependence of property values and resource state. For example, if properties

300

A & B have mutually dependent values and a client crashes between updating A
and B, the resource would be left in an inconsistent state. This led to the inclusion
of both set and delete commands in the PROPPATCH method, in conjunction with
the atomicity requirement.

URIs are used to name W E B D A V properties, because many different groups
and applications will create new properties. URIs form a controlled namespace
that provides support for both' centralized and decentralized extensions yet
guarantees uniqueness. Registering a new URI scheme gains the benefits of a
centrally controlled namespace, while using URLs allows any organization with a
domain name to create new property names.

L o c k i n g ,, ..'•.

Concurrency control within the W E B D A V protocol is provided by write locks.
The LOCK method supports two types of locks: "exclusive write locks" and
"shared write locks". Since any kind of principal—human or Web robot—could
write to a Web resource, a write lock prevents any principal other than the lock
owner, from writing to a locked resource. An exclusive write lock prevents all
principals other than the single lock owner from writing to the resource, while a
shared write lock can be owned simultaneously by several users. This
terminology differs from the typical database use, where a shared lock is typically
taken out prior to reading a database cell.

The lock compatibility table for write locks is given in Table I.

CURRENT LOCK STATE
SHARED LOCK
REQUEST

EXCLUSIVE LOCK
REQUEST

None Granted Granted

Shared Lock Granted Not Granted

Exclusive Lock Not Granted Not Granted

Table I: Lock compatibility table. The current lock state of the resource is given
in the leftmost column, and lock requests are listed in the first row. The
intersection of row and column gives the results of a lock request, where
"granted" means the lock was granted.arid "not granted" means the lock was not
granted.

Principals are identified using Digest Authentication, an extension to HTTP
specified in Franks et al. (1997). This scheme, which uses multiple one-way
hashes to encrypt a username, password pair, is substantially better than
authentication schemes in existing remote authoring tools. For example, MESSIE
(Sasse et al., 1993) only transmits an unencrypted username before granting write
access to a repository. HYPER-G, whose Client-Server Protocol is described in

301

Kappe and Pani (1996), has a much-stronger DES-encrypted username, password
pair to authenticate users. Unfortunately, most remote authoring system papers do
not describe how they authenticate their users, making it impossible to determine
how secure they are—raising questions on how easily their concurrency control
and access control schemes can be spoofed.

The W E B D A V locking mechanism is non-connection-oriented. When a lock is
granted, the server returns a lock token, a globally unique identifier, to the client.
So long as it stores the lock token, the client need not remain connected. When
the client subsequently wants to perform write operations on the locked resource,
it recreates the network connection, then passes authentication credentials and the
lock token to the server along with the write request. The authentication
credentials ensure the requesting principal is who they claim to be, and the lock
token ensures the requesting principal's client software is aware of the lock. This
eliminates cases where the same principal could have multiple applications
running at the same time, only a subset of which are aware of a given lock.

Since any client can discover the lock token for an active lock by examining
the DAVdockdiscovery property, lock tokens are public knowledge. Thus,
possession of a lock token does not, by itself, grant a client permission to write a
locked resource. It is the combination of having correct authentication credentials
and demonstrating knowledge of the lock, by passing the lock token, that grants
the ability to write a locked resource.

Multiple resources can be locked with a single lock request by performing a
recursive lock upon a collection and its children, receiving a single lock token in
the response to represent the entire lock.

Design rationale for locking

Internet connections are inherently unreliable: an application should be prepared
for a connection to go down at any time. To achieve robust behavior, a protocol
must be designed to gracefully handle broken connections. For robustness as well
as efficiency, HTTP was designed as a "stateless" protocol, where no state is
associated with a network connection. This is more robust than approaches which
associate state with a network connection, since a dropped connection only affects
a single request, and is more efficient, since it does not require connection state to
be established every time a connection is created. It also eliminates the need for a
"resynchronization" operation in the protocol to recover connection state after an
interruption.

Concurrency control within the W E B D A V protocol was designed to satisfy the
goals of keeping the protocol independent of content type, allowing merges to be
avoided, providing robust, even disconnected, operation in the Internet
environment, and offering an easy adoption path for existing non-collaborative
applications like spreadsheets, word processors, and text editors.

302

Synchronous collaborative authoring applications such as GROVE (Ellis &
Gibbs, 1989) and PREP (Neuwirth et al., 1994) willingly forgo content type
independence to provide fine-grain1 merging down to the keystroke level. DUPLEX
(Pacull et al., 1994) and ALLIANCE (Salcedo and Decouchant, 1997) both exploit
special knowledge about the internal hierarchical structure of their documents to
provide concurrency control on document subtrees.

While these approaches mitigate the major drawback of locking, the lack of
availability of a locked document, the cost is too high: adding content-type
specific knowledge to the protocol. The major problem with adding content-type
knowledge to the protocol is the number, and variation among content types.
There are currently 19 text/* and over 150 application/* Internet media types.
Some of these are word processing formats where operations like "insert a
character" and "delete a character" make sense, others are image formats with
different editing semantics, such as "change pixel's color", and "draw a line".
Furthermore, some content types are revised incompatibly, requiring the protocol
to distinguish between—and provide support for—multiple versions of these
content types. • , ; ' ;

The approach in GROVE and PREP of sending fine-grain update notifications
requires a constant network connection to be held open between collaborating
applications. This requires such systems to be fully network connected throughout
collaborative authoring sessions, and easily reconnect accidentally disconnected
authors. In contrast, W E B D A V locking does not require a constant network
connection, even allowing collaborators to completely disconnect from the
network once a resource has been locked and downloaded to a local machine.

As Grinter (1996) noted in her study of configuration management system use,
merging can be a complex activity, requiring coordination between authors to
resolve overlapping changes, discussing the rationale behind the changes, and
how the changes work together. The W E B D A V exclusive write lock is a tradeoff
between preventing the heed for merges and document unavailability during the
lock. ' • •[i

Finally, W E B D A V locks have a granularity of an entire Web resource, which
maps easily onto concepts like a spreadsheet, a word processing document, or an
image. Since many existing applications work on files, these applications can
more easily be converted to using W E B D A V than if they had adopted a locking
model with finer granularity. Grain size smaller than an entire file would increase
availability, but would require significant reworking of how the application
accepts input, since it would now need to listen to update notifications from other
collaborators. While it is conceivable that applications will eventually be
restructured to provide fine-grain concurrency control for application-specific
media types, the W E B D A V protocol initially aims to provide a stable intermediate
level which allows applications to become collaboration-aware without a
significant reengineering burden.

303

Namespace Management

W E B D A V provides five methods for manipulating the namespace, DELETE,

MKCOL, COPY, MOVE and PROPFIND. The DELETE method, first defined in Fielding
et al., (1997), takes a single argument, the name of a resource to.be deleted. The
W E B D A V protocol extends the DELETE method so it can be applied recursively
against collection resources. The MKCOL method takes a single argument, the
URL where a new collection resource is created.

The most basic form of the COPY method takes two arguments, the URL of a
source resource and a destination URL. A successful COPY results in the source
resource being copied and made available at the destination. A COPY method may
also applied recursively against a collection resource, with best-effort (not
atomic) semantics. By default any properties on the source are copied onto the
destination. Live properties that cannot be supported as live properties on. the
destination are copied across as dead properties. For example, if the source had an
iso:time_of_day property which returned the current time of day and the
destination is on a different server that doesn't have the code to support
iso:time_of_day as a live property then a dead property called iso:time_of_day
will be created on.the destination and set to the value of the property at the time
of the copy. The COPY method can be set to fail if all live properties are not
copied as live or if a specified list of live properties are not copied across as live.
A looser restriction is also available which specifies that the COPY: should not fail
for any property related reasons such as the inability to copy, any properties
across.

The MOVE method is defined as the logical equivalent of a COPY followed by a
DELETE, performed as an atomic operation. Like COPY, MOVE may be recursively
applied to a collection, again with best-effort semantics. Properties are handled in
the same manner and with the same options as for the COPY method.

The PROPFIND method is relevant to namespace management since it is used to
retrieve a listing of a collection's members. To retrieve a collection's membership
list, either a recursive or single level PROPFIND is executed on the collection
resource. By asking for one or more properties to be returned, the result lists
every member of the collection, even if the result just states the property isn't
defined on the member resource.

Design rationale for namespace operations

W E B D A V s namespace design was strongly motivated by the needs of existing
authoring clients and servers, specifically ones who expect a strictly hierarchical
namespace. A strictly hierarchical namespace is one in which if resource "a" and
"a/b" both exist then "a" must be a collection and must contain "a/b" as a
member. The "/" character specifies containment. Many systems, especially more

http://to.be

304

advanced versioning environments, do not require a strictly hierarchical
namespace. Their namespace is usually flat with versioning relationships used to
express containment. However clients and servers who require a strictly
hierarchical namespace, including all file system based programs, cannot operate
properly if the hierarchical namespace requirements are not met.

For example, in a fully generic containment system, resource "a" and "a/b"
could both be non-collection resources and both be contained by "a/b/c". In other
words, in a generic containment system the "/" character has no special meaning.
It is possible to layer a generic containment system on top of a strictly
hierarchical namespace through the use of sufficient mapping information. For
example, a W E B D A V server built on top of a strictly hierarchical namespace
could store all files in a single container and then map W E B D A V names to those
files.

The compromise solution was W E B D A V collections would enforce a strictly
hierarchical namespace while a later specification (Slein et al., 1999) would
provide for linking facilities that allow W E B D A V collections to refer to resources
outside of their hierarchical namespace.

Example implementations

Several W E B D A V client and server applications have been implemented,
providing valuable feedback during the development of the protocol and its
extensions. Interoperability testing is ongoing, and while some implementations
are not yet entirely compliant (normal for the early stages of deployment of a
protocol), the existence of interoperable client/server pairs has demonstrated that
the W E B D A V protocol is a firm basis for interoperable collaborative authoring on
the Web. Current W E B D A V applications are briefly described below.

WebDAV Servers

P Y D A V - The P Y D A V server, by Jim Davis while at Xerox PARC, is a fully
compliant W E B D A V server (Davis, '1999). It is written in PYTHON, (a scripting
language created by Guido van Rossum, described in Lutz (1996)) and runs on
UNIX and WINDOWS. Persistent storage for resources is the filesystem, while
storage and retrieval of properties is handled by a DBM database.

The architecture of the server maintains a clean separation between the code
that handles the W E B D A V Protocol, and the code that manages the repository of
resources and properties. This architecture allows handlers for other protocols to
access the same repository, and for the W E B D A V protocol to access the content
of other repositories, such as a document management system, or a relational
database. This architecture shows the promise of the W E B D A V protocol as an
object integration technology, providing a standard, network-accessible front-end

305

to a' wide variety of persistent stores: r
Internet Information Services 5™ (IIS 5) - IIS 5 is Microsoft™'s HTTP &

Application Web Server for WINDOWS.2000™.,IIS 5 is fully W E B D A V compliant
and leverages the file management, property storage and locking features of the
WINDOWS 2000 file system to provide W E B D A V storage, property management
and locking. This integration ensures that a user cannot get around a W E B D A V

lock by going directly to the file system, or lose W E B D A V properties just by
copying a file somewhere else in the system. Thus users who access the server's
file system directly or who go through W E B D A V will enjoy the same experience.

MOD_DAV - A module for the APACHE Web server (Fielding et al., 1997)
which currently implements the Class 1 features of the W E B D A V Protocol (it
does not support locking, an area of ongoing development). MOD_DAV (Stein,
1999) is an open source project led by Greg Stein that is written in C for the
LINUX operating system, and handles resource and property persistence similar to
P Y D A V , with resources stored in the filesystem, and properties stored in GDBM.

WebDAV Clients

POSTIES - This application provides collaborative, shared notes, similar to POST-

IT™ notes. Written in Java, POSTIES stores each note as a separate Web resource
within a collection. A user modifies a note by clicking within a note, then starting
to type. This causes a background thread to request an exclusive lock on the note.
If the lock is granted, the note is locked without the user being aware of the
activity. If the note- is already locked, an error dialog appears, and modifications
to the note are lost.- Since HTTP, and hence the W E B D A V protocol, is not
currently suitable for sending notification messages (a deficiency noted by many,
including Trevor et al., 1997, and Dix, 1997), the DAV POSTIES application polls
for changes to notes on a regular interval. •

SITECOPY - Written in C by Joe Orion, this program uses the W E B D A V

protocol to update a remote Web site from a local directory, (Orton, 1999).
SITECOPY synchronizes a remote site from a local directory, uploading, deleting
and moving files on the server as necessary. Changes on the server are not
reflected in the local directory; the synchronization is only one-way (two-way
synchronization is an area of future work): SITECOPY demonstrates the flexibility
of a protocol-based approach, since it is a type of application which was not
originally considered when developing the protocol.

Internet Explorer 5™ (IE 5) - IE 5 provides support for W E B D A V through a
namespace extension which allows a W E B D A V server to be displayed using the
same WINDOWS EXPLORER™ interface provided for browsing the local file
sv«tpm. This interface provides for copy, move, delete, rename, create new file,
create new collection and drag/drop functionality. Users can activate the
namespace extension through the WINDOWS™ shell using a;i special wizard,

306

through pre-defined shell shortcuts, through the file-open dialog or through
scripting in an HTML page. In addition, the namespace extension provides access
to a W E B D A V compliant off-line synchronization manager which can handle
automatically downloading and synchronizing the off-line store with the server.

Office 2000™ - OFFICE 2000 fully integrates IE 5 and so supports all the
W E B D A V features that IE 5 supports. In addition OFFICE 2000 also provides for
rich resource management directly in its File-Open and File-Save dialogs. Thus
all the W E B D A V functionality provided in the WINDOWS EXPLORER IS now
available directly through OFFICE 2000's File-Open/Save dialogs. This allows
users to treat a W E B D A V server the same way they would treat any file system.
OFFICE 2000 makes full use of W E B D A V exclusive write locks in order to
enforce single access to edited files. While OFFICE 2000 supports merging, in
general OFFICE users strongly prefer to avoid merges whenever possible.

Related Work

Similar network protocols to W E B D A V can be characterized as either an
extension to HTTP, a non-HTTP hypertext authoring protocol, or a file transfer
protocol. Ir ,, j , , .

To date, extensions to HTTP for remote authoring have been proprietary,
implemented by just a single vendor, and have scant documentation. For example,
the FRONTPAGE™ web authoring tool uses a set of remote procedure calls
implemented using the HTTP POST method to perform remote authoring
operations, and only work with Web servers which support them. W E B D A V

differs from the FRONTPAGE extensions by using separate HTTP methods for
each operation, an approach that has advantages for access control. When the
name of an operation is specified both in the HTTP request line, and in the
message body of an HTTP POST method request, a server implementing access
control must look in two places for the name of the operation.

AOLPRESS/AOLSERVER (some details of the protocol can be found in
America Online, 1998) and the Netscape Enterprise Server (Cunningham and
Faizi, 1997) both extended HTTP by defining new HTTP methods. Since both of
these efforts fed ideas and contributors to the W E B D A V effort, there are many
similarities in approach. Both add locking, and namespace operations (copy,
move, make directory, list directory) in separate HTTP methods. The Netscape
extensions also have methods for properties, providing operations to set and
remove name/value pairs, and for versioning, providing check-out, check-in, list
history, destroy, and set default version methods. But, despite the similarities, the
W E B D A V protocol differs from these extensions in many ways. The semantics of
locking are well defined in the, W E B D A V protocol, and are insufficiently
specified in these other extensions. Furthermore, W E B D A V locks return a lock
token, allowing multiple clients operated by the same principal to work within the

307

same portion of the namespace free from overwrite conflicts caused by
unexpected tool interactions. The W E B D A V lock, copy, and move operations can
apply to an entire hierarchy of resources, providing support for Web pages
composed of multiple resources. Unlike' the Netscape extension's properties,
which are simple ASCII strings, W E B D A V property values accommodate
contents in multiple character sets, providing internationalization support. Since
W E B D A V property values are XML, they offer better extensibility characteristics
than strings. An important differentiator for W E B D A V IS that it is a non­
proprietary protocol, and hence more likely to be broadly adopted than any of
these proprietary extensions.

Several systems have employed a non-HTTP network protocol to provide
remote collaborative authoring. Open hypermedia systems, as discussed in the
survey by 0sterbye and Wiil (1996), employ protocols for authoring hypertext
links and for transmitting link traversal events, and often also have a protocol for
authoring and retrieving hypermedia objects. Protocols in open hypermedia
systems have many differences in their marshalling strategies,' varying from the
ASCII linearization of Lisp and Scheme data structures in HYPERDISCO (Wiil and
Leggett, 1996), the use of XDR and RPC by CHIMERA (Anderson et al., 1994), to
a different use of ASCII by the Open Hypermedia Protocol for Navigation (OHP-
Nav), developed as a community effort by open hypermedia researchers (Davis et
al., 1998). Although it does not label itself as such, the HYPER-G Client-Server
Protocol (Kappe and Pani, 1996) can also be considered an open hypermedia
protocol. Despite many differences, open hypermedia protocols do share some
similarities in approach. All are client-server protocols, where a hypermedia-
aware application is a client, and the open hypermedia system is the server.
Unlike HTTP, open hypermedia protocols allow server-initiated asynchronous
notification messages to be transferred to the client, where they signal a link
traversal, or give collaboration awareness information. As a result, these protocols
maintain a stateful, open connection during use sessions. The W E B D A V protocol
differs from open hypermedia protocols by providing a stateless, non-connection-
oriented protocol. The W E B D A V protocol does not treat hypertext links as first-
class objects, instead modeling them as properties. This avoids the scalability
bottleneck in open hypermedia systems of having a single point of control for
links, and link consistency. An in-depth discussion of the control tradeoffs in the
architectures of open hypermedia systems and the Web is presented in Whitehead
(1999).

Finally, the W E B D A V protocol differs from the ubiquitous File Transfer
Protocol (Postel and Reynolds, 1985) in several respects. Each FTP session opens
two network connections, a control channel, used to send commands from client
to server, and a data channel, used for transferring files from machine to machine.
This differs from HTTP, which combines control and data information into a
single channel, permitting even more simple client implementations. While FTP.

308

provides namespace operations equivalent to those of W E B D A V , it does not
provide any form of overwrite prevention, thus making it unsuitable for
authoring, and has no metadata facilities. Furthermore, an FTP session is stateful,
which would lead to robustness problems for long-duration collaborative sessions.

Conclusions

This paper has explored ,a protocol-centric approach to collaborative authoring by
examining the requirements and functionality of the W E B D A V protocol.
Providing an upward migration path for existing applications has proven crucial.
We have shown that freedom from licensing restrictions, large-grain locking, and
namespace management operations reduce reengineering barriers for
collaborative authoring with existing applications. Several W E B D A V applications
now exist, promising to generate network effects, accelerating widespread
adoption of collaborative authoring.

Since compatibility .among collaborative authoring tools is essential for the
generation of network effects, our protocol-centric approach focused design
attention on issues of interoperability, security, internationalization, extensibility,
and protocol scalability. The resulting' design separated several concerns: the
behavior of locks from the behavior of network connections (and from other
protocol operations); and the semantics of the protocol from the content types
authored using the protocol. Simultaneously addressing these issues has yielded a
well-engineered protocol adapted to the Internet environment.

Finally, our experience has validated the importance of designing collaborative
authoring applications from the user down, and from the protocol up. Both
approaches focus on important issues, different facets of the same design space.

Acknowledgements „. ,

Since the W E B D A V protocol is the consensus output of the W E B D A V working
group, the authors wish to explicitly, note that they are not the sole creators of the
W E B D A V protocol, and gratefully acknowledge the numerous, substantial
contributions made by the members of the W E B D A V working group. While a
complete list of contributors to the W E B D A V protocol can be found in the
acknowledgements section of Goland.et al., 1999, we would like to specially
thank the other authors of the W E B D A V protocol, Asad Faizi, Steve Carter, and
Del Jensen, as well as working group members Larry Masinter, Jim Davis, Jim
Amsden, and Judy Slein for their contributions. Similarly, the W E B D A V

requirements document, Slein et al. (1998) is a consensus document of the
working group and we would like to specially acknowledge the editors of this
document, Judy Slein, Fabio Vitali, and David Durand for their contributions.

309

Finally, we would like to thank David McDonald, Rohit Khare. and David Norris

for their thoughtful reviews.

Jim Whitehead's work on this project was sponsored by the Defense Advanced

Research Projects Agency, and Air Force Research Laboratory, Air Force

Materiel Command, USAF, under agreement number F30602-97-2-0021. The

views and conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the Defense Advanced Research Projects Agency, Air

Force Research Laboratory or the U.S. Government.

References

America Online (1998): "AOL Server Administrator's Guide", America Online, 1998.
http://www.aolserver com/server/docs/2 3/html/admin.html '

Anderson, K. M, Taylor, R. N., and Whitehead, Jr E J. (1994): "Chimera- Hypertext for
Heterogeneous Software Environments", in Proc. 1994 European Conference on
Hypermedia Technology (ECHT'94), Edinburgh, Scotland, Sept. 18-23, 1994, pp. 94-107.

Bentley, R., Horstmann, T, and Trevor, J. (1997) "The World Wide Web as enabling technology
for CSCW: The case of BSCW", in Computer Supported Cooperative Work: The Journal of
Collaborative Computing, vol 6, nos 2-3, 1997, pp. 111-134.

Berners-Lee, T., Fielding, R., and Masinter, L. (1998). "Uniform Resource Identifiers (URI):
Genenc Syntax", MIT/LCS, U.C. Irvine, Xerox RFC 2396, August, 1996

Bray, T., Paoli, J , and Sperberg-McQueen, C. M (1998). "Extensible Markup Language (XML)",
World Wide Web Consortium Recommendation REC-xml-19980210, February, 1998

Cunningham, J. and Faizi, A (1997): "Distributed Authoring and Versioning Protocol",
Unpublished manuscript, 1997 http://www.ics.uci edu/pub/ietf/webdav/ns_dav.html

DASL (1999) "DAV Searching and Locating Home Page", http //www.ics uci.edu/pub/ietf/dasl/
Davis, H., Reich, S , and Millard, D. (1998) "A Proposal for a Common Navigational Hypertext

Protocol", Open Hypermedia Systems Working Group draft, httpV/www.ecs soton.ac uk/
~hcd/ohp/ohp35.htm

Davis, J. (1999): "PyDAV WebDAV Server", httpV/sandbox xerox.com/webdav/, 1999.
Dierks, T. and Allen, C. (1999): "The TLS Protocol Version 1.0" Certicom. RFC 2246, Jan , 1999.
Dix, A. (1997): "Challenges for Cooperative Work on the Web: An Analytical Approach", in

CSCW. The Journal of Collaborative Computing, vol. 6, nos. 2-3, 1997, pp. 135-156.
Ellis, C.A., and Gibbs, S J. (1989): "Concurrency control in groupware systems", in Proc. ACM

SIGMOD '89 Conference on the Management of Data, Seattle, WA, May 2-4, 1989.
Fielding, R., Gettys, J, Mogul, J , Frystyk, H , and Berners-Lee, T. (1997). "Hypertext Transfer

Protocol - HTTP/1.1", U.C Irvine, DEC, MIT/LCS. RFC 2068, January, 1997.
Fielding, R., Kaiser, G. (1997): "The Apache HTTP Server Project", IEEE Internet Computing,

1(4), July/August, 1997.
Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and Stewart, L.

(1997): "An Extension to HTTP: Digest Access Authentication", Northwestern Univ.,
CERN, Spyglass, Microsoft, Netscape, Spyglass, Open Market. RFC 2069, January, 1997.

Freed, N., Borenstein, N. (1996): "Multipurpose Internet Mail Extensions (MIME) Part One
Format of Internet Message Bodies", Innosoft, First Virtual. RFC 2045, November, 1996.

http://www.aolserver
http://www.ics.uci
http://www.ics
http://uci.edu/pub/ietf/dasl/
http://www.ecs
http://xerox.com/webdav/

310

Goland, Y Y., Whitehead, Jr., E. J , Faizi, A., S R. Carter, and D. Jensen (1999). "HTTP
Extensions for Distributed Authoring — WEBDAV", Microsoft, U.C. Irvine, Netscape,
Novell RFC 2518, February, 1999.

Gnnter, R (1996). "Supporting Articulation Work Using Software Configuration Management
Systems", in CSCW- The Journal of Collaborative Computing, vol 5, 1996, pp. 447-465

Kappe, F., and Pani, G. (1996) "Hyper-G Client-Server Protocol (HG-CSP)", in Maurer, H (ed)
1996, pp. 550-591. ;

Kirby, A and Rodden, T. (1995): "Contact: Support for Distributed Cooperative Writing", in
Proc. Fourth European Conference on Computer Supported Cooperative Work
(ECSCW95), Stockholm, Sweden, September 10-14, 1995, pp. 101-116.

Lutz, M (1996): Programming Python, O'Reilly & Associates, Cambridge, MA
Maurer, H. ed. (1996). Hyper-G, now Hyperwave: The next generation Web solution, Addison-

Wesley, Harlow, England.
Neuwirth, C. M., Kaufer, D. S , Chandhok, R, and Morns, J. H (1994). "Computer Support for

Distributed Collaborative Writing: Defining Parameters of Interaction", in Proc. ACM 1994
Conference on Computer Supported Cooperative Work (CSCW'94), Chapel Hill, NC,
October 22-26, 1994, pp. 145-152.

Orton, J. (1999). "sitecopy Home Page", http://www.lyra.org/sitecopy/
0sterbye, K., and Wiil, U. (1996): "The Flag Taxonomy of Open Hypermedia Systems", in Proc.

Hypertext'96, Washington, DC, March 16-20, 1996, pp 129-139.
Pacull, F , Sandoz, A, and Schiper, A. (1994): "Duplex: A Distributed Collaborative Editing

Environment in Large Scale", in Proc. ACM 1994 Conference on Computer Supported
Cooperative Work (CSCW'94), Chapel Hill, NC, October 22-26, 1994, pp. 165-173.

Postel, J. (1982). "Simple Mail Transfer Protocol", ISI RFC 821, Standard 10, August, 1982.
Postel, J. and Reynolds, J. (1985): "File Transfer Protocol (FTP)", ISI. RFC 959, October, 1985
Rohlfs (1974)- "A theory of interdependent demand for a communications service", Bell Journal

of Economics, vol. 5, no. 1, 1974, pp. 16-37.
Sasse, M. A., Handley, M. J (1993): "Support for Collaborative Authoring via Email The

MESSIE Environment", in Proc. Third European Conference on Computer-Supported
Cooperative Work(ECSCW'93), Milan, Italy, September 13-17, 1993, pp. 249-264.

Salcedo, M. R. & Decouchant, D. (1997): "Structured Cooperative Authoring for the World Wide
Web", in Computer Supported Cooperative Work: The Journal of Collaborative Computing,
vol. 6, nos. 2-3, 1997, pp. 157-174.

Slein, J. A , Vitah, F., Whitehead, Jr., E.' J., and Durand, D. (1998): "Requirements for a
Distributed Authoring and Versioning Protocol for the World Wide Web", Xerox, Univ. of
Bologna, U.C. Irvine, Boston Univ. Informational RFC 2291, Feb., 1998

Slein, J , Davis, J., Babich, A, Whitehead, Jr., E. J (1999): "WebDAV Advanced Collections
Protocol", Internet-Draft, work-in-progress, draft-ietf-webdav-collection-protocol-03, Feb.
26, 1999.

Stein, G. (1999). "mod_dav. A DAV module for Apache", http://www.webdav.org/mod_dav/
Trevor, J., Koch, T., and Woetzel, G. (1997): "MetaWeb: Bringing synchronous groupware to the

World Wide Web", in Proc. of the Fifth European Conference on Computer Supported
Cooperative Work (ECSCW'97), Lancaster; UK, September 7-11, 1997, pp. 65-80.

Whitehead, Jr, E J. (1999): "Control Choices and Network Effects in Hypertext Systems", in
Proc. Hypertext '99, Darmstadt, Germany, February 21-25, 1999, pp. 75-82.

Wnl, U., and Leggett, J. (1996): "The HyperDisco Approach to Open Hypermedia Systems", in
Proc Hypertext'96, Washington, DC, March 16-20, 1996, pp. 140-148

http://www.lyra.org/sitecopy/
http://www.webdav.org/mod_dav/

