
Accelerating Digital
Transformation with

Containers and
Kubernetes
An Introduction to

Cloud-Native Technology

Author
Steve Hoenisch

PRESS

2

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The authors,
VMware Press, VMware, and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information contained
in this book.

The opinions expressed in this book belong to the author and are not necessarily those of
VMware.

VMware, Inc.
3401 Hillview Avenue
Palo Alto CA 94304
USA Tel 877-486-9273
Fax 650-427-5001
www.vmware.com.

Copyright © 2018 VMware, Inc. All rights reserved. This product is protected by U.S. and
international copyright and intellectual property laws. VMware products are covered by
one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered
trademark or trademark of VMware, Inc. and its subsidiaries in the United States and/or
other jurisdictions. All other marks and names mentioned herein may be trademarks of their
respective companies.

An Introduction to Cloud-Native Technology | 3

Contents
Introduction . . 8
	 Organization of this Book .8
	 Point of Departure:
	 Cloud-Native Terminology. 9

Driving Digital Transformation with Containers
and Kubernetes. . 13
	 The Business Value of Digital Transformation. 13
	 Cloud-Native Applications . 13
	 12-Factor Apps: A Methodology for
	 Delivering Software as a Service. 15
	 The Business Value of Kubernetes . 17
	 An Example Use Case . 17

Demystifying Kubernetes. . 19
	 Platform vs. Runtime Environment. 19
	 Robust Open-Source Technology from a
	 Google Production System. 19
	 Defogging the Abstract Terminology of Kubernetes. 20
	 A Concise Overview of Kubernetes . 21
	 Just Another Fad in the Hype Cycle?. 24
	 Kubernetes in Production Environments. 24
	 A Rapidly Maturing Ecosystem. 25
	 Kubernetes Won’t Solve All Your Problems 25

Introduction to Cloud-Native Architectures
and Practices. . 27
	 Microservices. 27
	 Deconstructing the Monolith and Other Use Cases. 29
	 Kubernetes for Cloud-Native and 12-Factor Applications. 30
	 Profile of a DevOps Engineer: Responsibilities and Skills 32
	 Continuous Integration and Continuous Deployment 34

Container Technology in the
Software-Defined Data Center. . 35
	 VMware vSphere and the SDDC. 36
	 Abstract and Automate: Network Virtualization. 36
	 Risk-Free Scale Out with Ease: Virtual Storage. 37
	 Put a Lid on It: Security for Containers . 38
	 Linux Container Hosts . 41
	 Securing Cloud Platforms with Lightwave 44
	 Managing Container Images with Harbor. 51
	 Microservices Meets Micro- segmentation: Delivering
	 Developer-Ready Infrastructure for Modern Application
	 Development with NSX. 59

4

	 BOSH. 60
	 CFCN for Deploying and Operating Kubernetes. 67

Container Platforms and Services. . 70
	 High-Level Use Cases for Container Platforms. 70
	 Maturity of Container Adoption. 70
	 Cloud Natives. 71
	 Matching the Platform to the Project. 71
	 Prescription and Complexity . 71
	 vSphere Integrated Containers . 73
	 VMware Pivotal Container Service . 92

Use Cases. . 101
	 Self-Service Infrastructure for Agile Development. 101
	 Replatforming Applications with PKS . 106
	 Deploying New Cloud-Native Apps with PKS 108
	 Exploiting the Power of Containers . 109
	 Running a Containerized App with
	 Photon OS on Amazon Elastic Cloud Compute. 109
	 Using vSphere Integrated Containers to Solve
	 Container Networking Problems. 120
	 Providing Persistent Storage for Legacy Applications. 124
	 Setting Up a Developer Sandbox . 133
	 Deploying Jenkins by Using VIC. 141
	 Optimizing Cloud-Native Apps with PCF and
	 Developer-Ready Infrastructure from VMware. 147
	 Case Study: Optimizing Critical Banking Workloads 158

Conclusion . . 162

Glossary. . 163

An Introduction to Cloud-Native Technology | 5

Author and Contributors
Author and Editor

Steve Hoenisch is a technology evangelist,
writer, and editor who specializes in emerging
technology and cloud-native solutions. He’s
written numerous influential technical white
papers and magazine articles on digital
transformation, Kubernetes, containers, big data,
Hadoop, storage platforms, security, and
regulatory compliance. A former newspaper
editor with a master’s degree in linguistics, he
has published articles in XML Journal, The
Hartford Courant, and the Chicago Tribune. He
works in the Cloud-Native Apps business unit at
VMware.

Contributors

Ben Corrie has been a leading voice of technical
innovation in the container space at VMware for
three years. Ben was the initiator of the research
that led to the vSphere Integrated Containers
product and as an architect on that product,
Ben’s role now is to look 6 to 12 months ahead to
help align VMware with the container challenges
ahead.

Patrick Daigle is a Senior Technical Marketing
Architect in Montreal, Canada. As part of
VMware’s Cloud-Native Applications business
unit, he focuses on vSphere Integrated
Containers and works with enterprises around
the globe, explaining and demonstrating the
benefits of VMware container solutions and how
they can bring value to the business.

6

Ning Ge is a Senior Product Marketing Manager
in VMware’s Cloud-Native Apps business unit
and works on VMware’s container solutions, such
as VMware Pivotal Container Service and
vSphere Integrated Containers. Ning has over 7
years of experience in marketing enterprise
software technologies and solutions, and her
main area of focus includes container and cloud-
native, middleware, and infrastructure
technologies. Ning has master’s degrees in both
Business Administration and Communications.

Merlin Glynn is a product manager at VMware,
where he builds products that help customers
architect and deploy cloud-native applications.
Merlin has been building complex environments
as an architect for over 20 years, focusing on
solutions for large enterprises and the academic
and scientific community. Previously, he
architected some of the world’s largest
supercomputers at IBM, which were regularly
listed on the TOP500 list, and, at Pivotal,
designed many next-generation Pivotal Cloud
Foundry platforms for key enterprise customers.
Merlin is a certified AWS Solutions Architect. He
enjoys volunteering for charities.

Contributors, cont.

An Introduction to Cloud-Native Technology | 7

Simone Morellato is currently a Director of
Technical Product Management at VMware
where he leads technical product management
and marketing efforts for the company’s Cloud-
Native Applications business unit. Simone has
more than 16 years of experience in storage,
networking and infrastructure for both
traditional and cloud applications. Before joining
VMware, Simone worked at Apcera, a container
management platform, acquired by Ericsson. He
has also held leadership, marketing and technical
presales roles at Cisco, Riverbed Technology,
Astute Networks and Andiamo Systems (later
acquired by Cisco).

Tom Scanlan is a Senior Consultant in the CNA/
DevOps and Emerging technologies arenas. He
has 20 years experience across software
engineering, systems and networking
administration and consulting thereon. Tom has
had deep focus on enabling DevOps and
multicloud architectures.

8

Introduction
Digital transformation, the commoditization of IT, the Internet of things,
the proliferation of mobile devices, the growing popularity of public
clouds, big data, and other seismic technological changes are radically
altering the way businesses are run. Innovative software applications
are, for many businesses, a critical objective. Consumers, customers, and
keeping ahead of the competition demand it.

But one-time innovation is often not enough. The digital era calls for
continuous innovation at an accelerated pace—and the kind of modern-
ized data centers and software development technologies that make it
possible.

Container technology can help transform a company into a digital
enterprise focused on delivering innovations at the speed of business.
Containers package applications and their dependencies into a distribut-
able image that can run almost anywhere, streamlining the development
and deployment of software.

By adopting containers, organizations can take a vital step toward
remaking themselves into flexible, agile digital enterprises capable of
accelerating the delivery of innovative products, services, and customer
experiences. Enterprises can become the disrupters instead of the dis-
rupted.

But containers create technology management problems of their own,
especially when containerized applications need to be deployed and
managed at scale, and that’s when Kubernetes comes into play. Kuber-
netes automates the deployment and management of containerized
applications. More specifically, Kubernetes orchestrates containerized
applications to manage and automate resource utilization, failure han-
dling, availability, configuration, desired state, and scalability.

This book introduces you to containers and Kubernetes, explains their
business value, explores their use cases, and illuminates how they can
accelerate your organization’s digital transformation.

Organization of this Book
The chapters at the beginning of the book explain the business value
container technology and examine how enterprises are modernizing their
data centers to take advantage of cloud-native innovations.

After briefly examining the architectural patterns, practices, processes,
and pipelines that help propel you toward digital transformation, the book

An Introduction to Cloud-Native Technology | 9

considers the kind of infrastructure, virtualization technologies, systems,
and security required by next-generation data centers.

The chapters that follow become increasingly technical as they use two
key products from VMware—VMware vSphere Integrated Containers
and VMware Pivotal Container Service—to explain the architecture of
cloud-native applications, the capabilities of Kubernetes, and the use
cases for container technology.

The final sections of the book turn to examples that demonstrate how to
exploit the power of containers and Kubernetes to solve technical
problems.

Point of Departure:
Cloud-Native Terminology
Container technology comes with its own lexicon. If you’re familiar with
the basic terminology around containers, Kubernetes, and cloud-native
applications, you can skip this section. For plain-language descriptions of
terminology in the cloud-native space, see the glossary at the end of the
book.

Containers

Container: A portable format, known as an image, for packaging an
application with instructions on how to run it as well as an environment
in which the image is executed. When the container image is executed, it
runs as a process on a computer or virtual machine with its own isolated,
self-described application, file system, and networking. A container is
more formally known as an application container. The use of containers
is increasing because they provide a portable, flexible, and predictable
way of packaging, distributing, modifying, testing, and running applica-
tions. Containers speed up software development and deployment.

Docker is a widely used container format. Docker defines a standard
format for packaging and porting software, much like ISO containers
define a standard for shipping freight. As a runtime instance of a Docker
image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

Containerized application: An application that has been packaged to run
in a container.

10

Kubernetes and Orchestration

Kubernetes: A system that automates the deployment and manage-
ment of containerized applications. As an application and its services
run in containers on a distributed cluster of virtual or physical machines,
Kubernetes manages all the moving pieces to optimize the use of com-
puting resources, to maintain the desired state, and to scale on demand.
On Kubernetes, a container (or a set of related containers) is deployed in
a logical unit called a pod. In addition to scheduling the deployment and
automating the management of containerized applications, a key bene-
fit of Kubernetes is that it maintains the desired state—the state that an
administrator specifies the application should be in.

Cluster: Three or more interconnected virtual machines or physical
computers that, in effect, form a single system. A computer in a cluster
is referred to as a node. An application running on a cluster is typically a
distributed application because it runs on multiple nodes. By inherently
providing high availability, fault tolerance, and scalability, clusters are a
key part of cloud computing.

Orchestration: Because it can automatically deploy, manage, and scale a
containerized application, Kubernetes is often referred to as an orches-
tration framework or an orchestration engine. It orchestrates resource
utilization, failure handling, availability, configuration,desired state, and
scalability.

Application Types and Architectural Patterns

Microservices: A “modern” architectural pattern for building an appli-
cation. A microservices architecture breaks up the functions of an
application into a set of small, discrete, decentralized, goal-oriented pro-
cesses, each of which can be independently developed, tested, deployed,
replaced, and scaled.

Cloud-native applications: Generally speaking, they are developed and
optimized to run in a cloud as distributed applications. According to the
Cloud Native Computing Foundation, cloud-native applications, which
are also generally referred to as “modern” applications, are marked by the
following characteristics:

•	 Containerized for reproducibility, transparency, and resource
isolation.

An Introduction to Cloud-Native Technology | 11

•	 Orchestrated to optimize resource utilization.

•	 Segmented into microservices to ease modification, maintenance,
and scalability.

Cloud-native applications are typically developed and deployed on a con-
tainers as a service platform (CaaS) or a platform as a service (PaaS).

12-factor app: A methodology for developing a software-as-a-service
(SaaS) application—that is, a web app—and typically deploying it on a
platform as a service or a containers as a service.

Platforms

The overarching business objective of using a container platform is to
accelerate the development and deployment of scalable, enterprise-grade
software that is easy to modify, extend, operate, and maintain. Three
types of platforms provide varying degrees of support for container tech-
nology:

•	 A platform for running individual container instances.

•	 Containers as a service.

•	 Platform as a service.

A platform as a service is often referred to simply as an application plat-
form. In this context, an application platform helps developers not only
write code but also integrate tools and services, such as a database, with
their application as microservices. An example of a private platform as a
service that is also referred to as an application platform is Pivotal Cloud
Foundry.

A container-as-a service platform helps developers build, deploy, and
manage containerized applications, typically by using Kubernetes or
another orchestration framework. An example of a container as a service
platform is VMware Pivotal Container Service.

A platform for running container instances helps developers build and
test a containerized application. It does not, however, orchestrate the
containerized application with Kubernetes, nor does it provide a ser-
vice broker so that developers can integrate tools, databases, and
services with an app. An example of a container instance platform is
VMwarevSphere Integrated Containers.

12

Platforms and Developer Operations

Delivering software in an expedient, reliable, sustainable way requires col-
laboration between IT teams and developers. DevOps takes place when
developers and IT come together to focus on operations in the name of
streamlining and automating development and deployment. DevOps is a
key practice driving cloud-native applications.

To help DevOps, a container platform provides some or all of the follow-
ing services:

•	 Lets developers add tools and services to their app through a ser-
vice broker or catalog.

•	 Adds security, logging, monitoring, analytics, dashboards, mainte-
nance, and other operational features.

•	 Provides container networking.

•	 Exposes an API.

•	 Automates some or all delivery and deployment processes.

•	 Eases continuous integration, continuous delivery, and continuous
deployment.

Continuous Integration, Delivery, and
Deployment

Continuous integration constantly combines source code from different
developers or teams into an app and then tests it. Continuous delivery
readies an application or part of an application for production by pack-
aging and validating it. Continuous deployment automatically deploys an
application or part of an application into production. The entire process
forms the CI/CD pipeline when the D in the abbreviation is assumed to
represent deployment.

An Introduction to Cloud-Native Technology | 13

Digital Transformation

All the modernizing elements covered in this section—containers,
Kubernetes, microservices, container platforms, DevOps, and the CI/CD
pipeline—converge into a powerful recipe for digital transformation: You
can optimize the use of your computing resources and your software
development practices to extend your enterprise’s adaptability, produc-
tivity, innovation, competitive advantage, and global reach.

THE BUSINESS BENEFITS OF MODERNIZATION
The use of containers, microservices, and Kubernetes modernizes application
development, yielding business benefits that ultimately bolster your competitive
advantage:

•	 Shorten software’s time to market

•	 Improve developer agility and productivity

•	 Respond faster to change

14

Driving Digital Transformation with
Containers and Kubernetes
Container technology is a key contributing factor to achieving digital
transformation. This chapter connects the dots between containers and
Kubernetes on the one hand and digital transformation and business
value on the other.

The Business Value of Digital
Transformation
The reasons enterprises are undergoing digital transformation are clear:

•	 Create new applications that engage customers in innovative and
captivating ways.

•	 Improve operations to more efficiently deliver better products and
services at a lower cost to the business.

•	 Generate new revenue streams by rapidly adapting to changes in
market conditions and consumer preferences.

The ingredients for building effective applications are less clear than the
desired outcomes.

To be effective in this era, applications require an architecture that fosters
fluid, rapid, responsive development and deployment while still main-
taining the security, performance, and cost-effectiveness of established
patterns. Containers provide the basis for a new application architecture
that supports digital transformation and lays the foundation for innova-
tion. Organizations that are adopting containers see them as a fast track
to building and deploying cloud-native applications and twelve-factor
apps.

Cloud-Native Applications
The Cloud Native Computing Foundation, a project of The Linux
Foundation, defines cloud-native applications as follows:1

1.	 Containerized—Each part (applications, processes, etc.) is
packaged in its own container. This facilitates reproducibility, trans-
parency, and resource isolation.

1 This definition is from the FAQ of the Cloud Native Computing Foundation,
https://www.cncf.io/about/faq/.

An Introduction to Cloud-Native Technology | 15

2.	 Dynamically orchestrated—Containers are actively scheduled and
managed to optimize resource utilization.

3.	 Microservices oriented—Applications are segmented into micros-
ervices. This segmentation significantly increases the overall agility
and maintainability of applications.

Kubernetes covers the second part of the definition by scheduling and
managing containers. For the third part, both Kubernetes and Docker
help implement microservices.

The key element, however, is the container—a process that runs on a
computer or virtual machine with its own isolated, self-described applica-
tion, file system, and networking. A container packages an application in a
reproducible way: It can be distributed and reused with minimal effort.

DOCKER CONTAINER DEFINED
With containers, Docker has defined a standard format for packaging and port-
ing software, much like ISO containers define a standard for shipping freight. As
a runtime instance of a Docker image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

—Adapted from the Docker Glossary

Docker containers are the most widely deployed container. A manifest,
called a Dockerfile, describes how the image and its parts are to run in
a container on a host. To make the relationship between the Dockerfile
and the image concrete, here’s an example of a Dockerfile that installs
MongoDB on an Ubuntu machine running in a container. The lines starting
with a number sign are comments describing the subsequent commands.

MongoDB Dockerfile from https://github.com/dockerfile/mon-
godb
Pull base image.
FROM dockerfile/ubuntu
Install MongoDB.
RUN \
 apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv 7F0CEB10 && \
 echo ‘deb http://downloads-distro.mongodb.org/repo/ubun-
tu-upstart dist 10gen’ > /etc/apt/sources.list.d/mongodb.
list && \

16

 apt-get update && \
 apt-get install -y mongodb-org && \
 rm -rf /var/lib/apt/lists/*
Define mountable directories.
VOLUME [“/data/db”]
Define working directory.
WORKDIR /data
Define default command.
CMD [“mongod”]
Expose port 27017 for the process and port 28017 for http
EXPOSE 27017
EXPOSE 28017

12-Factor Apps: A Methodology for
Delivering Software as a Service
In contrast to the cloud-native application, the 12-factor app is defined as
much by its processes as by its systemic properties. It is a methodology
for developing a software-as-a-service (SaaS) application—that is, a web
app—and typically deploying it on a platform-as-a-service (PaaS), such as
Pivotal Cloud Foundry. Here are the 12 factors with a brief explanation of
each one:2

1.	 Deploy the application many times from one codebase. The
codebase is stored in a repository, managed with a version con-
trol system such as Git as it is modified, and then deployed many
times as a running instance of the app from the same codebase. As
a result, a deployment is often running in three environments: on
each developer’s local environment, in a staging environment, and
in the production environment.

2.	 Declare and isolate dependencies. The app does not implicitly rely
on system-wide packages; instead, it declares the dependencies
in a declaration manifest. Explicitly declaring dependencies makes
it easier for new developers to set up their development environ-
ment.

3.	 Store the configuration in the environment, not the code. For con-
figuration information that varies by deployment, the app stores
the information in environmental variables. The environmental
variables are granular controls that are managed independently
for each deployment so that the app can easily scale into more
deployments over time.

4.	 Connect to supporting services, such as a database or a storage
system, instead of including it in the code. The app treats such

2 The twelve factors are paraphrased from the descriptions at the Twelve-Factor
App web site.	

An Introduction to Cloud-Native Technology | 17

services as resources that can be attached to or detached from a
deployment by modifying the configuration.

5.	 Treat build and run as separate stages. A deployment of the
codebase takes place in three separate stages: build, release, and
runtime. The build stage converts the codebase into an execut-
able—a build—and then the release stage combines the build with
the configuration to produce a release that’s ready for execution in
the runtime environment.

6.	 Run the app as stateless processes. The processes share nothing
with other processes, and data that must persist is stored in a data-
base running as a stateful supporting service.

7.	 Expose services by using port binding. Taking HTTP as an example,
the app exports HTTP as a service by binding to a port and listen-
ing on the port for incoming requests.

8.	 Scale out by adding concurrent processes. The app handles
workloads by assigning each type of work to a process type. A
web process, for example, handles HTTP requests, while a worker
process manages background tasks.

9.	 Ensure durability with disposability. Processes are disposable—they
can be started or stopped quickly to make sure that the application
can be changed or scaled easily.

10.	Make development and production peers. The app is geared
toward continuous deployment by allowing developers to integrate
new code quickly and to deploy the app themselves in a produc-
tion environment. The production and development environments
should be as similar as possible.

11.	 Process logs as event streams. The app neither routes nor stores
the output stream from its logs but instead writes it as a stream of
data to standard output, where it is to be collected by the execu-
tion environment and routed to a tool or system, such as Hadoop,
for storage or analysis.

12.	Run one-off management scripts and tasks, such as a database
migration, in an environment identical to that of the app’s long-run-
ning processes.

Containers and Kubernetes help satisfy aspects of these imperatives.
Containers, for example, play a key role in 12-factor apps by letting you
declare and isolate dependencies. Containers also help ensure durability
with disposability by, among other things, starting quickly and stopping
gracefully. Many of the other factors are supported by Kubernetes.

18

The Business Value of Kubernetes
Kubernetes uses its architecture and capabilities to manage containerized
applications in a distributed cluster. The results help fulfill the business
promise of digital transformation:

•	 Kubernetes makes it easier and cheaper to run applications in
public, private, or hybrid clouds.

•	 Kubernetes accelerates application development and deployment.

•	 Kubernetes increases agility, flexibility, and the ability to adapt to
change.

ADVANTAGES OF USING KUBERNETES

•	 Consolidate servers and reduce costs through efficient resource utiliza-
tion.

•	 Ease and expedite application deployment.

•	 Decouple applications from machines for portability and flexibility.

•	 Easily modify, update, extend, or redeploy applications without affecting
other workloads.

•	 Elegantly handle system faults and machine failures through automation,
self-healing. and high availability.

•	 Automate scalability for containerized applications.

An Example Use Case
A short case study provides a high-level use case for managing contain-
ers with Kubernetes.

A taxicab company in a major metropolitan area is losing riders to
car-sharing services, imperiling its once-strong local market share. It
needs to transform itself into a digital enterprise capable of competing
with car-sharing companies. To do so, the company wants to develop its
own mobile app, cost-effectively run the app in its modest data center,
and attempt to provide innovative services.

To its credit, the taxi company retains a number of advantages: a
well-known, long-established local brand with a reputation for timely,
courteous, safe drivers.

As recently hired developers work on the mobile app, the taxi company
modernizes its data center with commodity hardware and virtualization.
To maximize resource utilization of its small data center and to minimize

An Introduction to Cloud-Native Technology | 19

costs, the company plans to run its new app in Docker containers on vir-
tual machines. Kubernetes will orchestrate the containerized application.

After being rolled out and advertised in and on its cars, the app is an
instant success. To meet fluctuations in use of the app, the company
uses Kubernetes to dynamically scale the number of containers running
the app. For example, when metrics for the app hit a predefined thresh-
old indicating high usage, which typically happens during rush hour, the
company’s DevOps team uses the horizontal pod autoscaling feature
of Kubernetes to automatically maximize the number of containers so
that the system can match demand. At 4 am, in contrast, the number of
containers is reduced to elastically match the low demand at that time,
conserving resources.

The mobile app correlates ride requests with location. By mining the
data and combining it with its intimate historic knowledge of the city’s
patterns, the cab company can station cabs in the perfect locations for
hailing customers—preempting some car requests to the competition.
What’s more, because the company processes the app’s logs as event
streams, the company can do this dynamically during day and night,
shifting cars to hot spots.

Because the company implemented the app by using containers, devel-
opers can roll out new changes daily. The data that the app collects helps
the company pinpoint new features and quickly innovate to focus on
its strengths, such as identifying recurring customers and rolling out a
rewards program to retain them.

The business benefits of the company’s technical agility, containerized
application, and Kubernetes orchestration add up to a competitive
advantage:

•	 The scheduling policies in Kubernetes give the company the elas-
ticity it needs to dynamically match demand in a cost-effective way
with its modest but now-modernized data center.

•	 Faults and failures are handled automatically by Kubernetes, reduc-
ing troubleshooting demands on its small DevOps staff.

•	 The seamless modification of the app and its features helps the
company beat its bigger, less local rivals by being more agile and
better able to apply its knowledge of local patterns.

•	 Containers and Kubernetes make it easier and cheaper to run the
app.

•	 The ease with which the DevOps team can port containers from
the test environment to production accelerates the development
and deployment of new features.

20

Demystifying Kubernetes
As an emerging technology with a Greek name, Kubernetes carries
mythical connotations. Some of its features only add to the suspicion of
magic—the meaning of capabilities like automatic binpacking, horizon-
tal scaling, self-healing, and secret management might not be readily
apparent. The sense of power that these terms engender, however, seems
palpable: The potential to automatically place, pilot, scale, and heal an
application in secret would turn the head of anyone working in IT.

This chapter aims to demystify Kubernetes by presenting a concise
overview of the platform and by addressing some of the common mis-
conceptions surrounding the platform. Here you’ll find brief explanations
of what it is, what it isn’t, how it works, what it does, and why you should
care.

Platform vs. Runtime Environment
Kubernetes is not a runtime environment. It is a platform for managing,
or orchestrating, application containers. The platform deploys, scales, and
operates containers.

As an application and its services run in containers on a distributed
cluster of virtual or physical machines, Kubernetes choreographs all the
moving pieces so they operate in a synchronized way to optimize the use
of computing resources and to maintain the correct state.

Maintaining the desired state of a distributed application running in con-
tainers is one of the key value propositions of Kubernetes—you specify
the state you want the application to be in, and Kubernetes manages all
the application’s services and resources to establish and maintain that
desired state.

In Kubernetes, the container runtime itself is typically provided by Docker,
but you can optionally use other container runtimes, such as rkt (pro-
nounced the same as the word rocket). In other words, containers have
their own runtime.

Although you don’t need Kubernetes to use containers, you will likely
need Kubernetes if you want to robustly and repeatedly deploy and auto-
mate a containerized application in a production environment.

An Introduction to Cloud-Native Technology | 21

Robust Open-Source Technology from
a Google Production System
Kubernetes started out as a closed-source project at Google based on an
orchestration system called Borg. Google uses Borg to initiate, schedule,
restart, and monitor public-facing applications, such as Gmail and Google
Docs, as well as internal frameworks, such as MapReduce.3 Kubernetes
was heavily influenced by Borg and the lessons learned from running
Borg on a massive scale in a production environment. In 2015, Google
open-sourced Kubernetes. Shortly afterward, Google donated it as seed
technology to the Cloud Native Computing Foundation, a newly formed
open-source project hosted by the Linux Foundation. (VMware is a member
of the Linux Foundation and the Cloud Native Computing Foundation.)

A burgeoning open-source ecosystem around Kubernetes is rapidly
evolving. A project called Prometheus adds monitoring; containerd and
rkt provide alternative container runtimes; linkerd establishes a service
mesh; and a number of other projects cover additional requirements, such
as logging and service discovery. A open source project called Cloud
Foundry Container Runtime, formerly known as Kubo, brings the industri-
al-strength release engineering, deployment, and lifecycle management
capabilities of BOSH to Kubernetes.

Defogging the Abstract Terminology
of Kubernetes
Terminology is partly responsible for enshrouding Kubernetes in myth.
Even the name itself sounds somewhat mythical—it’s the Greek word for
helmsman or pilot. But there’s an assortment of other terms that help
push the system’s intelligibility into the shadows: pod, kubelet, replica set,
NodePort, horizontal autoscaler, and stateful set.

Other terms, abbreviations, and acronyms taint the fringes of the Kuber-
netes platform as it bumps up against containers on the one hand and
the accompanying infrastructure on the other: runC, OCI, YAML, JSON,
IaaS, PaaS, and KaaS. There’s even the odd abbreviation of Kubernetes
itself: K8s.

Yet once you become familiar with the system, its relationship to contain-
ers, and the infrastructure at its edges, the meaning of the terms comes
into focus.

3For more on Borg, see Research at Google, Large-Scale Cluster Management at
Google with Borg, 2015.

22

On Kubernetes, a pod is the smallest deployable unit in which one or
more containers can be managed—in other words, you run a container
image in a pod. A set of pods typically wraps a container, its storage
resources, IP address, and other options up into an instance of an applica-
tion that will run on Kubernetes. Docker is usually the container runtime
used in a pod. As a Kubernetes administrator, you specify a pod by using
a YAML file.

Another fundamental term in Kubernetes is kubelet. It manages pods.
The lifecycle of pods is in turn managed by a replica set. And when a pod
provides a service, such as a web server, a NodePort presents the service
on a port on the nodes in the cluster for external access. When requests
of that service exceed a threshold, the horizontal pod autoscaler adds
resources to handle the increase in demand. If the service happens to be
a stateful application running in a set of pods, the stateful set allocates
and manages resources for the stateful pods, such as persistent storage.

Some terms repeatedly come up in relation to containers or infrastruc-
ture. runC refers to the code module that launches containers; it is part
of containerd and managed by OCI, which stands for Open Container
Initiative, an organization dedicated to setting industry-wide container
standards. IaaS stands for infrastructure as a service; PaaS stands for plat-
form as a service; and KaaS stands for Kubernetes as a service.

An example of a platform as a service is Pivotal Cloud Foundry, which
in turn requires elastic infrastructure as a service—such as VMware
vSphere® or a VMware software-defined data center—to meet its resource
demands.

For definitions of more Kubernetes terms, see the glossary at the end of
the book.

A Concise Overview of Kubernetes
Google originally developed Kubernetes. The company uses its predeces-
sor, called Borg, to initiate, schedule, restart, and monitor public-facing
applications, such as Gmail and Google Docs, as well as internal frame-
works, such as MapReduce.4 Based on Google’s original system plus
enhancements from the lessons learned with Borg, Kubernetes can work
in your data center, across clouds, and in a hybrid data center. Kubernetes
automatically places workloads, restarts applications, and adds resources
to meet demand.

4Large-Scale Cluster Management at Google with Borg, Research at Google, 2015.

An Introduction to Cloud-Native Technology | 23

Here, briefly, is how it works. A Kubernetes cluster contains a master node
and several worker nodes. Then, when you deploy an application on the
cluster, the components of the application run on the worker nodes. The
master node manages the deployment.

Main Components

Kubernetes includes these components:

•	 The Kubernetes API

•	 The Kubernetes command-line interface, kubectl

•	 The Kubernetes control plane

The control plane comprises the processes running on the Kubernetes
master and on each worker node. On the master, for example, Kubernetes
runs several processes: the API server, the controller, the scheduler, and
etcd. The worker nodes run the kubelet process to communicate with the
master and the proxy process to manage networking.

Kubernetes Object Model

One of the keys to the Kubernetes system is how it represents the
state of the containerized applications and workloads that have been
deployed. Kubernetes represents state by using “objects,” such as service,
namespace, and volume. These objects are typically set by an object
specification, or spec, that you create for your cluster.

In the Kubernetes object model, the concept of a Pod is the most basic
deployable building block. A Pod represents an instance of an app
running as a process on a Kubernetes cluster. Here’s where the Docker
runtime comes back into the equation—Docker is commonly used as the
runtime in a Kubernetes Pod.

Kubernetes also includes Controllers that implement most of the logic in
Kubernetes. The Controllers provide features such as the replica set and
the stateful set.

Maintaining the Desired State

The Kubernetes control plane manages the state of all these objects to
ensure that they match your desired state. You can specify a desired state
by creating an object specification for a service with a YAML file. Here’s
an example:

24

apiVersion: v1
kind: Service
metadata:
 name: nginx-demo-service
 labels:
 app: nginx-demo
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 name: http
 selector:
 app: nginx-demo

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx-demo
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx-demo
 spec:
 containers:
 - name: nginx-demo
 image: myrepo/nginx
 ports:
 - containerPort: 80

When you submit this file to the Kubernetes master with the kubectl
command-line interface, the Kubernetes control plane implements the
instructions in the file by starting and scheduling applications so that the
cluster’s state matches your desired state. The Kubernetes master and the
control plane then maintain the desired state by orchestrating the clus-
ter’s nodes, which can be actual servers or virtual machines.

The core of the architecture is an API server that manages the state of
the system’s objects. The API server works with Kubernetes subcompo-
nents, or clients, that are built as composable microservices, such as the
replication controller specified in the YAML file. The replication controller
regulates the desired state of pod replicas when failures occur.

An Introduction to Cloud-Native Technology | 25

MANAGING CONTAINERIZED APPLICATIONS WITH KUBERNETES

•	 Kubernetes orchestrates distributed, containerized applications to:

•	 Optimize utilization of computing resources.

•	 Provide policies for scheduling.

•	 Maintain desired state.

•	 Handle faults and failures with automation.

•	 Provide high availability.

•	 Monitor jobs in real-time.

•	 Manage an application’s configuration.

•	 Dynamically scale to meet changes in demand.

Just Another Fad in the Hype Cycle?
In July, Kubernetes celebrated its second anniversary. Kubernetes is
among the highest velocity cloud-related open-source development proj-
ects in the world; for a listing of facts and figures detailing the project’s
popularity and adoption, see the Kubernetes retrospective.

In addition, the membership of the Cloud Native Computing Foundation,
which is the open-source group managing Kubernetes, has attracted
major players in the cloud-computing space, including Dell Technologies,
IBM, Amazon, Microsoft, Google, Intel, AT&T, and many more. End-user
members include Twitter, Capital One, eBay, and Goldman Sachs. For a
list of members, see the Cloud Native Computing Foundation web site.

Kubernetes in Production Environments
In fact, numerous organizations have deployed Kubernetes in production
environments. Although it is an emerging technology with a burgeoning
ecosystem, the feature set and API of Kubernetes are robust for a two-
year-old open-source project. Keep in mind, though, that the predecessor
of and the principles behind Kubernetes have been running in produc-
tion at Google since 2005, orchestrating applications such as Gmail in
Google’s cloud-scale production environment. The Kubernetes website
contains several case studies that detail how different organizations have
adopted Kubernetes.

26

In addition, surveys in both 2016 and 2017 showed not only large growth
in the adoption of containers but also significant increases in the number
of organizations using Kubernetes.5

Implementing Kubernetes in production, however, is likely to require the
addition of other projects and tools in the container ecosystem.

A Rapidly Maturing Ecosystem
Fortunately, the container ecosystem is rapidly maturing. A clear marker
of that increasing maturity is the expansion of projects hosted by the
Cloud Native Computing Foundation. To support Kubernetes deploy-
ments, the foundation hosts key open-source projects, including the
following:

•	 Prometheus, a monitoring system for Kubernetes

•	 OpenTracing, a vendor-neutral standard for distributed tracing

•	 Fluentd, a data collector for unified logging

•	 linkerd, a service mesh that adds service discovery, routing, failure
handling, and visibility to cloud-native applications

In addition, there are a variety of enterprise-grade, production-ready
technologies for working with Kubernetes in a software-defined data
center, such as VMware vRealize® Log Insight™, which can process a con-
tainer’s standard output as a data stream.

Kubernetes Won’t Solve
All Your Problems
Kubernetes probably won’t solve all your IT, application development, and
deployment problems. But as your organization undergoes digital trans-
formation, Kubernetes might solve some of the most pressing challenges
in deploying and managing applications at scale.

Production deployments of Kubernetes show that it delivers substantial
IT business benefits as well as benefits to a business’s bottom line. In
summary, here are some of the benefits for IT, system administrators, and
DevOps:

5: See Portworx, “2017 Annual Container Adoption Survey: Huge Growth in Containers,”
April 12, 2017; April 12, 2017; ClusterHQ, “Container Market Adoption Survey 2016”; Sysdig,
“The 2017 Docker Usage Report,” Apurva Dave, April 12, 2017; and Forbes, “2017 State of
Cloud Adoption and Security,” Louis Columbus, April 23, 2017.	

An Introduction to Cloud-Native Technology | 27

•	 Consolidate servers and reduce costs through efficient resource
utilization.

•	 Elegantly handle machine failure through self-healing and high
availability.

•	 Ease and expedite application deployment, logging, and
monitoring.

•	 Automate scalability for containers and containerized applications.

•	 Decouple applications from machines for portability and flexibility.

•	 Easily modify, update, extend, or redeploy applications without
affecting other workloads.

These technical benefits bubble up into significant business benefits that
improve your competitive advantage, reduce costs, save time, and bolster
the bottom line:

•	 Shorten software’s time to market.

•	 Improve developer agility and productivity.

•	 Respond faster to change.

BENEFITS FOR DEVELOPERS
The business value of containers and Kubernetes isn’t limited to the business as
a whole or the office of the CIO. Developers like containers because they make
life easier, development more engaging, and work more productive.

•	 Portability: Containers let developers choose how and where to deploy
an app.

•	 Speed: Containers expedite workflows like testing and speed up itera-
tions.

•	 CI/CD Pipeline: Kubernetes and containers support continuous integra-
tion and continuous deployment.

•	 Flexibility: Developers can code on their laptops when and where they
want with the tools they like.

•	 The 13th Factor: Containers and Kubernetes are seen as fashionable
technologies. Developers are highly motivated to use them.

28

Introduction to Cloud-Native
Architectures and Practices
This chapter briefly surveys some of the application architectures and
development processes that underlie cloud-native applications.

Microservices
The digital transformation is driving a shift toward new application archi-
tectures. Developing a new application or refactoring an existing one with
containers and microservices is often motivated by the following out-
comes:

•	 Extend an application’s capabilities more easily

•	 Add new features faster and easier

•	 Improve maintainability

•	 Reduce vulnerabilities

•	 Make it perform faster or scale better

Microservices, coupled with containers, are increasingly becoming the
architectural pattern of choice for developing a new application. A micro-
services architecture breaks up the functions of an application into a set
of small, discrete, decentralized, goal-oriented processes, each of which
can be independently developed, tested, deployed, replaced, and scaled.
For cloud-native applications, the services often take the form of data-
bases, message queues, key-value stores, tooling, and so forth.

For the software development process, a key outcome of using micros-
ervices with containers is continuous integration and continuous delivery.
A software developer can modify, test, or scale one part of the applica-
tion without other developers having to rebuild and redeploy other parts
of the application. Running containers on virtual machines also adds a
beneficial level of isolation to applications built with microservices. You
can isolate a set of services from each other and then group them inside
a virtual machine.

Applications built with a microservices architecture, however, do not
come without their challenges. Running the application’s services in
production and at scale requires coordination and the right infrastruc-
ture. Trying to develop an application with microservices on a laptop or
desktop can hit performance and memory constraints. Even when an
application does not use microservices, a laptop might not have enough
resources to run a copy of a development environment. Developers can

An Introduction to Cloud-Native Technology | 29

exploit the capacity of a vSphere software-defined data center to develop
and test a containerized application, which is a pre-existing advantage for
organizations with vSphere environments who want to begin building and
deploying cloud-native applications.

For example, VMware Pivotal Container Service (PKS), which includes
a commercially supported distribution of Kubernetes, provide a ready-
made platform for building cloud-native and twelve-factor applications
on existing vSphere infrastructure. When an application built with micro-
services is deployed with PKS, Kubernetes manages the microservices,
each of which can reside in its own container for scalability.

With PKS, Kubernetes works with a VMware SDDC to supply persistent
storage with VMware vSAN™, micro-segmentation with VMware NSX®,
and security mechanisms like role-based access control. After a Kuberne-
tes cluster is provisioned in PKS, it can be managed with high availability,
auto-recovery from failure, auto-scaling, upgrades, and monitoring.

Using vSphere and PKS to support a microservices architecture is cov-
ered in greater detail in later chapters.

THE BENEFITS OF MICROSERVICES
Coupled with containers, microservices are increasingly becoming the archi-
tectural pattern of choice for developing a new application. The architecture
breaks up the functions of an application into a set of small, discrete, decentral-
ized, goal-oriented processes, each of which can be independently developed,
tested, deployed, replaced, and scaled.

•	 Increase modularity

•	 Make apps easier to develop and test

•	 Parallelize development: A team can develop and deploy a service inde-
pendently of other teams working on other services

•	 Support continuous code refactoring to heighten the benefits of micros-
ervices over time

•	 Drive a model of continuous integration and continuous deployment

•	 Improve scalability

•	 Simplify component upgrades

30

Deconstructing the Monolith and
Other Use Cases
Although Kubernetes is an excellent system for orchestrating container-
ized applications built with microservices, Kubernetes can serve other use
cases, most notably 12-factor apps. The 12-factor app is a methodology
for developing a software-as-a-service (SaaS) application—that is, a web
app—and deploying it on a platform as a service (PaaS), such as Pivotal
Cloud Foundry.

Transitioning to cloud-native architectures is also a key Kubernetes use
case. Even though you might not plan on using microservices in the near
future, implementing Kubernetes and the right underlying infrastructure
will ease the transition to a microservices architecture when you are ready
to take that step.

Kubernetes along with developer-ready infrastructure addresses a
lingering problem that undermines many organizations: the monolithic
application. It is difficult to modify, scale, and redeploy. Lifting and shifting
a monolithic application to containers and Kubernetes opens the door
to begin breaking it up into easily modifiable, scalable parts later. Its new
packaging in a container also increases its agility and portability now.

Another compelling use case is portability. Kubernetes works across
different types of clouds. In other words, the portability of containers
combined with the power of Kubernetes gives you cloud independence:
You can move the same containerized application among a private cloud,
a public cloud, or a hybrid cloud with minimal effort.

Flexibility is an intriguing characteristic of Kubernetes. Although it’s not
a use case per se, flexibility helps you adapt to unknown use cases in the
future. For example, you might think of the current mantra of “deliver-
ing applications early and often” as a use case. But as your application
matures, you might find that other use cases, such as service discovery,
become more important. In other words, once you can successfully fulfill
one use case, you might aim for another one. The flexibility and evolving
power of Kubernetes can help improve your application development and
deployment practices over time.

The engineers working on Kubernetes recognize that the platform’s
flexibility can address new use cases as they emerge. “In our experience,
any system that is successful needs to grow and change as new use cases
emerge or existing ones change. Therefore, we expect the Kubernetes
API to continuously change and grow,” the Kubernetes website says.6

6: Kubernetes.io, The Kubernetes API.	

An Introduction to Cloud-Native Technology | 31

Kubernetes for Cloud-Native and
12-Factor Applications
Kubernetes makes containerized applications work in a manageable way
at scale. Recall the second part of the definition of cloud-native applica-
tions: They are dynamically orchestrated in such a way that containers are
actively scheduled and managed to optimize resource utilization. Kuber-
netes does exactly that. It orchestrates containers and their workloads to
optimize the utilization of the virtual machines and physical servers that
make up the nodes in a cluster.

Revisiting the 12 factors from the previous chapter details how Kuber-
netes streamlines application management. In general, Kubernetes can
deploy and run 12-factor apps.

HOW KUBERNETES AND CONTAINERS
STREAMLINE APPLICATION MANAGEMENT

Factor Benefit

1 Deploy the application many
times from one codebase.

Kubernetes can deploy applications with
one code base many times by giving a
pod a specification that includes a con-
tainer image reference.

2 Declare and isolate
dependencies.

Containers can express dependencies.

3 Store the configuration in
the environment, not the
code.

You can store aspects of an application’s
configuration in the Kubernetes envi-
ronment. For example, the ConfigMaps
construct separates configuration arti-
facts from an image’s instructions.

4 Connect to supporting
services, such as a database,
instead of including it in the
code.

Kubernetes lets you deploy supporting
services, such as a database, in separate
containers and then manages all the
containerized components together to
ensure availability and performance.

5 Treat build and run as
separate stages.

You can, for example, build the appli-
cation by using Jenkins (a pipeline
automation server separate from Kuber-
netes) and then run the Docker images
by using Kubernetes.

32

6 Run the app as stateless
processes.

Kubernetes makes it easy to run stateless
applications. Kubernetes allows states to
be maintained independently in an etcd
data store, for instance, while the appli-
cation runs. Kubernetes also allows you
to attach persistent storage. The spec file
defining a Pod, for example, can require
a persistent volume; if the Pod goes
down, the replacement Pod connects to
the same persistent volume.

7 Expose services by using
port binding.

Kubernetes includes configuration
options for exposing services on ports.
In the nginx example YAML file that
appeared earlier, the nginx web server
was bound to Port 80 and exposed as a
service.

8 Scale out by adding
concurrent processes.

Kubernetes scales an application by
adding more Pods. Kubernetes can use
the replication controller, for example, to
add multiple Pods at the same time.

9 Ensure durability with
disposability.

Containers running in Kubernetes are
seen as mutable—they are to be stopped
and replaced on demand or on a sched-
ule.

10 Make development and
production peers.

The Kubernetes environment lets
development and production code be
rigorously tested in the same way. For
instance, you can use a Kubernetes
deployment with two pods, one pod
that contains the production environ-
ment and another pod that contains the
staging environment, which in effect
makes staging and production peers. In
addition, the environment specified in a
container is uniform across development
and production environments.

11 Process logs as event
streams.

Kubernetes lets you access the standard
output of a container so that you can
process its output as a data stream with
the tool of your choice, such as VMware
vRealize® Log Insight™.

12 Run management tasks as
one-off processes.

You can schedule a Pod consisting of the
application container using a different
entry point to run a different process,
such as a script to migrate a database.

An Introduction to Cloud-Native Technology | 33

DevOps
DevOps is a key practice driving the development and deployment of
cloud-native applications and 12-factor apps. When developers and
IT personnel collaborate on operations to release software early and
often, or daily or hourly for that matter, you can see DevOps at work in
practices, processes, and automation behind the building, testing, and
releasing of software.

DevOps breaks down the organizational barriers between developers
and IT operators to align both types of roles behind the common goal
of quickly turning ideas and innovations into releasable, maintainable
software, often by building and using a pipeline for continuous inte-
gration, delivery, and deployment. A culture of collaboration is key, not
only between the two types—who often come together to form a single
team—but also with other teams and organizations, such as security.

There are common, if not universally accepted, guidelines that underscore
DevOps:

•	 Move the infrastructure for production deployments into the deliv-
ery pipeline

•	 Treat infrastructure as code

•	 View infrastructure as immutable

•	 Employ agile methodologies

•	 Produce small, frequent releases

Profile of a DevOps Engineer:
Responsibilities and Skills
Here’s an example of what a hypothetical engineer working in a geo-
graphically distributed DevOps team might do. In general, the engineer’s
focus is on building and operating PaaS, SaaS, and on-premise solutions
to help the consumers of the solutions manage, govern, and secure
applications running in private and public clouds. The DevOps engineer
applies innovations from both open-source and proprietary solutions.

Here are some of the DevOps engineer’s responsibilities:

•	 Designing, building, and managing DevOps processes, infrastruc-
ture, and tools throughout the CI/CD pipeline. The work includes
planning, coding, testing, releasing, deploying, maintaining, and
monitoring systems and apps.

34

•	 Creating and implementing automation to test and validate soft-
ware artifacts as they move through the CI/CD pipeline.

•	 Interacting with developers to make sure that the CI/CD pipeline,
automation tests, infrastructure, and tools fulfill requirements for
usability, scalability, performance, security, and productivity.

And here are some of the DevOps engineers skills:

•	 The ability to write Bash scripts and to code in scripting languages
like Python.

•	 A thorough understanding of microservices architectures as well as
traditional monolithic architectures. Both skills are useful because
legacy apps with monolithic architectures might be refactored with
a microservices architecture.

•	 Experience creating and operating a CI/CD pipeline and its associ-
ated processes for SaaS and on-prem applications by using Maven,
Git, Gerrit, and Jenkins.

•	 Hands-on experience with NoSQL databases like MongoDB, Redis,
and Cassandra

•	 Hands-on experience with datastores and libraries for search sys-
tems, such as Lucene, Solr, and Elasticsearch.

•	 Expertise with configuration management tools, including Ansible,
Chef, Puppet.

•	 Experience designing and operating solutions on such cloud plat-
forms as Google, Azure, and AWS.

•	 Familiarity with logging and monitoring tools like Prometheus and
vRealize Log Insight.

•	 The ability to deploy and operate virtual machines and containers
by using cloud-native technology: Vagrant, Docker, Kubernetes.

Continuous Integration and Continuous
Deployment
Developers and DevOps engineers use the CI/CD pipeline to develop,
commit, integrate, and test code in the process of creating a software
artifact that can be automated, configured, deployed, and monitored.
Although different teams frequently use different tools, a prototypical CI/
DC pipeline might look something like this:

1.	 Use tools such as JIRA or GitHub Issues to plan a release or
changes to a release.

An Introduction to Cloud-Native Technology | 35

2.	 Use a tool such as Atom to write code and unit tests in languages
like Python, Java, and Go.

3.	 Commit changes with Git or GitHub.

4.	 Use tools such as Jenkins and Gerrit to continuously integrate
those changes.

5.	 Use a tool such as vRealize Automation to test code.

6.	 Create a software artifact by using JFrog Artifactory.

7.	 Perform continuous deliver by using Jenkins.

8.	 Manage configuration by using Chef, Ansible, or Puppet.

9.	 Monitor the application by using vRealize Operations and vRealize
Log Insight.

36

Container Technology in the
Software-Defined Data Center
The problems that a software-defined data center (SDDC) addresses
stem from the digital transformation reshaping business. Companies of all
types are under pressure to create innovative software that engages their
customers. The digital technologies at the source of this shift are cloud
computing, mobile devices, and data analytics. Companies can exploit
these technologies to lower costs, connect with customers, and improve
their bottom line.

But reinventing a traditional company, or even a technology company,
as a contemporary software-centric enterprise requires the creation of
applications that run in the cloud and the infrastructure and tools to build
them. To accelerate the development of innovative software and to adapt
to changes in the marketplace, you are likely to need such technologies
as containers, microservices, distributed systems, orchestration tools, and
virtualization.

For their infrastructure, technology-savvy companies seek robust, API-
driven solutions that scale to handle large volumes of data at pace. But
putting in place scalable, flexible infrastructure that fosters the develop-
ment and deployment of cloud applications can be complex, difficult, and
costly.

The fast track to cost-effectively adopt containers is to transform your
existing virtualized infrastructure into a flexible, scalable, modernized data
center capable of deploying cloud-native applications as well as continu-
ing to host traditional apps. Enterprises are increasingly moving toward
container-based architectures to develop applications faster, increase
automation, and reduce server costs.

VMware vSphere plays a central role in this approach.

THE BENEFITS OF MODERNIZING

•	 Faster development and deployment

•	 Agility

•	 Flexibility

•	 Scalability

•	 Portability

•	 Process automation

An Introduction to Cloud-Native Technology | 37

•	 Resource optimization

•	 Easier maintenance

•	 Automated operations

•	 Heightened security

VMware vSphere and the SDDC
Enterprises worldwide have used VMware vSphere® to significantly
improve IT efficiency and performance, yet the mobile cloud era presents
new challenges. To meet this challenge, IT organizations need to virtualize
the rest of the data center so all infrastructure services become as inex-
pensive and easy to provision and manage as virtual machines.

The software-defined data center (SDDC) establishes the ideal architec-
ture for private, public, and hybrid clouds. Pioneered by VMware, SDDC
extends the virtualization concepts you know—abstraction, pooling, and
automation—to all data center resources and services, including network
virtualization and software-defined storage.

At the same time, automated management delivers a framework for
policy-based management of data center application and services. The
result is unprecedented IT agility and efficiency, with flexibility to support
a range of hardware and applications. As a result, infrastructure utilization
and staff productivity increase, substantially reducing both capital expen-
ditures and operating costs.

Abstract and Automate: Network
Virtualization
VMware NSX provides network virtualization for an SDDC, abstracting
Layer 2 through Layer 7 networking functions—such as switching, firewall-
ing, and routing—on top of your existing physical network. NSX embeds
the networking and security functionality typically handled by hardware
directly in the hypervisor. NSX creates what can be thought of as a “net-
work hypervisor” that is distributed throughout the data center.

Virtualization thus becomes the operational model for networking and
security, unlocking the ability for IT to move at the speed of business. By
moving network and security services into the data center virtualization
layer, network virtualization enables IT to create, snapshot, store, move,
delete, and restore entire application environments with the same simplic-
ity and speed that they now have when spinning up virtual machines.

38

This abstraction, in turn, enables levels of security and efficiency that
were previously infeasible. IT is empowered to become an enabler of
innovation for the organization. IT can help multiple stakeholders instead
of treating their requests as competing and mutually exclusive.

IT can, for example, apply micro-segmentation with distributed stateful
firewalling and dynamic security policies attached directly to individual
workloads. Micro-segmentation is defined and discussed in detail later in
this chapter.

Risk-Free Scale Out with Ease: Virtual
Storage
As the only vSphere-native software-defined storage platform, VMware
vSAN accelerates the modernization of infrastructure by delivering an
agile solution ready for next-generation applications. vSAN seamlessly
extends virtualization to storage with a secure, flash-optimized solution
that integrates with the the VMware ecosystem to handle critical work-
loads running at cloud scale.

vSAN is built on industry-standard x86 servers and components that help
lower TCO by up to 50 percent compared with traditional storage solu-
tions. vSAN pools together server-attached storage to provide a highly
resilient shared datastore suitable for any virtualized workload, including
cloud-native applications and DevOps infrastructure. By being tightly
integrated with the vSphere kernel, vSAN sits directly in the I/O data
path, where it can optimize the data I/O path with high performance and
minimal impact on CPU and memory.

For a software-defined data center, vSAN gives you granular non-dis-
ruptive scale-up or scale-out store so that you can expand capacity and
performance by adding hosts to a cluster (scale-out) or expand only
capacity by adding disks to a host (scale-up).

Also in keeping with a key feature of an SDDC, vSAN includes VM-cen-
tric policy-based management: vSAN uses storage policies, applied
on a per-VM basis, to automate provisioning and balancing of storage
resources.

vSAN also includes built-in failure tolerance and advanced availability.
More specifically, vSAN leverages distributed RAID and cache mirroring
to ensure that data is never lost if a disk, host, network, or rack fails. vSAN
seamlessly supports vSphere availability features like vSphere Fault Tol-
erance and vSphere High Availability. Using vSAN for storing the data of
cloud-native applications is discussed later in the book.

An Introduction to Cloud-Native Technology | 39

Put a Lid on It: Security for Containers
Security poses an obstacle to container adoption. The increased attack
surface of containers and other factors can heighten risk. Running con-
tainerized applications on virtual machines, however, decreases the attach
surface of containers and lowers risk.

Heightening Security by Running Containers
on VMs

In September 2017, the National Institute of Standards and Technology
published Application Container Security Guide, which is also known as
NIST Special Publication 800-190. It explains the potential security con-
cerns surrounding the use of containers and sets forth recommendations
for addressing these concerns.

The National Institute of Standards and Technology (NIST) is a U.S.
federal technology agency working with industry to develop and apply
technology, measurements, and standards. NIST works with standards
bodies to create international cybersecurity standards.

An important implication of the Application Container Security Guide is
to run containerized applications on virtual machines. “While containers
provide a strong degree of isolation, they do not offer as clear and con-
crete of a security boundary as a VM. Because containers share the same
kernel and can be run with varying capabilities and privileges on a host,
the degree of segmentation between them is far less than that provided
to VMs by a hypervisor.”7

One conern of the Application Container Security Guide is that containers
or the operating system of a physical host can easily be misconfigured,
increasing the attack surface and the level of risk. In contrast, the abstrac-
tion, automation, and isolation of an operating system running on a virtual
machine in a hypervisor environment reduces the attack surface and
decreases the risk of a security breach. “Carelessly configured environ-
ments can result in containers having the ability to interact with each

7 NIST Special Publication 800-190, Application Container Security Guide, by Murugiah
Souppaya, Computer Security Division Information Technology Laboratory; John Morello,
Twistlock, Baton Rouge, Louisiana; Karen Scarfone, Scarfone Cybersecurity, Clifton, Virginia.
September 2017. This publication is available free of charge from https://doi.org/10.6028/
NIST.SP.800-190

40

other and the host far more easily and directly than multiple VMs on the
same host,” the Application Container Security Guide says.8

Virtual machines and containers should be seen as complements, not
substitutues. “Although containers are sometimes thought of as the next
phase of virtualization, surpassing hardware virtualization, the reality for
most organizations is less about revolution than evolution. Containers and
hardware virtualization not only can, but very frequently do, coexist well
and actually enhance each other’s capabilities, the Application Container
Security Guide says. “VMs provide many benefits, such as strong isolation,
OS automation, and a wide and deep ecosystem of solutions. Organiza-
tions do not need to make a choice between containers and VMs. Instead,
organizations can continue to use VMs to deploy, partition, and manage
their hardware, while using containers to package their apps and utilize
each VM more efficiently.”

Securing the Orchestration System

Another concern of the Application Container Security Guide is recom-
mending countermeasures to secure the orchestration system managing
containers. The suggested countermeasures in the guide include the
following:

•	 Granular access control of administrative actions based on hosts,
containers and images as parameters.

•	 The use of enterprise-grade authentication services using strong
credentials and directory services.

•	 Isolating containers to separate hosts based on the sensitivity level
of the applications running in them.

Another NIST document, Security Assurance Requirements for Linux
Application Container Deployments, sets forth security requirements and
countermeasures to help meet the recommendations of the Application
Container Security Guide when containerized applications are deployed
in production environments. The orchestration system or its components
and tools should meet the following capabilities8:

•	 Logging and monitoring of resource consumption of containers to
ensure availability of critical resources.

•	 The orchestration system must work with many container hosts,

8 NIST.IR 8176, Security Assurance Requirements for Linux Application Container
Deployments, by Ramaswamy Chandramouli, Computer Security Division, Information
Technology Laboratory. October 2017. This publication is available free of charge from
https://doi.org/10.6028/NIST.IR.8176
	

An Introduction to Cloud-Native Technology | 41

not just one, to be able to provide a global summary of resource
usage for all running containers.

Micro-Segmentation for Containerized
Workloads
Micro-segmentation uses network virtualization to divide a data center
and its workloads into logical segments, each of which contain a single
workload. You can then apply security controls to each segment, restrict-
ing an attacker’s ability to move to another segment or workload.9

From this basic definition, you can see that for a data center, micro-
segmentation reduces the risk of attack, limits the damage from an
attack, and improves security. According to VMware NSX Micro-segmen-
tation Day 1, the micro-segmentation capabilities of VMware NSX can
implement the following security controls:10

•	 Distributed stateful firewalling, which can protect each application
running in the data center with application level gateways that are
applied on a per-workload basis.

•	 Topology agnostic segmentation, which protects each application
with a firewall indepedent of the underlying network topology.

•	 Centralized ubiquitous policy control of distributed services, which
controls access with a centralized management plane.

•	 Granular unit-level controls implemented by high-level policy
objects, which can create a security perimeter for each application
without relying on VLANs.

•	 Network-based isolation, which implements logical network
overlays through virtualization.

•	 Policy-driven unit-level service insertion and traffic steering, which
can help monitor network traffic.

NIST Special Publication 800-125B, Secure Virtual Network Configura-
tion for Virtual Machine (VM) Protection, sets forth recommendations for
securing virtualized workloads. The micro-segmentation capabilities of
NSX satisfy the security recommendations made by NIST for protecting
virtual machine workloads. For more information, see VMware NSX Micro-
segmentation Day 1.

9 For more information about what micro-segmentation is and what is isn’t, see Micro-seg-
mentation for Dummies, by Lawrence Miller and Joshua Soto, published by John Wiley &
Sons, Inc. 2015.

10 VMware NSX Micro-segmentation Day 1, by Wade Holmes, published by VMware Press,
2017.	

42

Linux Container Hosts
Linux distributions built specifically for running containers are another
piece of the cloud-native puzzle and the modernized data center. These
container-specific operating systems typically minimize the number
of packages, components, and tools they include, focusing instead on
providing just-enough of an operating system for efficiently and securely
running containerized applications. Container-specific operating systems
include Google Container-Optimized OS, CoreOS Container Linux, Project
Atomic, and Project Photon OS.

This section looks at an example of a Linux container host—Photon OS—
to explain the part it plays in solving a range of problems that would
otherwise limit the deployment of cloud-native applications.

Photon OS Overview

Project Photon OS™ is an open source Linux container host optimized for
cloud-native applications, cloud platforms, and VMware infrastructure.
Photon OS provides a secure runtime environment for running containers.

By minimizing the number of packages, focusing on security, and provid-
ing advanced lifecycle management, Photon OS efficently runs containers
on VMware vSphere, Microsoft Azure, Google Compute Engine, and
Amazon Elastic Compute Cloud.

Photon OS comes in a minimal version and a full version. Each version
contains only the elements necessary to fulfill its use case. The minimal
version is a lightweight host tailored to running containers when perfor-
mance is paramount. The full version of Photon OS includes additional
packages to help develop, test, and deploy containerized applications.
Both versions of Photon OS yield several benefits:

•	 An improvement in resource-efficiency by using smaller server
builds

•	 A reduction in security risks by removing vulnerable components

•	 A decrease in management effort by having fewer components to
update

Photon OS includes the open source version of Docker to streamline
the workflow of getting a container running in a hypervisor. A developer
can install a hypervisor such as VMware Fusion® on a laptop, replicate a
cluster of virtual machines, and then, with Photon OS, build containerized
applications.

An Introduction to Cloud-Native Technology | 43

Security-Hardened Linux

The design of Photon OS prioritizes security. Photon OS secures itself
with its build process, compiler settings, root password rules, and PGP-
signed packages and repositories. A system administrator or DevOps
manager can enforce security with vulnerability scans, the pluggable
authentication modules, the Linux auditing service, and many other mea-
sures.

Photon OS also works with VMware’s open source Lightwave project to
set up a certificate store and a secure LDAP directory service. Lightwave
also integrates Photon OS machines with Microsoft Active Directory or
LDAP for authentication and access control. See the section on Light-
wave.

As a streamlined Linux operating system that the Photon OS team com-
piles from source, Photon OS is hardened in part by its build process.
The Photon OS team can audit packages, such as OpenSSL, to identify
vulnerabilities before releasing the system. Vulnerabilities can be fixed by
applying and testing security patches as soon as they become available.

Life-Cycle Management

Photon OS seeks to reduce the burden and complexity of managing
clusters of Linux machines by including an efficient packaging model,
extensibility, and centralized administration in its fundamental design.
Here are some of Photon’s design elements that simplify life-cycle man-
agement:

•	 Atomic updates with RPM-OSTree

•	 Incremental stateful updates (RPMs)

•	 Package repositories curated by VMware

•	 Extensible distribution: You can add and remove functionality incre-
mentally

•	 Signed repositories

These design elements come together to make it easy to update the
system, perform in-place upgrades, and refresh installed packages like
Docker and Kubernetes. Because the minimal version of Photon OS is
designed to be mainly a read-only OS, it can be replaced in an atomic
fashion.

44

Photon OS performs incremental stateful updates of RPMs. As a DevOps
manager, you can update an application such as Docker individually with-
out having to update an entire branch, as some other operating systems
require you to do.

The RPM-based approach to managing the operating system makes
Photon OS extensible. As an extensible RPM-based distribution, you can
add or remove applications individually. For example, you can take the
minimal version and then just install postgres if that is all the support your
application needs.

Moving Containerized Applications from
Development to Production

By integrating seamlessly with the VMware ecosystem—including VMware
vSphere—Photon OS delivers a ready-made foundation for rapidly build-
ing and deploying cloud-native applications while continuing to fulfill such
IT requirements as cost-effectiveness, performance, and security.

Because Photon OS is optimized to work with VMware vSphere, VMware
Workstation Pro™, and VMware Fusion, Photon OS empowers you to
seamlessly migrate container-based applications from development to
production while—unlike other systems—helping to maintain the isolation
and security of the application running in the container.

Running applications in containers on Photon OS machines integrated
with vSphere overcomes a significant problem that plagues containerized
applications: They are difficult to deploy into production securely. The
security of virtual machines running in vSphere coupled with the secu-
rity-first design of Photon OS and your own network security measures
helps establish production-level security for the containerized application.

There is another hurdle that keeps developers from deploying containers
in production: IT operations. At many companies, developers and IT are
separate entities. Without the cooperation and commitment of IT, devel-
opers can do little to move their Docker workloads into production. By
tying in seamlessly with VMware vSphere, which often forms the basis of
the production environment that is owned and operated by IT, Photon OS
paves the way to put containerized applications into production. Photon
OS takes this connection with virtual infrastructure one step further—and
helps alleviate IT concerns over security—by integrating with VMware’s
Project Lightwave™, a security suite for cloud-native platforms.

An Introduction to Cloud-Native Technology | 45

KEY PHOTON OS PROPERTIES

Photon OS is a lightweight Linux operating system optimized for running con-
tainers in a software-defined data center.

•	 Optimized kernel: The Linux kernel is tuned for performance when
Photon OS runs on VMware ESXi™ and VMware vSphere.

•	 Docker ready: The Docker daemon is included in the distribution to ease
running containers.

•	 Security-hardened Linux: The kernel is configured according to the rec-
ommendations of the Kernel Self-Protection Project (KSPP).

•	 Curated packages and repositories: Packages are built with hardened
security flags.

•	 Secure EFI boot: The operating system boots with validated trust.

•	 Secure remote management: The Photon Management Daemon securely
manages the firewall, network, packages, and users on remote Photon
OS machines by using API calls over a command-line utility, Python, or
REST.

•	 Support for persistent volumes: Photon OS supports persistent volumes
to store the data of cloud-native apps on VMware vSAN™.

•	 Project Lightwave™ integration: Lightwave is an open source security
platform from VMware that authenticates and authorizes users with
Active Directory or LDAP.

•	 Advanced lifecycle management: There are timely security patches and
updates to container packages, such as Docker and Kubernetes.

Securing Cloud Platforms with
Lightwave
The need for security in the cloud is acute. Extending the security frame-
works, standards, and policies of your on-premises infrastructure to your
resources in the cloud establishes the level of consistency that’s required
to protect the integrity, availability, and confidentiality of your cloud-na-
tive operations.

To consistently apply your on-premises security controls and policies in
the cloud, several requirements for high-quality identity and access man-
agement come to the fore:

•	 Standards

•	 Flexibility, portability, and cloud-platform independence

46

•	 Interoperability

•	 Scalability

•	 Administrative control

Standards are a key requirement because they let you apply trusted
tools and protocols across disparate environments to reduce the risk of
security incidents and compliance problems. Flexibility enables you to
port your security policies and controls from one environment to another
as you move a server or application. As more workloads migrate to the
cloud, the cloud-platform independence of your identity service helps
you move from one cloud provider to another without having to redeploy
or reconfigure identity management systems.

Interoperability ensures that security mechanisms are compatible with
other systems. Scalability addresses the need for cloud-scale as opera-
tions expand. And administrative control empowers you to implement
the security frameworks and policies that you want while reducing your
reliance on cloud providers and third parties.

Security Problems in Cloud Computing

The multitenant environment of public clouds complicates identity and
access management. In the cloud, it is important to securely authenticate
system users and administrators, giving them access only to the resources
they own or need to do their jobs. But authentication and access control
become difficult when assets are spread across both on-premises data
centers and cloud services. Porting identities and access policies to the
cloud depends on how easily you can integrate your corporate identity
directories and policies with the service provider’s systems.

Implementing seamless security across both your on-premises environ-
ment and multiple public clouds is increasingly becoming a necessity.
Project Lightwave™ is a massively scaled, multitenant, open-source
identity platform from VMware that solves this problem by delivering a
standards-based directory service, Active Directory integration, certificate
services, and Kerberos authentication.

LIGHTWAVE SERVICES

•	 Identity management and directory services

•	 Authentication and authorization

•	 Certificates

An Introduction to Cloud-Native Technology | 47

Implementing Cloud-Scale Security with
Lightwave

Lightwave meets the requirements of these use cases with its directory
service, Active Directory interoperability, Kerberos authentication, and
certificate services. Lightwave provides the following services:

•	 Directory services and identity management with LDAP and Active
Directory interoperability

•	 Authentication services with Kerberos, SRP, WS-Trust (SOAP),
SAML WebSSO (browser-based SSO), OAuth/OpenID Connect
(REST APIs), and other protocols

•	 Certificate services with a certificate authority and a certificate
store

Using these Lightwave security services in the cloud empowers IT
security managers to impose the proven security policies and best
practices of on-premises computing systems on their cloud computing
environment. The Lightwave security services work in the cloud, in an
on-premises data center, and in a hybrid cloud. The security frameworks,
standards, and policies that come with Lightwave can follow users, appli-
cations, and workloads nearly anywhere.

Directory Services and Identity Management

Lightwave is an extensible identity platform that works with multiple
identity sources, including Microsoft Active Directory, LDAP, OpenLDAP,
and MIT Kerberos with LDAP. The platform includes a REST API for LDAP,
integrated DNS, and support for the System for Cross-domain Identity
Management (SCIM). SCIM is an open standard that simplifies identity
management in the cloud by automatically exchanging user identities
with a REST API between domains.

At the core of Lightwave is a standards-based, AD-compatible LDAP 3
directory service with multimaster replication. The LDAP service, which
can be managed with LDAP-compliant browsers, supports such oper-
ations as bind, add, modify, delete, search, extended operation, and
controls. It manages users and groups, including nested groups, and
provides policy-based password management.

The directory service uses the following secure data access mechanisms:

48

•	 Generic Security Service Application Program Interface (GSSAPI)
over the Secure Remote Password protocol (SRP)

•	 Simple Authentication and Security Layer (SASL) over SRP

Designed for multitenancy, the directory service includes a hierarchical
directory store that can accommodate multiple tenants at scale. A direc-
tory information tree (DIT) isolates the data of each tenant by placing
each tenant in its own subtree. The ACL for a tenant’s subtree is for only
the tenant’s own administrator. Each entry under a tenant gets its own
ACL that is based on a security descriptor; each object, that is, receives
its own ACL. Lightwave includes a tool for browsing and editing entries in
the directory.

Scalability and Performance

For scalability, the directory service includes an extensible LDAP schema,
an active-active multimaster scheme, and dynamic indexing. For perfor-
mance, the directory service uses a Lightning Memory-Mapped Database
(LMDB). It is an ACID-compliant persistent data store from OpenLDAP
that has the following performance-enhancing features:

•	 B+ tree key-value store

•	 Single writer plus many readers

•	 Multi-version concurrency—the readers never block the writer

•	 Memory-mapped file with copy-on-write

•	 Write-ahead logging developed by VMware

Replication

For replication, the directory service uses a state-based scheme for even-
tually consistent multi-node LDAP replication. Every directory node in a
Lightwave domain accepts write requests. On Lightwave, the replication
service includes a tool with a user interface and a single command to
add or remove a node, which simplifies topology management. In addi-
tion, backup and restore is supported on a per-node basis. Overall, this
approach to replication simplifies the life-cycle management of a domain.

Architecture

The following architectural diagram summarizes the main components of
the Lightwave directory service.

An Introduction to Cloud-Native Technology | 49

Figure 1: The architecture of the Lightwave directory service.

Authentication Services

The authentication services of Lightwave contain two main compo-
nents: A server that acts as a Kerberos 5 key distribution center and a
secure token service that supports the OIDC, WS-TRUST, and SAML 2.0
(WebSSO) standards for single sign-on.

In Lightwave’s converged identity model, Kerberos, OAuth 2.0, and OIDC
are integrated with the LDAP directory server process.

The secure token service can issue Security Assertion Markup Language
(SAML) 2.0 tokens as well as OIDC tokens. Lightwave can be integrated
with Active Directory to issue secure tokens to principals defined in
Active Directory forests. With SAML 2.0, Lightwave gives a user SSO
access to different services by using the same credentials.

Lightwave works with OAuth 2.0 and OpenID Connect, a protocol for
authentication and authorization that lets you set up one SSO service for
different cloud services. After users enter their credentials to access one
service, they don’t need to do it again to access others.

Lightwave also works with the WS-Trust standard to issue and vali-
date security tokens and to broker trust relationships between parties
exchanging secure messages.

50

Kerberos Key Distribution Center

The Kerberos key distribution center (KDC) handles authentication and
authorization for Kerberized applications. LDAP, SASL, DCE/RPC, and
GSSAPI applications can all use Kerberos. Security principals are stored
in a replicated directory, and Kerberos service tickets are extended to
include Lightwave authorization data.

Features and Capabilities

The secure token service supports the WS-Trust, SAML, OAuth2 and
OpenID Connect standards with the following capabilities:

•	 Browser-based single sign-on (SSO)

•	 Full multi-tenancy support

•	 External SAML Federation

•	 Just-in-time provisioning (JIT)

•	 IDP discovery and selection

•	 Multiple identity sources, including the native VMware directory,
Microsoft Active Directory, and OpenLDAP

•	 Full Kerberos support and full AD domain trust support for inte-
grating authentication with Microsoft Windows and Active
Directory

•	 Schema customization for OpenLDAP to support a broad range of
OpenLDAP deployments

•	 Two-factor smart card support with a common access card (CAC)
or with an RSA SecurID token

•	 REST management APIs

COMPONENTS IN THE LIGHTWAVE ARCHITECTURE
To summarize, the Lightwave security services form an architecture that com-
prises these components:

•	 The directory service and its directory store

•	 A Kerberos key distribution center that is integrated with the directory
service

•	 An integrated DNS server

•	 A multi-protocol secure token service (STS) for authentication and
authorization

•	 A certificate authority

•	 A certificate store

An Introduction to Cloud-Native Technology | 51

Certificate Services

The Lightwave certificate service includes an X509-compliant certif-
icate authority and a certificate store. The certificate authority issues
and revokes certificates, and the certificate store holds certificates and
keys. Together they provide a complete certificate management stack
that integrates with LDAP and establishes user identities with Kerberos
authentication.

The Lightwave Certificate Authority

The certificate authority issues signed X.509 digital certificates and sup-
ports the PKIX standard. It can distribute CA roots and CRLs over HTTP
and LDAP in accordance with RFC 4387. It also supports CSR and key
generation as well as auto-enrollment and certificate revocation. Secured
and authenticated by Kerberos, the certificate authority validates certifi-
cate requests by analyzing key usage, extensions, SAN, and other factors.
Server policies can be used to automatically approve or reject certificates.
The certificate authority has a dual mode in which it can act as an enter-
prise root CA or as a subordinate or intermediate CA. The key lengths are
strong, ranging from 1 K to 16 K, and the hashing algorithms use SHA-1 or
SHA-2, the latter of which is the default. The key usage is encryption and
signing. The certificate file formats are PKCS12, PEM and JKS.

For administration, Lightwave lets you access the certificate authority
with a user interface or command-line utilities, including diagnostic tools.
It also supports certificate-auditing requirements.

The Lightwave Certificate Store

The Lightwave endpoint certificate store holds certificates, private keys,
and certificate revocation lists (CRLs). Lightwave controls access to the
certificate store by using Kerberos. By default, only the user who created
the store—that is, the owner—has access. The certificate store typically
contains three kinds of entries:

•	 A private key associated with a certificate or certificate chain

•	 A certificate of a trusted entity

•	 A certificate revocation list published by the Lightwave certificate
authority

52

Lightwave in vSphere and vCenter

Lightwave acts as the directory service, authentication engine, secure
token service, lookup service, certificate authority, and certificate store in
deployments of VMware vCenter® and VMware vSphere® 6. In addition,
Lightwave lets system administrators join a vCenter instance to Active
Directory. In vSphere 6, the Lightwave components are collectively known
as the VMware Platform Services Controller (PSC).

It handles such security functions as single sign-on and certificate man-
agement. vCenter provides an example of how Lightwave delivers single
sign-on to an enterprise platform. When a user authenticates with the
Lightwave identity management service on vCenter, the user receives a
SAML token issued by the embedded Lightwave secure token service.
With the SAML token, the user can then use any vCenter service (and
perform actions the user has privileges for) without having to sign in
again. The vCenter single sign-on service signs tokens with a signing cer-
tificate and stores the token-signing certificate. The service’s certificate is
also stored.

As you will see in later chapters, understanding the security components
and capabilities of Lightwave is important because Lightwave plays a fun-
damental underlying role in securing VMware platforms that use vSphere
to deliver containers and Kubernetes as a service. Using Lightwave
security services in the cloud empowers IT administrators and DevOps
managers to impose the proven security policies and best practices of
on-premises computing systems on their cloud computing environment.
The security standards and protocols that come with Lightwave can work
across clouds, on-premises data centers, and hybrid clouds.

Managing Container Images with
Harbor
This section looks at a secure container registry called Harbor to shed
light on the role a registry plays in a modernized data center.

Project Harbor is an open source, enterprise-class registry server from
VMware that stores and distributes Docker images in a private registry
behind your firewall. Harbor extends the open source Docker distribution
by adding such functionality as security and management. Harbor can
be set up with multiple registries, and images can be replicated across
the registries. Harbor provides a graphical portal, shown in the following
image, and a RESTful API for managing repositories. Images are pro-
tected with role-based access control.

An Introduction to Cloud-Native Technology | 53

Figure 2: The graphical user interface of the Harbor portal.

For security, Harbor integrates with Project Lightwave, Active Directory,
or LDAP to authenticate users. Harbor also tracks user interactions for
auditing.

Use Cases
•	 Enterprise-wide use of container technology.

•	 Secure container images for use in production.

•	 Extend Docker with management and security, including integra-
tion with identity management systems.

•	 Manage access to container images with Microsoft Active Directory,
LDAP, or Lightwave.

Key Features and Benefits of Harbor

By placing registries closer to the build-and-run environment, Harbor
improves image transfer efficiency. It also supports the setup of multiple
registries and replicates images between them. Storing images within
the private registry keeps data behind the enterprise firewall. In addition,
Harbor offers advanced security features, such as user management, role-
based access control (RBAC), notary, and activity auditing.

•	 Image replication images can be synchronized between multiple
registry instances, aiding load balancing, availability, and flexibility
of adoption.

•	 Graphic user portal: enables browse and search functions for
Docker repository management.

54

•	 Role-based access control: users can be added to specific projects
with varying levels of permission.

•	 AD/LDAP support Harbor integrates with existing enterprise AD/
LDAP for user authentication and management.

•	 Image deletion and garbage collection images can be deleted and
their space recycled.

•	 Auditing all repository operations are tracked.

•	 Notary image authenticity is ensured.

•	 Internationalization: localized for English and Chinese.

•	 RESTful API provided for most administrative operations of Harbor,
easing integration with other management software.

•	 Easy deployment: installable both online and offline.

•	 Secure container images with role-based access control, integration
with identity management systems, and vulnerability scanning.

•	 Manage images and repositories with an intuitive, dynamic user
interface.

Component Architecture

Here is a diagram that depicts the architecture of Harbor.

 Figure 3: The component architecture of Harbor.

An Introduction to Cloud-Native Technology | 55

Proxy: The components of Harbor, such as the registry, UI, and token ser-
vices, are all behind a reversed proxy. The proxy forwards requests from
browsers and Docker clients to the backend services.

Registry: The registry stores Docker images and processes Docker push
and pull commands. Because Harbor enforces access control to images,
the registry directs clients to a token service to obtain a valid token for
each pull or push request.

UI: The graphical user interface helps you manage images on the registry
webhook, which is a mechanism configured in the registry to populate
changes in the status of images. Harbor uses the webhook to update
logs, initiate replications, and perform some other functions.

Token service: The token service issues a token for every docker push or
pull command.

Database: The database stores the metadata of projects, users, roles,
replication policies, and images.

Job services: The job services replicates and synchronizes images across
instances of Harbor.

Log collector: It collects the logs of other modules in a single place.

Implementation

Each component of Harbor is wrapped as a Docker container. Naturally,
Harbor is deployed by Docker Compose. In the source code (https://
github.com/vmware/harbor), the Docker Compose template used to
deploy Harbor is located at /Deployer/docker-compse.yml. Opening this
template file reveals the six container components making up Harbor.

proxy: Reverse-proxy formed by the Nginx Server.

registry: Container instance created from the official image of Docker
distribution.

UI: Core services within the architecture. This container is the main part of
Project Harbor.

MySQL: Database container created from the official MySql image.

job services: Replicating images to a remote registry via state machines.
Image deletion can also be synchronized to a remote Harbor instance.

56

log: Container that runs rsyslogd, used for collecting logs from other con-
tainers through the log-driver mode.

These containers are linked through DNS service discovery in Docker. By
this means, each container can be accessed by their names. For the end
user, only the service port of the proxy (Nginx) needs to be revealed.

Component Interaction

The following examples of Docker commands illustrate the interaction
among Harbor’s components.

The process of docker login

Suppose Harbor is deployed on a host with the following IP address: IP
192.168.1.10. A user runs the docker command to send a login request to
Harbor:
$ docker login 192.168.1.10

After the user enters the required credentials, the Docker client sends an
HTTP GET request to the address “192.168.1.10/v2/”. The different contain-
ers of Harbor will process it according to the following steps:

(a) First, this request is received by the proxy container listening on port
80. Nginx in the container forwards the request to the Registry container
at the backend.

(b) The Registry container has been configured for token-based authen-
tication, so it returns an error code 401, notifying the Docker client to
obtain a valid token from a specified URL. In Harbor, this URL points to
the token service of Core Services.

(c) When the Docker client receives this error code, it sends a request to
the token service URL, embedding username and password in the request
header according to basic authentication of HTTP specification.

(d) After this request is sent to the proxy container via port 80, Nginx
again forwards the request to the UI container according to pre-config-
ured rules. The token service within the UI container receives the request,
it decodes the request and obtains the username and password.

(e) After getting the username and password, the token service checks
the database and authenticates the user by the data in the MySql data-
base. When the token service is configured for LDAP/AD authentication,
it authenticates against the external LDAP/AD server. After a successful

An Introduction to Cloud-Native Technology | 57

authentication, the token service returns a HTTP code that indicates the
success. The HTTP response body contains a token generated by a
private key.

At this point, one docker login process has been completed. The Docker
client saves the encoded username/password from step (c) locally in a
hidden file.

The Process of docker push

After the user logs in successfully, a Docker image is sent to Harbor via a
Docker Push command:
docker push 192.168.1.10/library/hello-world

(a) Firstly, the docker client repeats the process similar to login by send-
ing the request to the registry, and then gets back the URL of the token
service;

(b) Subsequently, when contacting the token service, the Docker client
provides additional information to apply for a token of the push operation
on the image (library/hello-world);

(c) After receiving the request forwarded by Nginx, the token service
queries the database to look up the user’s role and permissions to push
the image. If the user has the proper permission, it encodes the informa-
tion of the push operation and signs it with a private key and generates a
token to the Docker client;

(d) After the Docker client gets the token, it sends a push request to the
registry with a header containing the token. Once the Registry receives
the request, it decodes the token with the public key and validates its
content. The public key corresponds to the private key of the token ser-
vice. If the registry finds the token valid for pushing the image, the image
transferring process begins.

Integration with Kubernetes

Here’s how to deploy Harbor on Kubernetes. This section assumes you
know the following aspects of Kubernetes work: Replication Controller,
Service, Persistent Volume, Persistent Volume Claim, Config Map.

First, you need to download the docker images of Harbor.

1.	 Download the offline installer of Harbor from the release page.

58

2.	 Uncompress the offline installer and get the images tgz file har-
bor.*.tgz.

3.	 Load the images into docker by running the following command:
docker load -i harbor.*.tgz

Second, you need to configure it.

A Python script make/kubernetes/prepare is provided to generate
Kubernetes ConfigMap files. The script is written in Python, so you need a
version of Python in your deployment environment. Also the script needs
openssl to generate private key and certification, so make sure you have a
workable openssl.

For more information and a link to the release page, see Integrate with
Kubernetes at https://github.com/vmware/harbor/blob/master/docs/
kubernetes_deployment.md.

Integration with VMware vSphere Integrated
Containers for Improved Security

Enterprise private container registry: With Harbor, vSphere Integrated
Containers offers an enterprise private container registry with advanced
security features such as identity management, LDAP integration, role
based access control, and trusted content, all of which help ensure
security for container images. With the private registry, you can furnish
project-level content trust and notary services to container images.
Vulnerability scanning helps prevent vulnerable container images from
running in your data center.

More Info on Project Harbor

Download the installer from the https://github.com/vmware/harbor/
releases. Then see the Installation and Configuration Guide at https://
github.com/vmware/harbor/blob/master/docs/installation_guide.md for
intructions.

After installation, see the user guide at https://github.com/vmware/
harbor/blob/master/docs/user_guide.md.

Providing Persistent Storage

A lack of persistent storage can stand in the way of container adop-
tion, especially for stateful, data-intensive applications. A data-intensive

An Introduction to Cloud-Native Technology | 59

containerized application requires a robust, elastic, and programmable
storage infrastructure with the same level of security, data integrity, high
availability, and storage services that are used for traditional applications
and IT infrastructure.

Although it is relatively easy to run stateless microservices using con-
tainer technology, stateful applications require slightly different treatment.
Multiple factors need to be considered when containerized applications
call for persistent data:

•	 Because containers are ephemeral by nature, the data needs to
persist after a container is restarted or rescheduled.

•	 When a container is rescheduled, it can start on a different host
than the one on which it had been running, and the storage must
be made available on the new host so that the container can start
quickly and gracefully.

•	 You should not have to worry about whether the volume and data
will be available for a containerized application. The underlying
infrastructure should handle the complexity of unmounting and
mounting a volume. Some applications, such as Kafka and Elastic-
search, can have strict identity and ID requirements; if a container
with a certain ID gets re-scheduled, the the disk associated with
that ID must be re-attached to the new container instance.

Project Hatchway

Project Hatchway, an open source storage project from VMware, provides
storage infrastructure options for containers in vSphere environments,
including hyper-converged infrastructure (HCI) with by VMware vSAN.

By integrating with Kubernetes, Hatchway lets developers consume
storage infrastructure as code, abstracting complexity of the underlying
storage infrastructure.

Through Project Hatchway, data services such as snapshot, cloning,
encryption, de-duplication, and compression are available at the level of a
container volume.

Storage for Stateful Apps in Kubernetes

Stateful containers orchestrated by Kubernetes can also use the storage
options of vSphere—vSAN, VMFS, NFS, and VVol—with Kubernetes per-
sistent volume, dynamic provisioning, and StatefulSet primitives.

60

With Hatchway and vSpherre, storage policy-based provisioning of
persistent volumes enables applications to specify SLAs and quality of
service at the granularity of container volumes. Database workloads scale
on demand as a result of the tight integration with the Kubernetes sched-
uler and features like StatefulSet.

Microservices Meets Micro-
segmentation: Delivering Developer-
Ready Infrastructure for Modern
Application Development with NSX
Customer benefits abound when microservices meet micro-segmen-
tation. At its core, developer-ready infrastructure is about dealing with
the practical realities and complications of making a modern developer
application development platform (like Pivotal Cloud Foundry) work in
harmony with a modern enterprise private cloud (like a VMware SDDC).

Over the last six to nine months, the container ecosystem has really
woken up to the production challenges of using any of the leading con-
tainer frameworks in production. We have discussed this topic on the
VMware cloud-native blog recently in relation to Kubernetes and Docker.

Last month, with the introduction of Pivotal Cloud Foundry 1.10, both the
VMware NSX team and the Pivotal team shared some initial concepts
around developer-ready infrastructure. Both are good reads if you are
itching for some technical details.

Developer-ready infrastructure is about removing human bottlenecks
from the interaction between developers and IT. The result for the cus-
tomers of VMware is better products and services, delivered faster than
ever to their customers while continuing to meet operational goals of
efficiency, security, and reliability.

Let’s drill down on that last paragraph. In our customers’ environments,
the “business” drives much of the overall operating envelope, guidelines
and rules that developers and IT alike must adhere to. The problem is that
manual intervention is involved at each step of the way, leading to errors,
inconsistencies, delays, and inefficiencies.

Before an application change or update happens, there is usually a
business requirement or reason that sets the developer in motion. From
there, the developer gets to work to modify the application to address
the business requirements. Let’s call that developer intent. At that point,
IT gets the hand off and does the work needed to make that application

An Introduction to Cloud-Native Technology | 61

update “live” for the customers of the business. You can refer to this as
infrastructure response. At some point down the road, for most of our
enterprise customers, there is some sort of audit or compliance check
that they must adhere to and pass or they will get fined. We will call that
audit readiness.

The process seen in most customer environments today is typically a
one-way process with manual human-driven actions along each step of
the way. When you consider the magic and automation possible with
modern application development practices and then you try apply those
practices in the real world where terms like “manual,” “one-way,” and
“human-driven” are regularly used to describe the current state of most
organizations application release and operations model, the helium is
removed from the proverbial balloon.

Developer-ready infrastructure puts the helium back in the microservices
balloon by allowing organizations to remove the one-way, human-driven
process between developers and IT. Let’s take a specific example. With
Pivotal Cloud Foundry, developer intent is captured in the application
metadata produced when developers create or modify an application.
That application metadata can then be used by VMware NSX to automati-
cally program the infrastructure response in the form networks segments,
load balancer configuration and firewall permissions. Once programmed,
both the infrastructure configuration and the application metadata can
be queried at a moment’s notice (audit readiness) to satisfy a compliance
check on the business.

Developer-ready infrastructure radically reduces manual infrastructure
processes and developers handling non-development tasks resulting
in increased developer productivity. It provides secure, software-based
compute, storage, networking, and operational tooling optimized for
microservice-based application workloads running in containers.

Combining a VMware SDDC with Pivotal’s cloud-native application plat-
form enables developers to deploy the right software, faster and more
frequently by eliminating the drag of traditional operational concerns,
delays, and extra code to guard against infrastructure issues. Beyond the
Pivotal Cloud Foundry and VMware NSX integration, the entire VMware
SDDC portfolio is evolving to better support the needs of modern appli-
cation development platforms.

There is another problem: How do you automate the interaction between
business requirements and developer intent? That, too, is a manual, error
prone process. For platform deployment and operations, a large part of
the solution to that problem is BOSH.

62

BOSH
BOSH is an open source tool that enables deployment and lifecycle man-
agement of distributed systems. It is the primary method used to deploy
Pivotal Cloud Foundry and is contributed to by many key members of
the Cloud Foundry Foundation, such as Google, Pivotal, and VMware. It
can support deployments across many different IaaS providers. Some of
these providers are:

•	 VMware vSphere

•	 Google Compute Platform

•	 Amazon Web Services EC2

•	 Microsoft Azure

•	 OpenStack

BOSH
Deployment

Manifest

CPI-vSphere

BOSH

Network(s) Network(s)

Running BOSH
Deployment

Job
VM

Job
VM

Job
VM

Job
VM

Job
VM

vSphere

1

4

5

BOSH Release

BOSH Stem Cell

3

2

Figure 4: An overview of BOSH.

BOSH accomplishes deployments by creating several major abstraction
objects that make it easy and repeatable to deploy complex systems.
Referencing the figure above, these objects include:

1.	 CPI: The cloud provider interface, or CPI, is the executable library
BOSH uses to interact with any given IaaS. One CPI is available
for every BOSH-supported IaaS, and when you deploy the BOSH
instances you can define which ones it will use. In the image above,
a vSphere CPI is shown. It allows BOSH to perform all the required
IaaS actions, such as creating a VM or instance, as well as various
other instance, network, and storage primitives required to instanti-
ate a deployment.

An Introduction to Cloud-Native Technology | 63

2.	 BOSH stemcell: A stemcell is a versioned base operating system
image built for each CPI that BOSH supports. It is commonly based
on Canonical’s Ubuntu distribution, but is also available in RHEL
and even Windows image ports. Typically, the stemcell is a hard-
ened base OS image with a BOSH agent predeployed. BOSH will
use this agent to install and manage the lifecycle of software on
that VM for instance.

3.	 BOSH release: A BOSH release is a versioned tarball containing the
complete source code and job definitions required to describe to
BOSH how that release of software should be deployed on a VM
or instance provisioned from a stemcell. An example is the Kubo
release which includes all the packages and details required to
allow BOSH deploy a fully functional Kubernetes cluster.

4.	 BOSH deployment manifest: BOSH needs to receive some declar-
ative information to actually deploy something. This is provided by
an operator via a manifest. A manifest defines one or more releases
and stemcells to be used in a deployment and provides some key
variables like IPstack info, instance count, and advanced configu-
ration of the given release(s) you want to deploy. This manifest is
typically written in a YAML format.

5.	 BOSH deployment: BOSH needs some declarative information
before it can deploy anything. This is provided by an operator via a
deployment manifest and a cloudconfig manifest. These manifests
are typically written in a YAML format.

•	 cloud-config manifest: This YAML is specific to an IaaS as defined
by the properties made available in its CPI. It will provide defi-
nitions for things like networks, VM sizes, storage locations,
and availability zone mappings. This manifest is global, which
means that there can be only one instance per BOSH, and can be
referred to by multiple deployment manifests.

•	 deployment-manifest: This manifest refers to objects in the
cloud-config and focuses on properties for the releases. The
manifests define one or more releases and stemcells to be used
in a deployment and provide some key variables like instance
count and advanced configuration of the given release(s) to be
deployed. This allows for deployment manifests to be portable
across CPIs.

64

What Problems Does BOSH Solve?

BOSH lets release developers easily version, package, and deploy soft-
ware in a reproducible manner. Operators can consume BOSH releases
and be guaranteed that deployments are repeatable with predictable
results across environments. To accomplish this, BOSH lets release devel-
opers focus on providing some key abilities when building a release:

Identifiability: An operator needs to be able to document the deployment
of software and its versions. A BOSH release, by design, requires the
developer to declare and package everything in the release. The release
itself must also be versioned. This allows an operator to fully understand
what is deployed as well as consistently upgrade or downgrade versions
of software in a release.

Example: In Figure 2, an operator defining a deployment can refer to
one or more versioned releases in a deployment manifest. This allows for
identification of the software versions used. In the image above, BOSH
has two versions of the Kubo release available: versions 0.0.5 and 0.0.6.
The operator has defined the use of version 0.0.5 of the release in the
deployment manifest, which will enforce the use of Kubernetes version
1.6.6 across the deployment called “mykubo-deployment.”

BOSH Release: kubo-release
Version: 0.0.5

Package(s):
 kubernetes: kubernetes-1.6.6/*

nginx: nginx/
 nginx-release-1.11.4.tar.gz

BOSH Release: kubo-release
Version: 0.0.6

Package(s):
 kubernetes: kubernetes-1.7.1/*

nginx: nginx/nginx-release-1.11.4.tar.gz

BOSH
Deployment

Manifest

CPI-vSphere

BOSH

Network(s)

Running BOSH
Deployment

VM
KBS

V1.6.6

vSphere

VM
KBS

V1.6.6

VM
KBS

V1.6.6

Name: mykubo-deployment
 releases:
 - name: kubo-release
 version: 0.0.5
 - name: docker
 version: 28.0.1

mykubo-deployment

Figure 5: BOSH identifiability.

Reproducibility: Another key tenant in releasing software addressed by
BOSH is reproducibility. To an operator, this means that software should
be deployed in exactly the same way across multiple environments in
order to guarantee operational stability.

An Introduction to Cloud-Native Technology | 65

Example: In the figure on the following page, a single manifest can
deploy Kubernetes in a consistent way, providing the same functional
deployment with the same releases across multiple environments. Those
environments can even cross multiple IaaS providers by using the CPI
abstraction. The simplified and partial deployment manifest in the image
above is declaring which BOSH stemcell, BOSH Release, and config prop-
erties to use to deploy functionally identical Kubernetes clusters in two
different environments.

Name: mykubo-deployment
 releases:
 - name: kubo-release
 version: 0.0.5
 - name: docker
 version: 28.0.1
 - name: kubo-etcd
 version: 2
 stemcells:
 - alias: trusty
 os: ubuntu-trusty
 version: latest
 instance_groups:
 - name: etcd
 instances: 2
 network: alpha
 azs: [az1]
 jobs: alpha
 - name: etcd
 release: kubo-etcd
 properties: []
 stemcell: trusty
 - name: master
 instances: 2
 - name: worker
 instances: 3

BOSH
Deployment

Manifest

CPI-AWS

BOSH A vpc network name = alpha

etcd etcd master

vSphere

master worker worker worker

CPI-vSphere

vSphere port group name = alpha

etcd etcd master

vSphere

master worker worker worker

BOSH B

Running BOSH
Deployment

mykubo-deployment

Running BOSH
Deployment

mykubo-deployment

Figure 6: BOSH reproducibility.

Consistency: BOSH also enforces consistency in BOSH release develop-
ment to ensure that virtually any software can be packaged, versioned,
and deployed in a similar pattern. This also provides operational stability.

BOSH Use Cases and Benefits

BOSH’s principal value lies in simplifying the deployment and day 2
lifecycle management of complex systems. It was primarily developed to
deploy Cloud Foundry but has been extended by developers to deploy
many other environments, both simple and complex. Systems to which
BOSH can deploy can be found in two primary locations. The first is
Pivotal Network, where Pivotal curates commercial BOSH releases of
Pivotal Cloud Foundry as well as Pivotal services that are typically driven
by Pivotal Operations Manager plus BOSH. The second location is BOSH.
io, which hosts an OSS community repo of various systems that can be
deployed.

66

A prime example of a BOSH use case is Kubernetes powered by BOSH,
formerly known as Kubo.

CPI-vSphere

BOSH

mykubo-deployment-2

worker 1

etcd 1

master 1

worker 2

etcd 2

Availability Zone 1 Availability Zone 2 Availability Zone 2

worker 0

master-
haproxy

 0

master 0

etcd 0 B
O

S
H

 A
ge

nt

Developer Team B

Developer

mykubo-deployment-1

worker 1

etcd 1

master 1

worker 2

etcd 2

Availability Zone 1 Availability Zone 2 Availability Zone 3

worker 0

master-
haproxy

 0

master 0

etcd 0 B
O

S
H

 A
ge

nt

Developer Team A

Developer

Health Manager

Platform
Operator

mykubo-deployment-2
Developer Team B

mykubo-deployment-1
Developer Team A

= persistent_disk

Figure 7: A use case with Kubernetes powered by BOSH.

Referencing Figure 8, we can see the key benefits that BOSH provides the
operator.

1.	 Repeatability: In a cloud native development environment, the
operator can generate two or more similar deployment manifests
to deploy two or more unique but functionally identical Kubernetes
deployments to meet the needs of multiple developer consumers.

2.	 Day 2 operations: BOSH lifecycle management makes it easy to
keep all of the Kubernetes deployments healthy.

•	 Maintain health: Each VM or instance deployed by BOSH also
deploys an agent that communicates health back to BOSH. If a
Kubo node is unhealthy, BOSH will automatically try to repair and
or rebuild the affected node. This improves uptime.

•	 Increase uptime: Each release job instance type can have multiple
VMs or instances distributed across availability zones to ensure
services provided are not affected by physical faults in a given
availability zone. Availability zones are only supported on certain
CPIs, such as the vSphere CPI where availability zones map to
vCenter clusters.

An Introduction to Cloud-Native Technology | 67

•	 Patching: Because BOSH uses versioned releases, it is trivial for
an operator to upgrade the Kubernetes Kubo release and apply it
to all running deployments with little to no interruption of service.
BOSH will update each deployment as well as maintain its state by:
(1) detaching persistent disks, (2) rebuilding the affected VMs or
instances, and then (3) re-attaching persistent disks.

BOSH Architecture

BOSH is typically deployed as a single VM or instance. That VM/instance
has many components that perform vital roles in enabling BOSH to
manage deployments at scale:

•	 NATS: Provides a message bus via which the various services of
BOSH can interact.

•	 POSTGRESQL: BOSH writes all of its state into a database. Typ-
ically that database is internal to a single VM BOSH deployment
and provided by Postgres. This can be modified, however, to use
an external data source so that the BOSH VM can be rebuilt and
reconnect to the database to reload its persistent state.

•	 BLOBSTORE: Each stemcell and release uploaded to BOSH is
stored in a blobstore. Default deployments of BOSH use an internal
store (webdav), but, like the Postgresql database, this can also be
externalized.

•	 Director: The main API that the BOSH CLI will interface with to
allow an operator to create and manage BOSH deployments.

•	 Health Monitor: BOSH requires that each VM it deploys have an
agent that it can communicate with to assign and deploy jobs from
BOSH releases that are defined in a deployment manifest. It will
also maintain the health of each VM or instance it has deployed.
The agent will report vitals back to BOSH and in cases where ser-
vices in the VM are faulted, or the agent is unreachable, the Health
Monitor can use plugins to restart services and even rebuild the VM
or instance.

•	 CPI: The CPI is the IaaS-specific executable binary that BOSH uses
to interact with the defined IaaS in its deployment YAML.

•	 UAA: Provides user access and authentication that allows BOSH to
authenticate operators via SAML or LDAP backends.

•	 CREDHUB: Manages credentials like passwords, certificates, certif-
icate authorities, SSH keys, RSA keys, and arbitrary values (strings
and JSON blobs). BOSH will leverage credhub to create and store
key credentials for deployments, like public certificates and keys.

68

•	 CLI: A final component, which is not shown in the architecture
diagram, is the command-line interface. BOSH is deployed by using
the BOSH CLI, passing the correct cmd line arguments, or storing
those arguments as variable data within additional YAML files to
define how BOSH itself will be deployed. This cookBook section
outlines the steps required to deploy BOSH, and offers guidance
for a basic Kubo deployment.

BOSH

worker 1

etcd 1

master 1

worker 2

etcd 2

Availability Zone 1 Availability Zone 2 Availability Zone 3

worker 0

master-
haproxy

 0

master 0

etcd 0

Kubo Deployment on vSphere

NATS

POSTGRESQL

BLOBSTSORE

DIRECTOR

HEALTH MONITOR

CPI

UAA

CREDHUB

BOSH Agent

Figure 8: The architecture of BOSH.

For a step-by-step guide to deploying BOSH, see An Introduction to
BOSH.

CFCN for Deploying and Operating
Kubernetes
Cloud Foundry Container Runtime (CFCR), formerly known as Kubo, is an
open source project that delivers the functionality of both Day 1 (deploy-
ment) and Day 2 (operations) for Kubernetes clusters. The initial genesis
behind CFCR was to make deploying and running Kubernetes clusters
across different environments more portable and operational.

Until now, there has been no reliable or convenient way to deliver a strong
level of operational capability to a consumer who may want to run Kuber-
netes in production on their own on-premises and public clouds. To solve
this problem, Google partnered with Pivotal (the leading contributor to
BOSH) to build Cloud Foundry Container Runtime. CFCR was formerly
known by the acronym Kubo, meaning Kubernetes on BOSH. BOSH is
an open source tool for the deployment, release engineering, lifecycle
management, and monitoring of distributed software systems. Google
and Pivotal saw BOSH as a tool with the potential to facilitate produc-
tion-grade Kubernetes operations.

An Introduction to Cloud-Native Technology | 69

Self-Care for the Kubernetes Control Plane

On its own, Kubernetes does a great job maintaining healthy running
workloads. However, it’s not so great at self-care of its control plane
components like its API, controller manager, etc., or its core kubelet pro-
cesses. BOSH provides health and monitoring capabilities to the complete
Kubernetes control plane to keep not only app workloads healthy, but
also Kubernetes itself healthy and running.

To accomplish this, CFCR is deployed a little differently than when
deployed with tools like kubeadmin or kops. When BOSH deploys a
Kubernetes cluster, each core component of the Kubernetes control plane
is instantiated as a virtual machine (VM) instance. BOSH deploys an agent
on each VM instance to monitor the health of the key Kubernetes control
plane processes, as well as the overall health of each VM instance. BOSH
will also dynamically repair and rebuild any VM that is unhealthy, no
manual intervention required.

In addition to the health management of Kubernetes, CFCR deployments
gain the added benefits of scaling, patching and upgrading Kubernetes
clusters easily via a simple interaction with BOSH. Why is this so advan-
tageous? Customers running Kubernetes will likely at some point need to
upgrade and re-deploy, which is a taxing process. BOSH greatly simplifies
this.

Alleviating the Operational Complexity
of Kubernetes

Operating Kubernetes is difficult, generally speaking. CFCR was designed
to address the complexity of Kubernetes deployment and make it easier
to deploy, patch, upgrade, scale and operate. The BOSH approach to
Kubernetes provides some nice advantages. One of those advantages is
repeatability. BOSH can deploy Kubernetes across multiple IaaS providers,
such as vSphere, Google Cloud Platform and Amazon Web Services. This
is accomplished through the BOSH Cloud Provider Interface (CPI), which
allows BOSH to create and manage VM instances, storage, and network-
ing constructs across supported CPIs.

BOSH also utilizes a few additional abstractions, such as “releases” to
package software, “stemcells” to define a secure VM image, and “man-
ifests” to define how the releases get deployed across one or more VM
instances based on the stemcells. A platform reliability engineer can use

70

these abstractions to make Kubernetes deployments easy and repeatable
across any of the CPIs available to BOSH, thereby creating a great
common operational model across any cloud.

Supplying Repeatable Automation with
BOSH

Cloud Foundry Container Runtime also has a lot to offer when it comes
to Day 2 operations, that is, operations that take place after the Kuber-
netes clusters have been deployed. Tasks like patching CVEs, upgrading
Kubernetes or rotating key credentials can be pretty cumbersome. BOSH
offers platform reliability engineers the ability to automate all of these
tasks in a consistent and repeatable manner, driving down costs and the
time to deliver software. Additionally, spinning up or decommissioning
multiple Kubernetes clusters when they are no longer necessary can also
be automated and logged in the BOSH database to provide a level of task
auditing.

CFCR is a fundamental part of VMware Pivotal Container Service (PKS).
The primary objectives of CFCR and PKS are to make Kubernetes and the
operations of Kubernetes as a service simple and production ready. PKS
is discussed in the next chapter.

An Introduction to Cloud-Native Technology | 71

Container Platforms and
Services
The objective of this chapter is to help you understand container plat-
forms from VMware, their underlying technology, and their business value
so that you can make an informed decision about the best platform for
your organization, its use cases, and its goals.

As you turn to container technology, an effective strategy for digital
transformation includes matching the architecture and workloads of your
applications to the right platform for the job. Different types of plat-
forms are primed for different levels of container adoption, organizational
requirements, and use cases.

High-Level Use Cases for Container
Platforms
The following use cases coincide with the extent to which an enterprise
has embraced container technology, defining a sort of container-adoption
continuum that takes place after an initial stage of experimentation and
evaluation:

•	 Establishing a developer sandbox or self-service agile infrastruc-
ture.

•	 Repackaging a legacy application in a container.

•	 Migrating, or replatforming, a traditional app to a container plat-
form.

•	 Replatforming a legacy app and re-architecting, or refactoring, it by
using microservices.

•	 Building cloud-native apps or developing on and for the cloud.

Maturity of Container Adoption
In the early stages of container adoption, organizations seek ready-
to-go development tools and a service portal so that developers can
self-service their needs with agile infrastructure. In the middle stage of
the journey, organizations strive to accelerate software development by
repackaging traditional applications in containers to simplify developer
workflows and application maintenance. This kind of a lift-and-shift use
case eventually leads to replatforming the repackaged application so that
its deployment can be automated, orchestrated, and scaled on demand.

72

Cloud Natives
Then there are the cloud natives who live in and build for the cloud. They
seek to build new applications by using architectural patterns like micros-
ervices and methodologies like the 12-factor app. When it makes sense to
do so, they are also working to refactor legacy monolithic applications as
cloud-native apps. Organizations at this stage are focused on automation,
optimization, and rapid innovation.

Matching the Platform to the Project
Different platforms address different situations, and several factors come
into play in analyzing the platform that’s right for your stage of container
adoption and your use cases:

•	 Identifying your target use cases or application types and matching
them with the best-suited platform—that is, using the right tool for
the job.

•	 Determining how much operational work is to be handled by
DevOps or spread among developers and traditional IT teams—that
is, having the right workers for the job.

•	 Deciding how much flexibility you want, including how you handle
continuous integration, continuous delivery, and continuous
deployment—that is, finding the right balance between prescription
and complexity.

Prescription and Complexity
The more prescriptive the platform is, the more it hides the complexity
of the platform from developers. A prescriptive platform prescribes a
scheduler, a runtime engine, integration with the underlying infrastructure,
continuous delivery, and other aspects of the platform. (A prescriptive
platform is also referred to as an opinionated platform.)

For example, a prescriptive platform includes its own scheduler for con-
tainers and specifies how to use it to run containerized applications. The
main advantage of a perscriptive platform is that it places the platform’s
complexity in a layer of abstraction—all developers have to do is write
their code and generate an application artifact, and the platform handles
the rest. The disadvantage is that you have fewer options and less flexibil-
ity in how you delivery and deploy your app. A prescriptive platform also
imposes methods of using containers on you; as a result, you might be
unable to manage containers with standard APIs, such as the Docker API
or the Kubernetes API.

An Introduction to Cloud-Native Technology | 73

FACTORS IN SELECTING A CONTAINER PLATFORM
The platform that you select will depend on your unique situation and goals.
Here are some factors to consider:

•	 Use cases

•	 Application types and their workloads

•	 Software development methods and processes

•	 Operations

•	 Security and compliance

•	 Networking

•	 People and their skill sets

•	 Maturity of your organization’s container adoption

•	 Maximizing flexibility vs. minimizing complexity

•	 Business objectives

Closing the Container Platform
Confidence Gap

In a recent report titled “Closing the Digital Transformation Confidence
Gap in 2017,” The Hackett Group surveyed executives from more than 180
large companies. The report found a wide confidence gap “between the
high expectations for digital transformation’s business impact and the low
perception of the business’s capability to execute digital transformation.”
The Hackett group says that the findings demonstrate the need for IT to
invest in the necessary tools and to adopt rapid application development
techniques, such as agile processes.11

Although containers themselves are not new, barriers have hindered their
use for building and deploying enterprise applications. Until fairly recently,
containers lacked the tooling and ecosystem for enterprise-grade deploy-
ment, management, operations, security, and scalability. In addition, the
requirements of IT administrators often went unfulfilled: Infrastructure for
running containers has neglected networking, storage, monitoring, log-
ging, backup, disaster recovery, maintenance, and high availability.

11Despite High Expectations for Digital Transformation Led by Cloud, Analytics, Robotic
Process Automation, Cognitive & Mobile, IT & Other Business Services Areas See Low Ca-
pability to Execute, The Hackett Group, March 16, 2017. A version of the research is available
for download, following registration, at http://www.thehackettgroup.com/research/2017/
social-media/key17it/.
	

74

VMware vSphere Integrated Containers and VMware Pivotal Container
Service changes all that. These cloud-native solutions from VMware help
you quickly and cost-effectively put containers into production, improv-
ing your ability to carry out digital transformation.

Running containers on VMs also adds a beneficial level of security to
containerized applications, especially in the context of the third tenet of
cloud-native applications—microservices. According to a Docker white
paper on security, “Deploying Docker containers in conjunction with VMs
allows an entire group of services to be isolated from each other and then
grouped inside of a virtual machine host.”12

Deploying containers with VMs encases an application with two layers of
isolation, an approach that is well-suited to cloud-style environments with
multitenancy and multiple workloads. “Docker containers pair well with
virtualization technologies by protecting the virtual machine itself and
providing defense in-depth for the host,” the Docker security white paper
says. Container security is discussed further in a later section.

vSphere Integrated Containers
VMware vSphere Integrated Containers, a comprehensive container solu-
tion built on VMware vSphere, enables you to run modern and traditional
workloads in production on their existing software-defined data center
(SDDC) infrastructure with enterprise-grade networking, storage, security,
performance, and visibility.

vSphere Integrated Containers offers the quickest and easiest way for
vSphere users to start using containers today without additional capital
or labor investment. Its tight integration with the entire VMware SDDC
environment, as well as its support for leading container technologies like
Docker, makes it a great solution for a seamless transition to container
adoption. You can tap the benefits of containers for enhanced developer
productivity, business agility, and fast time-to-market.

The following sections examine the architecture and capabilities of
vSphere Integrated Containers when deployed as an integrated system
with VMware vSphere, NSX, vSAN, and several external systems, including
Microsoft Active Directory and Docker Hub.

Before diving into the details of the system architecture, here’s a brief
review of the system’s design objectives. vSphere Integrated Containers
addresses the following commonly occurring objectives:

12 Introduction to Container Security, Docker white paper, Docker.com.	

An Introduction to Cloud-Native Technology | 75

•	 Enable a universal platform for transitioning to modern develop-
ment practices.

•	 Enable the infrastructure to support the coexistence of both
traditional and modern application designs on common, existing
hardware and software.

•	 Improve developer agility, shorten time to market, and maximize
application resiliency

•	 Developers need an environment where they can build, test, and
run their applications using native container tools with minimal
involvement from IT.

•	 Support a standard framework for orchestrating the deployment of
cloud native applications and automating management of applica-
tion availability in operation.

•	 Provide integration with the enterprise-grade capabilities of
VMware infrastructure.

•	 Provide security and availability of application when running in
production.

•	 Increase visibility into container deployments using standard
VMware tools for better operability.

•	 Streamline development team access to tools and infrastructure
resources.

•	 Eliminate extensive approval processes for acquisition and manual
provisioning of infrastructure, which frequently results in develop-
ers pursuing alternative paths of less resistance such as rogue IT or
public offerings.

Architecture

vSphere Integrated Containers is a product designed to tightly integrate
container workflow, lifecycle and provisioning with the vSphere SDDC.
It provides a container management portal, an enterprise-class registry,
and a container runtime for vSphere fully integrated into a commercial
distribution.

76

Figure 9: The architecture of vSphere Integrated Containers.

With these capabilities, vSphere Integrated Containers enables VMware
customers to deliver a production-ready container solution to their devel-
opers and DevOps teams. By leveraging their existing SDDC, customers
can run container-based applications alongside existing virtual machine
based workloads in production without having to build out a separate,
specialized container infrastructure stack.

As an added benefit for customers and partners, vSphere Integrated
Containers is modular. So, for example, if your organization already has a
container registry in production, you can use that registry with vSphere
Integrated Containers Engine and vSphere Integrated Containers Man-
agement Portal.

Components

vSphere Integrated Containers is built on these major open source
products:

1.	 vSphere Integrated Containers Engine is a container runtime for
vSphere that enables the provisioning and management of appli-
cations packaged as Docker images into vSphere clusters. With the
vSphere Integrated Containers Engine Developers can deploy con-
tainer images alongside traditional workloads on vSphere clusters.
The vSphere Integrated Containers engine gives developers the
agility and speed they need, while allowing operations to reuse the
tools, processes and people they’ve already invested in.

2.	 Harbor is an enterprise-class private container registry that stores
and distributes container images. It extends the Docker Distribution

An Introduction to Cloud-Native Technology | 77

open source project by adding the functionalities that enterprises
require, such as security, auditing and identity management.

3.	 Admiral is a container management portal. It provides a GUI for
DevOps teams to provision and manage containers, and includes
the ability to obtain statistics and information about container
instances. It provides both Docker compose and a proprietary
application definition through templating to combine different
containers into an application. It also supports containers scaling
in and out. Advanced capabilities, such as approval workflows, are
available when integrated with vRealize Automation.

4.	 Photon OS is a minimal Linux container host, optimized to run on
VMware platforms. It is used throughout vSphere Integrated Con-
tainers wherever a Linux guest kernel is required.

The core SDDC infrastructure subsystems, vSphere, NSX, and vSAN com-
plement vSphere Integrated Containers by extending trusted capabilities
such as:

•	 Distributed Resoource Scheduling (DRS)

•	 vMotion

•	 High Availability (HA)

•	 Secure isolation, micro-segmentation, and RBAC

•	 SSO via PSC with extension to external identity sources such as
Active Directory/LDAP

•	 Granular monitoring and logging visibility via vCenter, vRealize
Operations, and VRNI

•	 vSAN, iSCSI, NFS shared storage

•	 Direct deployment to Distributed vSwitch and NSX Logical
Switches, and integration with NSX virtual network infrastructure
components

•	 Unified, full-stack monitoring and logging visibility

Deployment Options

vSphere Integrated Containers supports multiple ways to deploy and run
containers. Its deep integration with an existing VMware SDDC environ-
ment provides the best of both worlds for your developers and IT staff,
while supporting a variety of container use cases for the modern
enterprise.

78

Small businesses to large enterprises can leverage the capabilities of
vSphere Integrated Containers as it deploys to vSphere infrastructures
of various sizes. A container deployment model can, for example, overlay
typical management and control plane components along with the two
container deployment model options over two vSphere clusters of ESXi
hosts. Traditional VMs could also exist on a common cluster with the
containers.

Figure 10: Container deployment models.

Virtual Container Hosts

vSphere Integrated Containers leverages the native constructs of vSphere
for provisioning container-based applications. IT admins can deliver a
production-ready container solution to their developers and app teams
without having to build out a separate, specialized container infrastruc-
ture stack. By deploying each container image as a vSphere Virtual
Machine (VM), vSphere Integrated Containers allows these container
workloads to leverage critical vSphere application security, isolation,
availability and performance features – VMware HA, vMotion and Distrib-
uted Resource Scheduler. vSphere Integrated Containers provides these
features while still presenting a Docker API to developers of container
based applications to consume.

Docker Container Hosts

vSphere Integrated Containers also supports running native Docker
container hosts on vSphere. It allows developers to self-provision Docker
container hosts for use as a development sandbox, a build server, or a
swarm cluster. Now you can treat a Docker host as ephemerally as a con-
tainer.

An Introduction to Cloud-Native Technology | 79

Container Runtime

The vSphere Integrated Containers Engine is a container runtime for
vSphere. It enables the provisioning and management of VMs into
vSphere clusters using the Docker binary image format. It enables
vSphere admins to pre-allocate certain amounts of compute, network-
ing and storage and provide that to developers as a self-service portal
exposing a familiar Docker-compatible API. It allows developers who are
familiar with Docker to develop in containers and deploy them alongside
traditional VM-based workloads on vSphere clusters. VMs provisioned
using vSphere Integrated Containers take advantage of many of the ben-
efits of vSphere including DRS, clustering, vMotion, HA, distributed port
groups and shared storage.

Using the native constructs of vSphere, IT admins can deliver a produc-
tion-ready container solution to their developers and app teams without
having to build out a separate, specialized container infrastructure stack.

vSphere Integrated Containers engine brings many of the value
propositions of containers and container images directly to vSphere infra-
structure. vSphere Integrated Containers engine turns container images
into objects that look just like containers when viewed from a develop-
er’s perspective and look just like a virtual machine when viewed from
an operator’s perspective. Since vSphere Integrated Containers expose
the Docker API, it is easy to integrate with developer tools, scripts and
processes. And since they behave just like virtual machines, vCenter, NSX,
vRealize Operations, vSAN, vMotion and other familiar technologies are
just as relevant and valuable for container workloads.

The VMs created by vSphere Integrated Containers engine have all of the
characteristics of software containers:

•	 Ephemeral storage layer with optionally attached persistent “vol-
umes”

•	 Custom Linux guest designed to be “just a kernel” needs “images”
to be functional

•	 Automatically configured to various network topologies

“ContainerVMs” are provisioned into a “Virtual Container Host” which
represents a clustered pool of resource, a single-tenant container name-
space and an API endpoint. A VCH is not a literal host, rather it is akin to a
vSphere resource pool in that it transparently provides clustering, sched-
uling, vMotion and HA to containers running in it. A VCH is represented in
vSphere as a resource pool construct.

80

All of the basic capabilities for creating VMs with these characteristics
along with the ability to configure the necessary networking, compute
and storage to support them is encapsulated in the “Port Layer” (4.4) ser-
vice. The Port Layer also adds capabilities to listen for events and interact
with the containers.

The scope of vSphere Integrated Containers engine is limited to being
an endpoint that runs production container workloads. There is no native
support for building images directly on the engine. However, vSphere
Integrated Containers can be used by developers to provision native
Docker Host VMs to be used for development and build in that manner.
The fact that a native Docker Host is controlled from the exact same
client as a VCH makes the experience relatively seamless.

vSphere Integrated Containers is optimized for container uptime and
availability. Upgrading vSphere Integrated Containers momentarily
impacts endpoint availability, but not the containers. Modifying per-
tenant compute limits is completely transparent. Upgrading ESXi is also
transparently handled with vMotion.

Figure 11: A conceptual model of vSphere Integrated Containers.

An Introduction to Cloud-Native Technology | 81

If you consider a Venn diagram of “What vSphere Does” in one circle
and “What Docker Does” in another, the intersection is not insignificant.
vSphere Integrated Containers takes as much of vSphere as possible and
layers on whatever Docker capabilities are missing. The following sections
discuss the key concepts and components that make this possible.

The Virtual Container Host

A Virtual Container Host, or VCH, is the virtual functional equivalent of a
Linux VM running Docker. From a Docker client point of view, the Virtual
Container Host looks very similar to a native Docker host. Hence, there
are differences between a native Docker host and a Virtual Container
Host (VCH), and between a Linux container and a container VM. Some of
those differences are intentional design constraints, such as there being
no such thing as a “privileged” container in vSphere Integrated Contain-
ers. Some are because of a lack of functional completeness, some are
outside of the existing scope of the product, such as native support for
docker build.

To use the standard command line tools, simply set DOCKER_HOST to
point to your virtual Docker host. Commands like docker run, docker
volume and docker net will work similarly as they do with a standard
Docker host. However, in the contest of vSphere Integrated Containers,
the docker run command creates and provisions a container VM. Docker
network commands allow container workloads to be connected to
vSphere networks. Docker volume commands allow for the creation and
lifecycle management of disks on vSphere storage.

A VCH is deployed as a resource pool in a vCenter Server cluster. The
resource pool provides a useful visual parent-child relationship in the
vSphere Client so that you can easily identify the containerVMs that are
provisioned into a VCH. The first VM deployed inside the resource pool
provides a secure Docker compatible API endpoint and other services for
the VCH to run.

A VCH is functionally distinct from a traditional container host in the
following ways:

•	 It naturally encapsulates clustering and scheduling by provisioning
to vSphere targets

•	 The resource constraints are dynamically configurable with no
impact to the containers

•	 The containers don’t share a kernel. They could in theory run differ-
ent kernels

•	 There is no local image cache. This is kept on a vSphere datastore

82

The VCH includes all containerVMs instantiated via docker run command
and provides networking, storage, clustering, scheduling, vMotion, host
evacuation and HA capabilities.

A single ESXi host can have multiple VCHs, each of which with differ-
ent resources and different users. Similarly, a single VCH can expose the
entire capacity of a vSphere cluster of ESXi hosts. It all depends on your
own use case and requirements.

The lifecycle of the VCH is managed by a binary called vic-machine,
which installs, upgrades, deletes and enables debugging for the VCH.

The Virtual Container Host API End-point

There is a 1:1 relationship between a VCH and a VCH API end-point. It is
built off the same Photon OS Linux kernel as the containerVMs and is
stateless. It has the following functions:

•	 Run the Core services, Docker personality and image resolution
services

•	 Provide a secure remote Docker API

•	 Port mapping and routing - When a container port is mapped to a
host port, the Virtual Container Host is responsible for listening on
that port and routing traffic to the corresponding container VM

•	 Manage the lifecycle of containerVMs, image store, volume store
and container state

•	 Provide logging and monitoring of its own services and of its con-
tainers

The VCH VM is completely stateless. The state is either on datastores, in
VMX guestinfo or in vCenter itself. This makes upgrade a simple process
of power down, swap ISO, power up, rediscover.

Security of the VCH VM is an important consideration. It is isolated from
the containers, isolated from the vSphere management network and
there is no ability to get a remote shell into it without explicit configura-
tion.

The vic-machine Utility

The vic-machine utility is a binary built for Windows, Linux and Mac OSX
that manages the lifecycle of VCHs. The vic-machine has been designed
to be used by vSphere admins. It takes pre-existing compute, network,
storage and a vSphere user as input and creates a VCH as output. It has
the following additional functions:

An Introduction to Cloud-Native Technology | 83

•	 Creates certificates for Docker client TLS authentication

•	 Checks that prerequisites have been met on the cluster (firewall,
licenses, etc.)

•	 Assists in configuring ESXi host firewalls

•	 Configures a running VCH for debugging

•	 Lists, reconfigure, upgrades/downgrades and deletes VCHs.

The vSphere Integrated Containers machine requires a vSphere admin
user for the installation, but takes a separate “proxy” user for client opera-
tions. Operations from each VCH can then be audited under the name of
the proxy user.

The Docker Personality

vSphere Integrated Containers engine supports version 1.25 of the Docker
API, however not all commands and options are implemented. This is
because the main target use case for vSphere Integrated Containers
Engine is to run applications vs. build applications. The Docker client will
report “not implemented” for anything the engine doesn’t support.

The ContainerVM, OS, and Tether

As already stated, a container VM is a VM with all the characteristics of
a container. To be clear, the provisioned VM does not contain any OS
container abstraction. The VM boots from an ISO containing the Photon
Linux kernel and is configured with container images mounted as a disk.
Container image layers are represented as a read-only VMDK snapshot
hierarchy on VMFS. At the top of this hierarchy is a read-write snapshot
that stores ephemeral state. Container volumes are formatted VMDKs
attached as disks and indexed on VMFS. Networks are distributed port
groups attached as vNICs.

When the VM powers on, it boots from the ISO, chroots into the container
filesystem on the attached disk, sets up any internal state such as envi-
ronment variables and then starts the container process.

Interaction with a running container VM is managed by a “Tether” init
process that runs as PID 1 inside the container VM. It is responsible for
intermediating interaction (streaming stderr, tty etc) between the con-
tainer and the client. It also manages the lifecycle of container processes
and publishes the exit code when it terminates. The tether communicates
with the vSphere Integrated Containers appliance via a virtual serial port
concentrator.

84

Docker Container Host

vSphere Integrated Containers Engine also supports running native
Docker container hosts on vSphere. It allows developers to self-provision
Docker container hosts, and then use native Docker commands to build
and run applications inside those Docker hosts.

Virtual Container Hosts vs. Docker Container Hosts

The vSphere Integrated Containers Engine enables two methods for
deploying containers: Virtual Container Hosts and Docker Container Hosts
(DCH). The following table summarizes the differences between the two
deployment options:

FUNCTION VIRTUAL CONTAINER
HOST

DOCKER CONTAINER
HOST

Docker Client Tools Partial Compatibility
(optimized for Run
stage)

Full Compatibility (Opti-
mized for Build stage)

Provisioning Process VI Admin provisions
the VCH; Developers
provision containers as
VMs Speed of Container
Deployment Around 10
secs Around 2 secs

VI Admin provisions the
VCH; Developers provi-
sion Docker Container
Hosts and containers
inside the DCH

Runtime Performance Very Fast Fast

Governance Micro segmentation
between individual con-
tainers as VMs via NSX

Does not provide net-
work security between
containers

Resource consumption Memory is consumed
for the lifecycle of the
container workload

Memory is consumed
for the lifecycle of the
DCH

You can look at the Docker Container Host as a container VM that deliv-
ers a particular use case. Instead of instantiating, as a container VM, a
Docker image that represents an application, you are instantiating, as a
container VM, a Docker image that represents a Docker host.

Management Portal and Registry

Cloud admins and developers can manage and provision container-based
applications through the vSphere Integrated Containers management
portal. Integrated with VMware Identity Access Management, customers

An Introduction to Cloud-Native Technology | 85

are able to provide local and LDAP-based authentication and authori-
zation to their teams and project-level content trust and notary services
for container images in their private registries. Manual and automated
container image vulnerability scanning is also included to avoid running
images with known vulnerabilities in your data centers.

The management portal provides a UI for DevOps teams to provision
and manage containers, including the ability to obtain statistics and
information about container instances. Cloud administrators can manage
container hosts and apply governance to their usage, including capacity
quotas. Administrators can manage identity sources (local and external),
users and groups, roles, and other credentials.

The Management portal also provides the following

•	 Rule-based resource management, allowing DevOps administrators
to set deployment preferences for container placement

•	 Live state updates that provide a live view of the container system

•	 Multi-container template management, that enables logical
multi-container application deployments

•	 Basic scale in and scale out of number of containers in a multi-con-
tainer app template

•	 Enterprise-class private container registry

The container registry stores and distributes container images. Through
the Management Portal DevOps administrators can organize image
repositories in projects, and to set up role-based access control to those
projects to define which users can access which repositories. The registry
also provides rule-based replication of images between registries, imple-
ments Docker Content Trust, and provides detailed logging for project
and user auditing. It extends the Docker Distribution open source project
by adding the functionalities that an enterprise requires, such as security,
identity and management. In addition to user authentication and RBAC,
vSphere Integrated Containers Registry enables other security controls,
namely:

•	 Content trust: Image signing and verification to content and ver-
sion for ensuring security and auditability when running containers
in production

•	 Vulnerability scanning: Traditionally, operating systems have
been managed (specifically, patched on a regular basis) by ops
personnel with developers providing only the application-level exe-
cutables. However, containers often use base images like Ubuntu
and CentOS from DockerHub, which contain hundreds of features,
each of which is susceptible to vulnerabilities. Since container

86

images are essentially opaque to ops personnel, having vulner-
ability scanning helps IT Ops to prevent exploitation of known
vulnerabilities when deploying these applications to production

Interacting with vSphere

This section explains how vSphere Integrated Containers interacts with
vSphere.

Control Plane

The VCH VM acts as a proxy between the Docker client and the vSphere
SDK and all of the control plane operations of a VCH are initiated by the
vSphere user associated with it. As previously mentioned, the control
plane is extended into containerVMs via the Tether process. The majority
of control plane operations are VM creation, reconfiguration and deletion.

Given the multi-tenant nature of vSphere, it should be expected that there
are multiple VCHs running concurrently in a vSphere cluster and multiple
Docker clients connected to each VCH. Most control plane operations
that result in a container state transition are synchronous API calls. The
VCH API end-point handles blocking and queuing of concurrent Docker
clients. In terms of vSphere sessions, the VCH appliance keeps a single
session open and multiple connections are made over that session for
control plane operations. The vicadmin web UI opens an additional ses-
sion as the user needs to authenticate with it using vSphere credentials.

Compute

Compute is limited at the container level by number of CPUs and
memory. This can be set from the Docker client. Compute is limited at the
macro level by memory and CPU limits either on the VCH or a Resource
Pool it’s deployed into. One difference between vSphere Integrated Con-
tainers and regular Docker is that there’s no such thing as an “unlimited”
container. A VM necessarily has to have limits. As such, there is a default
container VM configuration associated with a VCH.

Networking

vSphere Integrated Containers engine uses pre-configured vSphere port
groups for its networking: either regular port groups, distributed port
groups or logical switches created by NSX. It is designed to allow differ-
ent types of traffic to be isolated on distinct networks. It is also designed

An Introduction to Cloud-Native Technology | 87

to allow vSphere networks to be directly exposed to the Docker client for
private container traffic. It is the use of distributed port groups that allows
for containerVMs to be provisioned across multiple hosts and vMotioned.

Networks must be created ahead of VCH creation and are specified
as input to vic-machine, vSphere networks are exposed as “container
networks” in Docker. vSphere Integrated Containers does not attempt to
create or configure networks in vSphere. It is possible to specify different
networks for the following:

•	 Expose Docker API traffic from Client to VCH

•	 Container traffic bridged to the VCH appliance

•	 Public network for image downloading and uploading

•	 vSphere management traffic

•	 Exposure of vSphere networks directly to containers

Figure 12: Networking in vSphere Integrated Containers.

All of these networks default to DHCP, but it is possible to specify IP
ranges and gateways if required. Likewise, the appliance itself can be giv-
en a static IP address or use DHCP.

Networks created via the Docker client currently use IPAM segregation
rather than full micro-segmentation.

88

Note that there is no special in-guest networking integration required for
vSphere Integrated Containers containers. The container process talks
through interfaces directly corresponding to vNICs.

Storage

As previously stated, vSphere Integrated Containers uses VMDKs on
VMFS for all container storage. It supports any VMFS datastore, including
vSAN, iSCSI, or local datastores. And it provides shared storage between
containers by using an NFS volume driver.

As input to vSphere Integrated Containers machine, a user can specify
different datastores for different types of container state. That’s con-
tainer ephemeral state, read-only image state and volume state. It is to
be expected that different characteristics will be desirable for different
kinds of state - for example, a customer is likely to want to back up their
volumes, but not their container state.

When images are pulled from a Docker registry, they are extracted onto
VMDK snapshots and indexed on a local datastore. Multiple contain-
erVMs can share the same base images because they are immutable and
mounted read-only.

Other vSphere Features

Here’s a listing of how vSphere Integrated Containers interacts with other
aspects of vSphere:

•	 vMotion is supported.

•	 Cross Cluster vMotion is unsupported.

•	 Distributed Resource Scheduller (DRS) is supported.

•	 High Availability (HA) is supported.

•	 Fault Tolerance (FT) is unsupported.

•	 VMware vSAN is supported.

•	 Virtual Volumes (VVOL) is unsupported.

•	 Snapshot is unsupported.

•	 Storage DRS: You cannot point to a storage DRS cluster but can
consume individual datastores within it.

An Introduction to Cloud-Native Technology | 89

Benefits of the Container VM Model

A container VM is strongly isolated by design and benefits from vSphere
enterprise features such as High Availability and vMotion. It is ideally
suited to long-running containers or services with the following require-
ments:

•	 Strong isolation - a container VM has its own kernel and has no
access to a shared filesystem or control plane

•	 High throughput - a container VM has its own guest buffer cache
and can connect directly to a virtual network

•	 High availability - a container VM can be configured so it can run
independent of the availability of the VCH and can benefit from
vSphere HA and vMotion

•	 Persistent data - a container VM can persist its data to a volume
disk that can be backed up completely independent of the VM

This means that it is not possible to deploy a container with access to the
control plane. It is also impossible to mount parts of the host’s filesystem
as shared read-write volumes into the container.

vSphere Integrated Containers containers are slower to start and use
more memory resource than Linux containers. ContainerVMs have to
be placed, configured and booted. However, in terms of runtime per-
formance, vSphere Integrated Containers containers show improved
throughput. Improved throughput is due to not having the additional
layer of OS virtualization in the guest.

Running containers in containerVMs makes a lot of sense for long-run-
ning services. If the service fails, it should have no impact on any other
services. Examples of a long-running service are a database, web server,
key-value store etc.

A container VM is less well suited to containers that are transactional and
have a very short lifespan, such as running a unit test. This is because the
cost to boot the VM is high relative to the time spent running the test. A
container VM however is very well suited to longer-running transactional
workloads, such as builds. This is because vSphere resource is only con-
sumed for the period of execution and is immediately freed up after. This
can lead to a much more efficient use of virtual infrastructure than slave
VMs that are up all the time waiting for jobs.

A container VM is also less well suited to containers that need to be
weakly isolated by design, for example a logging or monitoring container

90

that need access to the other processes in an application. This is also true
of very small containers that together make up a single service or unit
of scale. For this purpose, the VM is the ideal isolation domain for the
service as a whole and the containers can be deployed inside the VM as
software containers using a regular container engine.

vSphere Integrated Containers is a great way to manage regular container
hosts, because the container VM abstraction allows you to treat them just
as ephemerally as containers.

When deploying applications into production, it’s important to consider
where the isolation boundaries should lie for your particular container,
service or application. A VM is a natural isolation and failure domain and
works well as a unit of scale.

Benefits of DCH over a Docker engine deployed in a VM

Deploying infrastructure to support application development is often
cumbersome, error-prone, and time-consuming. As developers rush to
build new apps, IT teams waste time with manual configuration, provi-
sioning, and scripting. To improve productivity, they need, at the very
least, to streamline the way they roll out and manage infrastructure for
developers to use.

Modern developers need an environment where they can build and test
their apps using native container technology with minimal involvement
from IT. Today, they use their laptops or a VM with a Docker engine in it
as the main tools to build containerized applications. However, trying to
build an application that goes beyond a simple demo on a laptop or desk-
top can hit performance and memory constraints. And having developers
requesting a VM with the Docker engine in it from IT is time consuming
because all the burden of configuration management and network con-
figuration is left to the IT team.

The key solution is providing developers with a secure sandbox so they
can serve their own development needs by letting them create native
Docker container hosts on demand on vSphere using the Docker CLI they
love. By using the Docker container hosts (DCH) feature, developers can
deploy Docker container hosts within a vSphere resource pool without
having to file a ticket with IT. The create, run, stop, and delete operations
are all handled using the native Docker CLI/API.

For example, developers can use DCH to integrate VIC into their CI/CD
pipeline and use products like Jenkins to build applications on DCH and
then push them to production using VCH. This allows build and test jobs
to use vSphere infrastructure as completely ephemeral compute.

An Introduction to Cloud-Native Technology | 91

The DCH gives developers the Docker tools they need to build modern
applications or repackage existing ones and IT teams governance and
control over the infrastructure. vSphere administrators provision compute,
networking, and storage resources and provide them to developers as a
self-service portal that exposes the familiar Docker compatible API.

The DCH provisioned using vSphere Integrated Containers has also a
much-reduced attack surface because no extra services besides the
Docker daemon are installed and only access to the remote Docker API is
provided.

Moreover, the DCH can take advantage of many of the benefits of
vSphere, including Distributed Resource Scheduler, clustering, VMware
vSphere vMotion®, VMware vSphere High Availability (HA), distributed
port groups, and shared storage making it a very robust development
infrastructure.

Developers and IT teams need not worry about patching, security, isola-
tion, of the Docker hosts. Those functions are completely automated by
how DCHs are deployed as part of VIC.

The outcome is a win-win situation for both developers and administra-
tors: The vSphere administrator gets visibility into and control over the
virtual infrastructure, while developers can self-provision Docker con-
tainer hosts and work with them by using a Docker client.

Security and Isolation

Security and isolation are among the biggest differentiators of vSphere
Integrated Containers. Here is a high-level list of security features:

•	 Docker client authenticates with VCH using a certificate by default

•	 Network isolation is achieved through multiple port groups

•	 vSphere Integrated Containers appliance is locked down by default

•	 VM isolation, every container is fully isolated from the host and
from other containers

•	 Containers are completely isolated from each other and the ESXi
hosts

•	 vSphere Integrated Containers supports authentication with a
secure registry

•	 vSphere Integrated Containers supports strong identity and access
management (IAM) with LDAP and Active Directory services

92

•	 vSphere Integrated Containers enables administrators to control
access at the project level, ensuring granular security across teams

•	 vSphere credentials persisted in ExtraConfig so they are not visible
to the appliance guest

•	 Enterprise private container registry: With Harbor, vSphere Inte-
grated Containers offers an enterprise private container registry
with advanced security features such as identity management,
LDAP integration, role-based access control, and trusted content,
all of which help ensure security for container images. With the pri-
vate registry, you can furnish project-level content trust and notary
services to container images. Vulnerability scanning helps prevent
vulnerable container images from running in your data center.

Installation and Configuration

You install vSphere Integrated Containers by deploying an OVA appliance.
The OVA appliance provides access to all of the vSphere Integrated Con-
tainers components.

The installation process involves several steps.

1.	 Download the OVA from VMware web site.

2.	 Deploy the OVA, providing configuration information for vSphere
Integrated Containers. The OVA deploys an appliance VM that runs
vSphere Integrated Containers Management Portal and Registry;
Makes the vSphere Integrated Containers Engine binaries available
for download; and hosts the vSphere Client plug-in packages for
vCenter Server.

3.	 Run the scripts to install the vSphere Client plug-ins on vCenter
Server.

4.	 Run the command line utility, vic-machine, to deploy and manage
virtual container hosts

Summary

VMware vSphere Integrated Containers is a comprehensive container
solution built on the industry-leading virtualization platform, VMware
vSphere. It enables customers to run both modern and traditional work-
loads in production on their existing SDDC infrastructure today with
enterprise-grade networking, storage, security, performance and visibil-
ity. It offers the quickest and easiest way for vSphere customers to start
using containers today without additional capital or labor investment.

An Introduction to Cloud-Native Technology | 93

VMware Pivotal Container Service
VMware Pivotal Container Service (PKS) provides a production-grade
Kubernetes-based container solution equipped with advanced net-
working, a private container registry, and full lifecycle management. The
solution radically simplifies the deployment and operation of Kuberne-
tes clusters so you can run and manage containers at scale on VMware
vSphere or in public clouds.

With hardened production-grade capabilities, PKS can manage your
container deployment from the application layer all the way to the
infrastructure layer. Critical production capabilities include high availabil-
ity, auto-scaling, health-checks and self-healing of underlying VMs, and
rolling upgrades for Kubernetes clusters. Constant compatibility Google
Kubernetes Engine (GKE) ensures that developers get the latest stable
Kubernetes release, features, and tools.

PKS integrates with VMware NSX-T for advanced container networking,
including micro-segmentation, ingress controller, load balancing, and
security policy.

An integrated private registry secures container images with vulnerability
scanning, image signing, and auditing. In addition, with the VMware SDDC
portfolio, enterprises can also use persistent volumes and integrate with
operational tooling such as monitoring, logging, and analytics.

PKS exposes Kubernetes in its native form without adding any layers
of abstraction or proprietary extensions, which lets developers use
the native Kubernetes CLI that they are most familiar with. PKS can be
deployed and operationalized by using Pivotal Operations Manager, which
allows a common operating model to deploy PKS across multiple IaaS
abstractions like vSphere and Google Cloud Platform.

PKS is certified by the Cloud Native Computing Foundation (CNCF)
through its Kubernetes Software Conformance Certification program. This
certification lets you run applications with the confidence that the Kuber-
netes deployment has passed CNCF test suites and is compliant with the
community’s specification. As more organizations adopt Kubernetes, a
certified Kubernetes product like PKS ensures portability, interoperability
and consistency between different environments.

94

KEY BENEFITS OF VMWARE PIVOTAL CONTAINER SERVICE

•	 Eliminate lengthy deployment and management process with on-de-
mand provisioning, scaling, patching and updating of Kubernetes
clusters through a simple CLI or API.

•	 Access the latest stable Kubernetes release and gain constant compati-
bility with Google Kubernetes Engine (GKE).

•	 Provide high availability for Kubernetes components (master, worker,
etcd nodes) with rolling upgrades, health-checks, and auto-healing of
underlying virtual infrastructure

•	 Simplify container networking and increase security with Vmware NSX,
providing high availability, automated provisioning, micro-segmentation,
ingress controller, load balancing, and security policy.

•	 Deploy Kubernetes clusters for both stateless and stateful applications.

•	 Secure application deployments with an integrated enterprise container
registry with vulnerability scanning, image signing, and auditing.

•	 Improve operational efficiency with monitoring, logging, and analytics.

Architecture

PKS builds on Kubernetes, BOSH, VMware NSX-T, and Project Harbor to
form a highly available, production-grade container service. With built-in
intelligence and integration, PKS ties all these open source and commer-
cial modules together, delivering a simple-to-use solution with an efficient
Kubernetes deployment and management experience.

Figure 13: The architecture of VMware Pivotal Container Service.

An Introduction to Cloud-Native Technology | 95

PKS Control Plane

A key component of PKS, the control plane is the self-service interface
responsible for the on-demand deployment and lifecycle management of
Kubernetes clusters. It provides an API interface for self-service consump-
tion of Kubernetes clusters. The API submits requests to BOSH, which
automates the creation, update, and deletion of Kubernetes clusters.

Operations and Automation with BOSH

BOSH is an open source tool for release engineering that simplifies the
deployment and lifecycle management of large distributed systems. With
BOSH, developers can easily version, package, and deploy software in a
consistent and reproducible manner. BOSH supports deployments across
different IaaS providers, such as VMware vSphere, Google Compute Plat-
form, and Amazon Elastic Compute Cloud (EC2).

The command-line interface and API of BOSH support multiple use cases
through the lifecycle of Kubernetes. You can deploy multiple Kubernetes
cluster in minutes. Scaling Kubernetes clusters can also be done with
CLI or API calls. Patching and updating one or more Kubernetes clusters
are also made easier by PKS through the same mechanism, making sure
your clusters always keep pace with the latest security and maintenance
updates. If the clusters are no longer required, the user can quickly delete
them.

Container Networking with VMware NSX

VMware NSX-T supplies Kubernetes clusters with advanced container
networking and security features, such as micro-segmentation, load bal-
ancing, ingress control, and security policies. NSX furnishes the complete
set of Layer 2 through Layer 7 networking services that is needed for
pod-level networking in Kubernetes. You can quickly deploy networks
with micro-segmentation and on-demand network virtualization for con-
tainers and pods.

The integration of NSX with PKS delivers an immediate, far-reaching
impact on network operations for cloud-native applications:

•	 The native support for NSX-T load balancers provides highly
reliable, high-performance distribution of traffic to Kubernetes ser-
vices that are exposed externally.

96

•	 Policies for micro-segmentation that go beyond the standard secu-
rity policies of Kubernetes.

•	 Network polices that help secure traffic across Kubernetes name-
spaces and within pods in the same namespace.

•	 Operational tools and troubleshooting utilities that can debug
inter-pod communication.

•	 A unified policy layer for VMs and Kubernetes pods.

In PKS, NSX-T automates container networking in Kubernetes. An app
running in the Kubernetes cluster can use the virtual network to com-
municate with the outside world. Incoming traffic makes use of the load
balancer, which NSX automatically provisioned for the Kubernetes cluster.

When a cluster is created on PKS, NSX dynamically creates a secured net-
work for the Kubernetes cluster nodes. NSX-T load balancing services are
on a highly available, redundant NSX Edge cluster, so if one load balancer
goes down, traffic automatically falls over to another load balancer. The
load balancing services are integrated with the Kubernetes Ingress and
LoadBalancer constructs.

Network Policies and Micro-Segmentation

NSX adds network policies and micro-segmentation to meet the isolation
requirements of workloads. You can, for example, define micro-segmen-
tation policies based on traffic flow patterns among the namespaces in
which containerized applications are running. Network policies can also
segregate pods to securely handle a microservices-based architecture.
Each Kubernetes namespace can be isolated from other namespaces. If
you have three namespaces, for example, NSX automatically sets up an
isolated network for each one. With NSX managing container networking
interfaces on PKS, network policies specify how traffic can move both
between and within Kubernetes namespaces. In short, NSX lets you craft
rules to impose your security requirements on workloads.

NSX can enforce additional types of policies:

•	 Group policies based on IP address

•	 Egress policies

•	 Policies that route traffic to to different virtual machines based on
the names of VMs.

•	 Policies that specify what traffic can enter and leave the network
for a containerized application.

An Introduction to Cloud-Native Technology | 97

Another powerful result of NSX integration with PKS is an assortment of
operational tools and troubleshooting utilities:

•	 Traceflow

•	 Port mirroring

•	 Port connection tool

•	 Spoofguard

•	 Syslog

•	 Port counters

•	 IPFIX

Such tools are the mainstay of a modern, virtualized network. And now
they have been ported to container networking on Kubernetes. Such
tools fulfill the requirements of production-level networking for con-
tainerized applications so you can, for example, debug communication
between pods and the microservices components of your containerized
applications.

A Boon to Operations

In these ways, NSX supplies an industrial-strength, production-grade
solution for container networking. So what’s the result of all this for oper-
ations?

First off, because NSX automates provisioning for container interfaces,
it frees developers from having to request networking infrastructure
from IT, and it frees IT from having to fulfill those requests. The result:
No more provisioning bottlenecks. The inefficiencies attached to the
manual process of fulfilling infrastructure requests evaporate in a wave of
automation. Another result: A boost in developers’ productivity: They no
longer need to fuss about with submitting tickets to obtain the resources
they constantly need.

But there’s more. Because NSX provides secure networking for microser-
vices-based applications running on Kubernetes, developers can rapidly,
frequently, and confidently deploy software without having to write code
to guard against traditional infrastructure issues.

There are other results as well, all critical outcomes associated with
moving in the direction of cloud-native applications:

•	 Being able to modernize legacy applications more quickly and
efficiently.

98

•	 Being able to modify existing applications faster, with less effort,
and with more predictability.

•	 Being able to deploy and redeploy applications with enhanced
flexibility, agility, predictability, and repeatability.

Secure Image Registry from Project Harbor

Harbor is an open source, enterprise-class registry server from VMware
that stores and distributes Docker images in a private registry behind
your firewall. Harbor includes role-based access control, vulnerability
scanning for container images, policy-based image replication, and notary
and auditing services.

Integration with LDAP or Microsoft Active Directory ensures the proper
level of authority and access for container images.

The image notary service establishes content trust by letting publishers
sign images when they push them and preventing unsigned images from
being pulled.

With the private registry, users can scan container images for vulnera-
bilities to mitigate the risk of security breaches related to contaminated
container images.

Persistent Storage

PKS allows customers to deploy Kubernetes clusters for both stateless
and stateful applications. It supports the vSphere Cloud Provider stor-
age plugin which is part of Kubernetes through Project Hatchway. This
allows PKS to support Kubernetes storage primitives such as Volumes,
Persistent Volumes (PV), Persistent Volumes Claims (PVC), Storage Class
and Stateful Sets on vSphere storage, and also brings in enterprise-grade
storage features like Storage Policy Based Management(SPBM) with
vSAN to Kubernetes based applications.

VMware vSphere Cloud Provider: To run stateful, data-intensive contain-
erized applications that include databases, you need a persistent storage
solution. vSphere Cloud Provider, which is part of Kubernetes through
Project Hatchway, enables PKS to support Kubernetes the following
storage primitives on vSphere storage: Volumes, Persistent Volumes (PV),
Persistent Volumes Claims (PVC), Storage Class, and Stateful Sets. The
vSphere Cloud Provider also furnishes enterprise storage features like
storage policy-based management.

An Introduction to Cloud-Native Technology | 99

Managing Operations by Integrating with
Other VMware Solutions

PKS can be integrated with other VMware products to offer a full-stack
Kubernetes service. Here are some of the VMware products with which
PKS can integrate:

VMware vRealize® Operations™: With vRealize Operations, IT organiza-
tions can improve performance, avoid business disruption, and become
more efficient with comprehensive visibility across applications and infra-
structure.

VMware vRealize Log Insight™: Log Insight delivers highly scalable log
management with actionable dashboards, analytics, and broad third-
party extensibility, giving you deep operational visibility and faster
troubleshooting.

Wavefront® by VMware: Wavefront efficiently monitors containers at
scale. Its dashboards give DevOps real-time visibility into the operations
and performance of containerized workloads and Kubernetes clusters.

High Availability

PKS provides critical production-grade capabilities to ensure maximum
uptime for workloads running in your Kubernetes clusters. It continuously
monitors the health of all underlying VM instances, and recreates VMs
when there are failed or unresponsive nodes. It also manages the rolling
upgrade process for a fleet of Kubernetes clusters, allowing clusters to be
upgraded with no downtime for application workloads.

Constant Compatibility with Google
Kubernetes Engine (GKE)

PKS is developed using mainline Kubernetes and delivers the latest stable
Kubernetes release to your developers. It ensures constant compatibil-
ity with Kubernetes versions that are supported by GKE, so enterprise
developers can use the latest features and patches across vSphere and
GKE. In addition, without adding any proprietary abstraction layer on
top of Kubernetes, PKS exposes Kubernetes in its native form, letting
developers or your development tools interact with Kubernetes using the
native Kubernetes interface, and also making workloads readily portable
between vSphere and GKE.

100

Multi-Tenancy

To isolate workloads and ensure privacy, PKS supports multi-tenancy for
multiple lines of business within an enterprise. Different users or different
lines of business are able to use their own Kubernetes clusters. Addition-
ally, with NSX-T micro-segmentation, Kubernetes namespaces can be
secured for multiple teams using a shared cluster.

Multi-Cloud

PKS supports multi-cloud deployment through BOSH. With PKS, you
can deploy containerized application with Kubernetes on-premises on
vSphere, or on public clouds such as Google Cloud Platform.

Summary of PKS Features and Benefits

On-Demand
Provisioning

Accelerates the deployment of
Kubernetes clusters.

Eliminates manual steps for deploying Kubernetes
clusters.

Minimizes mistakes and shortens time-to-value

On-Demand
Scaling

Scales the cluster capacity easily.

Eliminates manual steps and mistakes.

Optimizes resource utilization

On-Demand
Patching

Centralizes and speeds up patching and updating of
multiple Kubernetes clusters.

Keeps Kubernetes cluster up-to-date and secure.

Rolling Upgrades Minimizes workload downtime by rolling upgrading a
fleet of Kubernetes clusters.

Automatic Health
Check and
Self-Healing

Prevents issues with proactive monitoring of the health
of all nodes.

Ensures desired responsiveness of the application ser-
vices by recreating failed or unresponsive nodes.

Advanced
Container
Networking and
Security

Increases developer and ops productivity by simplify-
ing networking management and enhancing security.

Optimizes native container networking including
automatic provisioning, micro-segmentation, ingress
controller, load balancing and security policies.

An Introduction to Cloud-Native Technology | 101

Secure Container
Registry:

Minimizes application breaches with enhanced con-
tainer security.

Simplifies container image management and enhances
security through image replication, RBAC, AD/LDAP
integration, notary services, vulnerability scanning, and
auditing.

Constant
Compatibility
with GKS

Enhances developer productivity by letting developers
access the most up-to-date Kubernetes features and
tools.

Native Kubernetes
Support

Exposes Kubernetes in its native form with no propri-
etary extensions.

Increases developer productivity by offering them the
native Kubernetes CLI and full YMAL support.

CNCF-certified
Kubernetes
Distribution

Compliant with the community’s specification.

Ensures portability, interoperability and consistency
between different environments cross-cloud.

Multi-tenancy Provides individual users with their own Kubernetes
cluster on isolated network.

Secures workloads between tenants and provides
privacy.

Persistent Storage Deploys Kubernetes clusters for both stateless and
stateful applications.

Supports vSphere Cloud Provider storage plugin
through Project Hatchway.

Multi-cloud Optimizes workload deployment in multi-cloud envi-
ronments by providing a consistent interface to deploy
and manage Kubernetes on both vSphere and Google
Cloud Platform.

Integration with
vRealize
Operations

Increases operations efficiency by letting IT admin-
istrators effectively monitor and troubleshoot the
performance of the Kubernetes clusters and its under-
lying infrastructure.

Integration with
Wavefront by
VMware

Offers near real-time visibility into the operations and
performance of containerized applications running in
the Kubernetes clusters.

Allows developers and DevOps to do Application Per-
formance Monitoring and Management (APM).

Integration with
vRealize Log
Insight

Delivers highly scalable log management with action-
able dashboards, analytics, and broad third-party
extensibility.

Enables deep operational visibility and faster trouble-
shooting.

102

Use Cases
This chapter looks at several common use cases for vSphere Integrated
Containers and VMware Pivotal Container Service.

Self-Service Infrastructure for Agile
Development
Deploying infrastructure to support application development is often
cumbersome, error-prone, and time-consuming. As developers rush to
build new apps, IT teams waste time with manual configuration, provi-
sioning, and scripting. To improve productivity, they need, at the very
least, to streamline the way they roll out and manage infrastructure.

A key solution is providing developers with a sandbox so they can serve
their own infrastructure needs by creating Docker container hosts on
demand. Modern developers need an environment where they can
build and run their apps using native container technology with minimal
involvement from IT. Implementing a developer sandbox by using VMware
vSphere® Integrated Containers™ provides developers with an agile
self-service container environment for app development.

Developers are increasingly turning to Docker containers because
containers help them adapt to changes brought about by digital trans-
formation. The architecture of a containerized application complements
agile practices and DevOps methodologies, such as continuous integra-
tion and continuous delivery.

Supporting Microservices

Developers often turn to container technology to support micro-services.
A micro-services architecture breaks up the functions of an application
into a set of small, discrete, decentralized, goal-oriented processes, each
of which can be independently developed, tested, deployed, replaced,
and scaled.

However, trying to build an application with micro-services on a laptop
or desktop can hit performance and memory constraints. Even when an
application does not use micro-services, a laptop might not have enough
resources. Whenever developers don’t have enough resources on their
laptops to run a copy of their production environment, a sandbox enables
developers to work on their app.

An Introduction to Cloud-Native Technology | 103

Providing a Developer Sandbox with vSphere
Integrated Containers

vSphere Integrated Containers creates an enterprise container infrastruc-
ture within vSphere, enabling both traditional and containerized apps
to run side by side on a common infrastructure. Developers can initiate
Docker container hosts within a resource pool so they can spin containers
up and down on demand without having to file a ticket with IT.

Self-Service Provisioning

Developers can self-provision Docker container hosts. Although this tick-
etless environment gives developers the Docker tools they need to build
modern applications or repackage existing ones in containers, IT retains
governance and control over the infrastructure because vSphere Inte-
grated Containers leaves the management of the hosts to the vSphere
administrator.

vSphere administrators provision compute, networking, and storage
resources and provide them to tenants as a self-service portal exposing
a familiar Docker-compatible API. The virtual machines provisioned using
vSphere Integrated Containers take advantage of many of the benefits
of vSphere, including Distributed Resource Scheduler, clustering, VMware
vSphere vMotion®, VMware vSphere High Availability (HA), distributed
port groups, and shared storage.

Developers and DevOps need not worry about patching, security, isola-
tion, tenancy, availability, clustering, or capacity planning. Those functions
continue to be business as usual for the vSphere administrator. Instead,
developers and DevOps receive a container endpoint as a service. The
outcome is a win-win situation for both developers and administrators:
The vSphere administrator gets visibility into and control over the virtual
machines, while developers and DevOps can self-provision Docker con-
tainer hosts and work with them by using a Docker client.

Because of the portability of the Docker image format, a developer using
vSphere Integrated Containers can establish an endpoint at the end of a
continuous integration pipeline, consuming images pushed to the private,
secure registry that comes with vSphere Integrated Containers. There is
no need to build out a separate, dedicated container infrastructure stack.
The finished application can be put into production on a virtual container
host powered by vSphere Integrated Containers.

104

Sharing Images with the Private Registry

A developer can also push a container image for an application being
developed to the vSphere Integrated Containers registry, tag it, and let
other developers use a Docker client to run the container on a Docker
container host. At the same time, a vCenter administrator can see each
Docker container host in the vSphere inventory. The developer or the
administrator can use the monitoring page in the vSphere Integrated
Containers management portal to view statistics and logs about contain-
ers. The management portal is integrated with identity management to
securely provision containers.

Docker Container Hosts on Demand

Developers can exploit the capacity of a VMware® software-defined data
center to develop and test a containerized application. A laptop might
be too sluggish to run a containerized application, especially if it is built
with microservices. With vSphere Integrated Containers, developers can
quickly provision Docker container hosts and then point their Docker
client to the host to work with containers. A developer sandbox powered
by vSphere Integrated Containers lets developers and DevOps serve their
own requirements by creating Docker container hosts on demand. The
outcome accelerates the process of developing software and shortens an
application’s time to market.

Repackaging an Application with VIC

Digital transformation is fundamentally disrupting how software is devel-
oped and deployed. Companies are under pressure to rapidly create
innovative software that engages their customers and provides new
services. Improving time to market is paramount. As a result, companies
are turning to container technology to modernize their data centers and
streamline software development.

Containers package an application and its dependencies into a distribut-
able image that can run almost anywhere. The packaging and portability
of containers support modern architectural patterns and make developers
more efficient.

By provisioning and hosting containers, VMware vSphere Integrated Con-
tainers prepares your data center for the digital era. The solution moves
you one step closer to a modernized software-defined data center that

An Introduction to Cloud-Native Technology | 105

deploys infrastructure, services, data, and applications on demand. For a
traditional application, however, a common first step toward moderniza-
tion is repackaging part or all of it in a container.

Challenges Impeding Application
Repackaging

Most infrastructure platforms are not designed to run traditional and
modern applications side by side while working with existing hardware
and software, making it difficult to repackage a traditional application
with containers.

Beyond the infrastructure, modern applications pose their own chal-
lenges. Modern apps change frequently, are developed in short release
cycles, and might be built with microservices. In addition, IT teams need
to connect applications across clouds and devices with security, compli-
ance, and availability.

But you can establish a consistent operational model for infrastructure
and application delivery that works with both traditional and contain-
erized applications. The model creates a powerful bridge to move from
traditional software development practices to new, more flexible forms
geared toward innovation, speed of execution, and easier maintenance.

Repackaging Applications for Efficiency

THE BENEFITS OF REPACKAGING APPS IN A CONTAINER
Advantages of repackaging a traditional app in a container and running it with
vSphere Integrated Containers:

•	 Ease application maintenance

•	 Minimize disruption to operations and reduce costs by using existing
VMware infrastructure

•	 Simplify workflows to accelerate development

•	 Fix an application’s vulnerabilities

•	 Impose a consistent environment across development, testing and pro-
duction

•	 Enhance portability

•	 Streamline app deployment by using Docker

•	 Improve the app’s time to market

106

It can be costly and time-consuming to re-architect an in-house applica-
tion that is too coupled to its data or other application components. For
an application with a well-defined architecture that tightly couples data
with application logic, it makes sense to repackage the application in a
container without having to modify the application’s design. In addition,
the learning curve for repackaging an application or part of it, such as the
web front end, is small.

vSphere Integrated Containers provides an alternate way to instantiate a
Docker image by letting you use the Docker command-line interface and
then deploy the container image as a VM instead of as a container on
top of a Docker host. As a result, you reap the benefits of packaging the
application as a container without re-architecting it. This approach keeps
the isolation benefits of VMs.

vSphere Integrated Containers is ideally suited to application repackag-
ing. No new infrastructure or dedicated hardware is required to repackage
the application, nor do you need to implement new tooling. The repack-
aged containerized application can run alongside other virtual machines
running other applications, whether traditional or containerized. To sup-
port the repackaged container, vSphere Integrated Containers provides
high availability at the infrastructure level without developer intervention.
You can also use such core vSphere features as vSphere High Availability
and vSphere vMotion.

Containers simplify application maintenance. After you repackage an app
in a container, maintenance activities such as upgrading, updating, and
patching become easier. The Docker file, in particular, eases patches and
upgrades.

Unifying Containerized Applications with
vSphere

Docker furnishes a platform with which developers can rapidly build
applications on their laptops and then port them to vSphere Integrated
Containers. A developer working on a traditional Java application running
on Apache Tomcat, for example, can containerize the application and
then, because of its inherent portability, shift it to a virtual container host
provisioned by a vSphere administrator.

The developer can then push the container image to the vSphere Inte-
grated Containers registry, tag it, and run it in the virtual container host.
At the same time, an administrator of VMware vCenter® can see the con-

An Introduction to Cloud-Native Technology | 107

tainer VM in the vSphere inventory. The developer or the administrator
can use the monitoring page in the vSphere Integrated Containers portal
to view statistics and logs. This unification is made possible in part by the
vSphere Integrated Containers management portal, which is integrated
with identity management to securely provision containers. The result
enables application development teams to repackage, test, and deploy
applications quickly and efficiently.

Replatforming Applications with PKS
Repackaging an application to run in containers and then moving the
app to a modern platform—that is, replatforming the app—is a critical
step toward reaping the benefits of container technology. Replatforming
accelerates software development, eases infrastructure management, and
automates deployment. After deployment, a replatformed application
can be orchestrated and scaled on demand with Kubernetes. The power
of Kubernetes to orchestrate containerized workloads is key to unlocking
the benefits of replatforming an application.

Benefits of Replatforming

Replatforming an application propels you toward several objectives
associated with accelerating application development and deployment
without having to deal with the complexity of re-architecting or refactor-
ing an application:

•	 Workload consolidation, especially if you are increasingly moving in
the direction of developing cloud-native applications.

•	 Simplified and improved integration with a continuous integration
and continuous deployment pipeline (CI/CD).

•	 Operational efficiency for managing the application with auto-
mation, security,monitoring, logging, analytics, and lifecycle
management.

Because replatforming takes place after repackaging an application in
containers,you also reap the benefits of repackaging:

•	 Portability across development, test, production, and cloud envi-
ronments.

•	 Predictability and reproducibility to eliminate the it-worked-for-me
refrain.

•	 Simplicity of upgrading, patching, and maintenance.

•	 Velocity for agile development iterations, testing, and deployment.

108

•	 Flexibility for developers to code where and when they want with
the tools they like.

•	 Traceability of immutable container images for improved transpar-
ency,compliance, and reuse.

Replatforming an app also puts you in a position to take advantage of
changes in ISV-delivered applications—which are increasingly being
prepackaged with their dependencies in containers for a consistent, prob-
lem-free installation process.

Targeting Workloads for Replatforming
on PKS

With its flexible, powerful capabilities, VMware PKS is well suited to
replatforming the following types of workloads:

•	 Applications requiring data persistence, such as MongoDB,
CouchDB,and Elasticsearch.

•	 Applications managed as a distributed cluster, especially when
nodes in the cluster must communicate with one another.

•	 Applications that need infrastructure primitives, such as persistent
storage.

•	 Applications that require multiple ports.PKS delivers services that
empower developers to manage their container images with the
built-in registry, to build container and pod templates for Kuberne-
tes, to configure the port bindings that they want, and to manage
dependencies. As such,PKS is ideal for replatforming modern data
services such as Elasticsearch, Spark, and other applications requir-
ing a custom stack or access to infrastructure primitives.

Decomposing the Monolith in Stages

After replatforming an application on VMware PKS, you can separate it
into three components in stages. During the first stage, the database can
be decoupled from the monolith so that it can be independently scaled.
During the second stage, the application’s front end, including its user
interface and command-line interface,can be detached so it can be man-
aged and updated separately. The third stage focuses on security to make
sure that inter-component communication is secure.

An Introduction to Cloud-Native Technology | 109

Section Summary

VMware Pivotal Container Services delivers a highly available, produc-
tion-grade Kubernetes-based container service equipped with container
networking, security,and lifecycle management. Deployable both on-prem
in vSphere and in public clouds like Google Cloud Platform, VMware PKS
is well suited to replatforming applications that will benefit from contain-
erization and orchestration.

Deploying New Cloud-Native Apps
with PKS
If you are seeking to build new cloud-native applications, PKS furnishes
a flexible, scalable Kubernetes-based container service that simplifies
deployment and operations. With PKS, developers can provide container
images and templates for pods. At the same time, the platform provides
the flexibility for customization—developers can, for example, set up
explicit port bindings for containers, co-locate them, and configure routes
and dependencies. For flexibility in managing and automating containers,
PKS exposes the Kubernetes API.

DevOps or a platform operations team is likely to play a key role in man-
aging PKS and in providing a system and tools for continuous delivery,
such as Jenkins, a pipeline automation tool.

Here are the some of the ideal use cases and workloads for PKS:

•	 Running modern data services such as Elasticsearch, Cassandra,
and Spark.

•	 Running ISV applications packaged in containers.

•	 Running microservices-based apps that require a custom stack.

110

Exploiting the Power of
Containers
This chapter presents detailed scenarios and examples of how to deploy
and adopt various container technology to exploit the power of containers.

Running a Containerized App with
Photon OS on Amazon Elastic Cloud
Compute
This section introduces you to working with a containers in the cloud by
demonstrating how to use a Linux container host to launch a contain-
erized application. The section describes how to get Photon OS up and
running on Amazon Web Services Elastic Cloud Compute (EC2), custom-
ize Photon with cloud-init, connect to it with SSH, and run a containerized
application.

Photon OS is an open source Linux container host optimized for
cloud-native applications, cloud platforms, and VMware infrastructure.
Photon OS provides a secure run-time environment for efficiently running
containers. For an overview of Photon OS, see https://vmware.github.io/
photon/.

Prerequisites

Using Photon OS within AWS EC2 requires the following resources:

•	 AWS account. Working with EC2 requires an Amazon account for
AWS with valid payment information. Keep in mind that, if you try
the examples in this document, you will be charged by Amazon.
See Setting Up with Amazon EC2.

•	 Amazon tools. The following examples also assume that you have
installed and configured the Amazon AWS CLI and the EC2 CLI and
AMI tools, including ec2-ami-tools.

See Installing the AWS Command Line Interface, Setting Up the Amazon
EC2 Command Line Interface Tools on Linux, and Configuring AWS Com-
mand-Line Interface. Also see Setting Up the AMI Tools. This article uses
an Ubuntu 14.04 workstation to generate the keys and certificates that
AWS requires.

An Introduction to Cloud-Native Technology | 111

Downloading the Photon OS Image for
Amazon

VMware packages Photon OS as a cloud-ready Amazon machine image
(AMI) that you can download for free from Bintray.

Download the Photon OS AMI now and save it on your workstation. For
instructions, see Downloading Photon OS.

Note: The AMI version of Photon is a virtual appliance with the informa-
tion and packages that Amazon needs to launch an instance of Photon
in the cloud. To build the AMI version, VMware starts with the minimal
version of Photon OS and adds the sudo and tar packages to it.

Getting Photon OS Up and Running on EC2

To run Photon OS on EC2, you must use cloud-init with an EC2 data
source. The cloud-init service configures the cloud instance of a Linux
image. An instance is a virtual server in the Amazon cloud.

The examples in this article show how to generate SSH and RSA keys for
your Photon instance, upload the Photon OS .ami image to the Amazon
cloud, and configure it with cloud-init. In many of the examples, you must
replace information with your own paths, account details, or other infor-
mation from Amazon.

Step 1: Create a Key Pair

The first step is to generate SSH keys on, for instance, an Ubuntu
workstation:
ssh-keygen -f ~/.ssh/mykeypair

The command generates a public key in the file with a .pub extension
and a private key in a file with no extension. Keep the private key file and
remember the name of your key pair; the name is the file name of the two
files without an extension. You’ll need the name later to connect to the
Photon instance.

Change the mode bits of the public key pair file to protect its security. In
the command, include the path to the file if you need to.
chown 600 mykeypair.pub

112

Change the mode bits on your private key pair file so that only you can
view it:
chmod 400 mykeypair

To import your public key pair file (but not your private key pair file),
connect to the EC2 console at https://console.aws.amazon.com/ec2/ and
select the region for the key pair. A key pair works in only one region, and
the instance of Photon that will be uploaded later must be in the same
region as the key pair. Select key pairs under Network & Security, and
then import the public key pair file that you generated earlier.

For more information, see Importing Your Own Key Pair to Amazon EC2.

Step 2: Generate a Certificate

When you bundle up an image for EC2, Amazon requires an RSA user
signing certificate. You create the certificate by using openssl to first
generate a private RSA key and then to generate the RSA certificate that
references the private RSA key. Amazon uses the pairing of the private
key and the user signing certificate for handshake verification.

First, on Ubuntu 14.04 or another workstation that includes openssl, run
the following command to generate a private key. If you change the name
of the key, keep in mind that you will need to include the name of the key
in the next command, which generates the certificate.
openssl genrsa 2048 > myprivatersakey.pem

Remember where you store your private key locally; you’ll need it again
later.

Second, run the following command to generate the certificate. The
command prompts you to provide more information, but because you are
generating a user signing certificate, not a server certificate, you can just
type Enter for each prompt to leave all the fields blank.
openssl req -new -x509 -nodes -sha256 -days 365 -key mypri-
vatersakey.pem -outform PEM -out certificate.pem

For more information, see the Create a Private Key and the Create the
User Signing Certificate sections of Setting Up the AMI Tools.

Third, upload to AWS the certificate value from the certificate.pem file
that you created in the previous command. Go to the Identity and Access
Management console at https://console.aws.amazon.com/iam/, navigate
to the name of your user, open the Security Credentials section, click
Manage Signing Certificates, and then click Upload Signing Certificate.

An Introduction to Cloud-Native Technology | 113

Open certificate.pem in a text editor, copy and paste the contents of the
file into the Certificate Body field, and then click Upload Signing
Certificate.

For more information, see the Upload the User Signing Certificate section
of Setting Up the AMI Tools.

Step 3: Create a Security Group

The next prerequisite is to create a security group and set it to allow SSH,
HTTP, and HTTPS connections over ports 22, 80, and 443, respectively.
Connect to the EC2 command-line interface and run the following com-
mands:
aws ec2 create-security-group --group-name photon-sg
--description “My Photon security group”
{
 “GroupId”: “sg-d027efb4”
}
aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 22 --cidr 0.0.0.0/0

The GroupId is returned by EC2. Write it down; you’ll need it later.

By using 0.0.0.0/0 for SSH ingress on Port 22, you are opening the port
to all IP addresses–which is not a security best practice but a conve-
nience for the examples in this article. For a production instance or other
instances that are anything more than temporary machines, you should
authorize only a specific IP address or range of addresses. See Amazon’s
document on Authorizing Inbound Traffic for Linux Instances.

Repeat the command to allow incoming traffic on Port 80 and on Port
443:
aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 80 --cidr 0.0.0.0/0

aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 443 --cidr 0.0.0.0/0

Check your work:
aws ec2 describe-security-groups --group-names photon-sg

114

Step 4: Extract the Tarball

Next, make a directory to store the image, and then extract the Photon
OS image from its archive by running the following tar command. (You
might have to change the file name to match the version you have.)
mkdir bundled
tar -zxvf ./photon-ami.tar.gz

Step 5: Bundle the Image

The next step is to run the ec2-bundle-image command to create an
instance store-backed Linux AMI from the Photon OS image that you
extracted in the previous step. The result of the ec2-bundle-image com-
mand is a manifest that describes the machine in an XML file.

The command uses the certificate path to your PEM-encoded RSA public
key certificate file; the path to your PEM-encoded RSA private key file;
your EC2 user account ID; the correct architecture for Photon OS; the
path to the Photon OS AMI image extracted from its tar file; and the bun-
dled directory from the previous step.

You must replace the values of the certificate path, the private key, and
the user account with your own values.
$ ec2-bundle-image --cert certificate.pem --privatekey
myprivatersakey.pem --user <EC2 account id> --arch x86_64
--image photon-ami.raw --destination ./bundled/

Step 6: Put the Bundle in a Bucket

Next, make an S3 bucket, replacing <bucket-name> with the name that
you want. The command creates the bucket in the region specified in
your Amazon configuration file, which should be the same region in which
you are using your key pair file:
$ aws s3 mb s3://<bucket-name>

Now upload the bundle to the Amazon S3 cloud. The following command
includes the path to the XML file containing the manifest for the Photon
OS machine created during the previous step, though you might have to
change the file name to match the version you have. The manifest file is
typically located in the same directory as the bundle.

The command also includes the name of the Amazon S3 bucket in which
the bundle is to be stored; your AWS access key ID; and your AWS secret
access key.
$ ec2-upload-bundle --manifest ./bundled/photon-ami.mani-
fest.xml --bucket <bucket-name> --access-key <Account Access
Key> --secret-key <Account Secret key>

An Introduction to Cloud-Native Technology | 115

Step 7: Register the Image

The final step in creating an AMI before you can launch it is to register it.
The following command includes a name for the AMI, its architecture, and
its virtualization type. The virtualization type for Photon OS is hvm.
$ ec2-register <bucket-name>/photon-ami.manifest.xml --name
photon-ami --architecture x86_64 --virtualization-type hvm

Once registered, you can launch as many new instances as you want.

Step 8: Run an Instance of the Image with Cloud-Init

Now things get a little tricky. In the following command, the user-data-file
option instructs cloud-init to import the cloud-config data in user-data.
txt.

The command also includes the ID of the AMI, which you can obtain by
running ec2-describe-images; the instance type of m3.medium, which is a
general purpose instance type; and the name of key pair, which should be
replaced with your own–otherwise, you won’t be able to connect to the
instance.

Before you run the command, change directories to the directory con-
taining the mykeypair file and add the path to the user-data.txt.
$ ec2-run-instances <ami-ID> --instance-type m3.medium -g
photon-sg --key mykeypair --user-data-file user-data.txt

Here are the contents of the user-data.txt file that cloud-init applies to the
machine the first time it boots up in the cloud.
#cloud-config
hostname: photon-on-01
groups:
- cloud-admins
- cloud-users
users:
- default
- name: photonadmin
 gecos: photon test admin user
 primary-group: cloud-admins
 groups: cloud-users
 lock-passwd: false
 passwd: vmware
- name: photonuser
 gecos: photon test user
 primary-group: cloud-users
 groups: users

116

 passwd: vmware
packages:
- vim

Step 9: Get the IP Address of Your Image

Now run the following command to check on the state of the instance
that you launched:
$ ec2-describe-instances

Finally, you can obtain the external IP address of the instance by running
the following query:
$ aws ec2 describe-instances --instance-ids <instance-id>
--query ‘Reservations[*].Instances[*].PublicIpAddress’
--output=text

If need be, check the cloud-init output log file on EC2 at /var/log/cloud-
init-output.log to see how EC2 handled the settings in the cloud-init data
file.

For more information on using cloud-init user data on EC2, see Running
Commands on Your Linux Instance at Launch.

Deploy a Containerized Application
in Photon OS

This section shows you how to connect to the Photon instance by using
SSH and to launch a web server by running it in Docker.

Step 1: Connect with SSH

Connect to the instance over SSH by specifying the private key (.pem) file
and the user name for the Photon machine, which is root:
ssh -i ~/.ssh/mykeypair root@<public-ip-address-of-instance>

For complete instructions, see Connecting to Your Linux Instance Using
SSH.

Step 2: Run Docker

On the minimal version of Photon OS, the docker engine is enabled and
running by default, which you can see by running the following command:
systemctl status docker

An Introduction to Cloud-Native Technology | 117

Step 3: Start the Web Server

Note: Please make sure that the proper security policies have been
enabled on the Amazon AWS side to enable traffic to port 80 on the VM.

Since Docker is running, you can run an application in a container–for
example, the Nginx Web Server. This example uses the popular open
source web server Nginx. The Nginx application has a customized
VMware package that the Docker engine can download directly from the
Docker Hub.

To pull Nginx from its Docker Hub and start it, run the following
command:
docker run -p 80:80 vmwarecna/nginx

The Nginx web server should be bound to the public DNS value for the
instance of Photon OS–that is, the same address with which you con-
nected over SSH.

Step 4: Test the Web Server

On your local workstation, open a web browser and go to the the public
address of the Photon OS instance running Docker. The following screen
should appear, showing that the web server is active:

Figure 14: Nginx

When you’re done, halt the Docker container by typing Ctrl+c in the SSH
console where you are connected to EC2.

You can now run other containerized applications from the Docker Hub or
your own containerized application on Photon OS in the Amazon cloud.

118

Launching the Web Server with Cloud-Init

To eliminate the manual effort of running Docker, you can add docker run
and its arguments to the cloud-init user data file by using runcmd:
#cloud-config
hostname: photon-on-01
groups:
- cloud-admins
- cloud-users
users:
- default
- name: photonadmin
 gecos: photon test admin user
 primary-group: cloud-admins
 groups: cloud-users
 lock-passwd: false
 passwd: vmware
- name: photonuser
 gecos: photon test user
 primary-group: cloud-users
 groups: users
 passwd: vmware
packages:
- vim
runcmd:
- docker run -p 80:80 vmwarecna/nginx

To try this addition, you’ll have to run another instance with this new
cloud-init data source and then get the instance’s public IP address to
check that the Nginx web server is running.

Terminating the AMI Instance

Because Amazon charges you while the instance is running, make sure to
shut it down when you’re done.

First, get the ID of the AMI so you can terminate it:
$ ec2-describe-instances

Finally, terminate the Photon OS instance by running the following com-
mand, replacing the placeholder with the ID that the ec2-describe-images
command returned. If you ran a second instance of Photon OS with the
cloud-init file that runs docker, terminate that instance, too.
$ ec2-terminate-instances <instance-id>

An Introduction to Cloud-Native Technology | 119

Integrating Lightwave with Photon OS

Lightwave provides security services to Photon OS. You can use Light-
wave to join a Photon OS virtual machine to the Lightwave directory
service and then authenticate users with Kerberos.

Because the Photon OS repository includes the Lightwave packages,
installing the packages for either Lightwave client or the server is simple.
Here’s an example of installing the Lightwave server packages on a virtual
machine running Photon OS:
tdnf install vmware-lightwave-server
Installing:
apache-ant noarch 1.10.1-1.ph2dev 3.66 M
vmware-dns-client x86_64 1.2.0-1.ph2dev 614.42 k
apache-tomcat noarch 8.5.13-2.ph2dev 8.59 M
commons-daemon x86_64 1.0.15-9.ph2dev 79.41 k
jansson x86_64 2.10-1.ph2dev 74.52 k
vmware-sts-client x86_64 1.2.0-1.ph2dev 41.09 M
vmware-sts x86_64 1.2.0-1.ph2dev 67.91 M
vmware-afd x86_64 1.2.0-1.ph2dev 763.81 k
vmware-dns x86_64 1.2.0-1.ph2dev 344.19 k
vmware-directory x86_64 1.2.0-1.ph2dev 4.03 M
vmware-ca-client x86_64 1.2.0-1.ph2dev 501.53 k
vmware-ic-config x86_64 1.2.0-1.ph2dev 114.89 k
likewise-open x86_64 6.2.11-1.ph2dev 11.26 M
vmware-afd-client x86_64 1.2.0-1.ph2dev 931.89 k
vmware-directory-client x86_64 1.2.0-1.ph2dev 714.02 k
vmware-ca x86_64 1.2.0-1.ph2dev 206.27 k
vmware-lightwave-server x86_64 1.2.0-1.ph2dev 0.00 b
Total installed size: 140.78 M

(In the names of the packages, “afd” stands for authentication framework
daemon; “ic” stands for infrastructure controller, which is Lightwave’s
internal name for its domain controller. Several of the packages, such as
Jansson and Tomcat, are used by Lightwave for Java services or other
tooling.)

The convenience and expedience of being able to instantly install the
Lightwave packages from a secure, signed VMware repository become
even more significant when the cloud-ready image of Photon OS runs on
Amazon Elastic Cloud Compute or Google Compute Engine. The Amazon
machine image of Photon OS and the Google Compute Engine version of
Photon OS are available as free downloads on Bintray.

120

Deploying Lightwave on AWS

Lightwave can run on Photon OS on Amazon Elastic Compute Cloud
to provide identity services to your machines, users, and applications
running in the Amazon cloud. The process of deploying Lightwave on
EC2 entails creating a Photon OS instance, setting firewall rules to open
several ports, setting a hostname for the machine, installing the Light-
wave server components, and promoting a Lightwave domain controller.
Once deployed, the Lightwave domain controllers appear in the EC2
Dashboard:

Figure 15: Lightwave domain controllers running on Amazon EC2.

For more information, see Lightwave on GitHub.

Deploying Lightwave on Google

Cloud administrators and DevOps personnel can rapidly deploy Light-
wave on Google Compute Engine by using Photon OS or another Linux
image, such as Ubuntu. The process goes like this:

•	 Set up firewall rules and open ports for Lightwave DNS, LDAP, STS,
and the other Lightwave services.

•	 Upload the freely available Photon OS image for GCE.

•	 Create a Photon OS instance, set the hostname for your Lightwave
instance, and set the instance to use Lightwave for DNS.

•	 Install Lightwave from the Photon OS repository.

•	 Promote the first Lightwave domain controllers and add more of
them if you want.

For instructions on how to set up Lightwave on GCE, see Lightwave on GitHub.

An Introduction to Cloud-Native Technology | 121

After deploying and promoting the Lightwave domain controllers, you can see them in the

GCE web interface:

Figure 16: Lightwave domain controllers running on Google Cloud Platform.

Using vSphere Integrated Containers to Solve Con-
tainer Networking Problems
The image below shows a high-level view of the networks that vSphere Integrated Contain-
ers (VIC) use and how they connect to your VMware vSphere environment, the Registry and
Management Portal and to public registries, such as Docker Hub.

Figure 17: vSphere Integrated Containers networking.

As you can see from the picture above, a Virtual Container Host (VCH) not only allows you to
easily segregate management traffic from data traffic, but also Docker client traffic from in-
tra-container traffic. Moreover, since containers in VIC are deployed as virtual machines (VMs),
vSphere administrators can make vSphere networks directly available to containers.

122

Networking Options

The VIC network overview lightboard details the networking concepts for
vSphere Integrated Containers, while the recently updated documenta-
tion comes in handy to further explain these options:

•	 Client Network: The Client Network is used by a VCH to expose the
Docker API service and where developers must point their Docker
clients to manage and run containers.

•	 Public Network: The Public Network is used by a VCH to pull
images from registries. The most common use case is to pull
images from the public Docker hub. You can also create your own
private, secure local registry by using the VIC Registry (based on
Project Harbor).

•	 Management Network: The Management Network is used by a VCH
to securely communicate with vCenter and ESXi hosts.

•	 Bridge Network: The Bridge Network is a private network for con-
tainer communication. External access is granted by exposing ports
to containers and routing the traffic through the VCH endpoint VM.
With no extra configuration, VIC provides service discovery while
a built-in IPAM server provides the containerVMs with private IP
addresses from the subnet of the bridge network.

•	 Container Network: A Container Network is a user-defined network
that can be used to connect containerVMs directly to a routable
network. Container networks allow vSphere administrators to make
vSphere networks directly available to containers. Container net-
works are specific to VIC and have no equivalent in Docker.

For developers, one of the standout features is the ability for VIC to
expose containers directly on a network through the use of the container
network option: vic-machine create –container-network. You can connect
the containerVMs to any specific distributed port group or NSX logical
switch, giving them their dedicated connection to the network.

The Benefits of Giving an App a Routable IP
Address

This feature allows containerized applications to get their own routable IP
and become first class citizens of your data center, providing the follow-
ing benefits:

•	 No single point of failure: Now every container has its own dedi-
cated network connection, so even if the VCH endpoint VM fails,
there’s no outage for your applications.

An Introduction to Cloud-Native Technology | 123

•	 No network bandwidth sharing: Every container gets its own net-
work interface and all the bandwidth it can provide is available to
the application. Traffic does not route through the VCH endpoint
VM via network address translation (NAT), and containers do not
share the public IP of the VCH.

•	 No NAT conflicts: There’s no need for port mapping anymore.
Every container gets its own IP address. The container services are
directly exposed on the network without NAT, so applications that
once could not run on containers can now run by using VIC.

•	 No Port conflicts: Since every container gets its own IP, you can
have multiple application containers that require an exclusive port
running on the same VCH. This provides better utilization of your
resources.

All of this is possible through the use of the Container Network option.

The Container Network Firewall

But wait, there’s more: To give vSphere administrators even better man-
agement and control over the traffic that flows on container networks,
VIC includes a container network firewall:

Figure 18: The container network firewall in vSphere Integrated Containers.

The container network firewall provides five distinct trust levels:

1.	 Closed: no traffic can come in or out of the container interface.

124

2.	 Open: all traffic is permitted.

3.	 Outbound: only outbound connections are permitted, which works
well for containers that consume but do not provide services.

4.	 Published: only connections to published ports are permitted.
When you create a container, you must specify which port will be
permitted. (Default)

5.	 Peers: only containers on the same peer interface are permitted
to communicate with each other. To establish peers, you need to
provide an IP address range to the container network with the
vic-machine create –container-network-ip-range option when you
create a VCH.

The container firewall trust level is managed when you create a VCH:
vic-machine create --container-network-firewall “Port-
Group”:[closed | open |outbound | published | peers]

In VIC version 1.2, the default trust level is set to Published. This means
that you now have to explicitly identify which ports will be exposed with
the -p option; example:
docker run -d -p 80 --network=external nginx

Running a container by using the -P option (e.g. docker run -d -P nginx)
will not expose any service declared on the Dockerfile to the network, and
your application will be unreachable from the outside.

Specifying the exposed port improves security and gives you more
awareness of your environment and applications.

Now, if you still want to use the -P option (e.g. docker run -d -P nginx),
you need to change the container network firewall trust level to Open:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:open

Power and Flexibility for Admins

As you can see, as a vSphere administrator, you get a lot of power and
flexibility in your hands when configuring VCHs for your developers.

You can configure VCHs where no network traffic can come out of them,
no matter what the developers try to do:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:closed

An Introduction to Cloud-Native Technology | 125

Or, you can configure VCHs where all traffic is permitted and you let the
developer decide at the application level which ports are exposed and
which are not:
vic-machine create --container-network “PortGroup” --container-net-
work-firewall “PortGroup”:open

Or, you can configure VCHs where only outbound connections are per-
mitted. This works well if you plan to host applications that consume but
do not provide services:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:outbound

You can configure VCHs where only connections to published ports are
permitted, letting the developers or DevOps control which ports are open
for applications where you can’t change the Dockerfile. Think of all the
new COTS applications delivered as Docker images:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:published

You can also configure VCHs where the containers can only communicate
with each other. This is ideal for a set of microservices that need to talk
with each other, but not with the external world. For example, a set of
Spark jobs that compute some data and save the result to disk:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:peers

You should now have a better understanding of the benefits that the
different networking options of VMware vSphere Integrated Contain-
ers, together with the Container Network Firewall feature, provide over
traditional container host implementations, and how they make deploy-
ing containers on VIC even more secure. You should also know how to
segregate different types of network traffic, make containers routable by
exposing them directly on a network, and secure network connections by
using the five distinct trust levels of the container network firewall.

Providing Persistent Storage for Legacy
Applications
Linux containers have been great for stateless workloads. While stateful
workloads can also run in containers, a limiting factor has been that most
methods of providing storage for the state have been confined to the
host serving the container. And if that host fails, the storage becomes
inaccessible. Not so with vSphere Integrated Containers. It leverages
vSphere’s advanced persistence capabilities to allow access to data even
in the event of a host failure.

126

Let’s dive into some of the storage concerns with standard container
solutions and see how they are addressed in vSphere Integrated
Containers.

Docker image layers

Container images are different from running containers. The images are
static artifacts that are built and stored in Docker registries for use when
running a new container. Images are just a set of files that make up the
file system available to a running container.

Running containers are composed of layers of images applied in a stack.
The underlying layers remain unaltered. While running, any changes to
the file system will be persisted to an extra layer called the container layer.
The container layer is removed when the container is removed.

Here is an example to illustrate what’s going on in image layers. This
Docker file builds on top of the alpine-3.6 image layer:
FROM alpine:3.6
RUN echo -e “#!/bin/sh\ndate\nsleep 2d\ndate” > /bin/our-ap-
plication
RUN chmod 755 /bin/our-application
CMD [“/bin/our-application”]

Building an image using this Docker file results in an image with several
layers:
$ docker build -f Dockerfile.example-1 -t demo:0.1 .
Sending build context to Docker daemon 7.168kB
Step 1/4 : FROM alpine:3.6
 --- 76da55c8019d
Step 2/4 : RUN echo -e “#!/bin/sh\ndate\nsleep 2d\ndate” >/
bin/our-application
 --- Running in dfce6e80a2fb
 --- 9295df9995e6
Removing intermediate container dfce6e80a2fb
Step 3/4 : RUN chmod 755 /bin/our-application
 --- Running in cdc0e6d7ba27
 --- 1d5559a943d4
Removing intermediate container cdc0e6d7ba27
Step 4/4 : CMD /bin/our-application
 --- Running in d44e2734bef0
 --- 31af83e49686
Removing intermediate container d44e2734bef0
Successfully built 31af83e49686

An Introduction to Cloud-Native Technology | 127

Successfully tagged demo:0.1

The layers can be seen by running the docker history command:
$ docker history demo:0.1
IMAGE CREATED CREATED BY
SIZE
31af83e49686 2 minutes ago /bin/sh -c #(nop)
CMD [“/bin/our-applicat... 0B
1d5559a943d4 2 minutes ago /bin/sh -c chmod 755
/bin/our-application 29B
9295df9995e6 2 minutes ago /bin/sh -c echo -e
“#!/bin/sh\ndate\nsleep... 29B
76da55c8019d 4 weeks ago /bin/sh -c #(nop)
CMD [“/bin/sh”] 0B
 4 weeks ago /bin/sh -c #(nop) ADD
file:4583e12bf5caec4... 3.97MB

The alpine layer is there at the bottom, and our additional commands
have generated a few more layers that get stacked on top to be the
image we want. The final image that has all the files we need is referenced
by the ID 31af83e49686 or by the tag demo:0.1. Each of those layers
should be stored in a registry, and can be reused by future images.

When we run the container, an additional container layer is created
that allows modification of the file system by the running system. If no
changes are made to the file system, this layer remains empty. Let’s run
the image as a container and modify its file system:
$ docker run -d --name demo --rm demo:0.1
$ docker exec -it demo sh
/ # ls /
bin dev etc home lib media mnt proc root
run sbin srv sys tmp usr var
/ # date > /demo-state
/ # ls /
bin dev home media proc
run srv tmp var
demo-state etc lib mnt root
sbin sys usr

As long as the container runs, the file demo-state will exist and have the
same contents. Stopping and starting the container has no effect on the
container layer, so demo-state will still exist.

If we stop and remove the container, the container layer will be removed
as well as our hold on the demo-state file. Running a new instance of the
container will have a new empty container layer.

128

For details on the structure of images, see https://docs.docker.com/
engine/userguide/storagedriver/imagesandcontainers/.

There is a distinction here that you should note: The container layer is
ephemeral storage. It’s around for as long as the container, and is lost
when the container goes away. This is in contrast to requirements for data
that needs to remain after the container is removed.

Why Aren’t Containers Persistent?

The lack of persistence in the image layers is by design. By choosing to
only allow ephemeral storage, we can ensure the application we put into a
container image is always the application being run. Images are versioned
so that we can be sure that two systems are running exactly the same
code. Re-running the same image will always produce the same running
conditions.

The immutability of the images results in better debugging, smoother
deployments and the ability to quickly replace running applications that
appear to be in a bad state.

Let’s flip it around—if container images were able to change, how could
you be sure running a specific image today and running it tomorrow
would have the same results? How could you debug an image on my
laptop and be sure you are seeing the same code that is having a prob-
lem in QA? If an application has persisted state in its local image, how do
other instances of the application container get access to that data?

How Can You Save Data?

At some point, most of our applications need to leverage some data. How
do we keep state between runs of an image? There are at least a few
patterns:

•	 replication

•	 recreate data or replay transactions

•	 file system persistence

Replication

If you can design your application to replicate data to other containers
and ensure at least one copy is always running, then you’re using this
pattern.

An Introduction to Cloud-Native Technology | 129

An example of this pattern is running a Cassandra database cluster, where
replication enables the dynamic addition or removal of nodes. If you’re
running Cassandra in containers and being good about bootstrapping
and removing nodes, then you could run a stable database cluster with
normal basic docker run. The persistence is handled by storing data in
the container layer. As long as enough containers are up, persistence is
maintained.

Re-create or Replay Data on Loss

If you can design your application to be able to recreate any needed data,
you’re using this pattern.

An example of this might be a prime number finder tasked with finding a
set of prime numbers in a broader range of numbers by counting up from
the low end of the range and testing each number for primality. If the
primes are stored for future use, but the data is lost for any reason, a new
instance of the process can scan the same range and would find the same
numbers that the original process found. In this case, the data is inherent
to the requirements of the process, so the data can be recreated.

A more efficient variant of this process would store each prime number
found and the last number tested in apache Kafka. Given a consistent
initial range and the transaction log, you can quickly get back to a known
state without retesting each number for primality, and continue process-
ing from there.

Persistent File System

We can leverage an existing persistent file system that lives on the Docker
host inside the container. This is a pattern most of us are familiar with,
as it has been the way to handle data persistence since tape drives were
invented.

Docker has two ways of handing a persistent file system in containers:
bind mounts and volumes. Both of these expose a file system into the
container from the running host. They are similar, but the bind mount is a
bit more limited than using volumes.

Bind Mount

This is simply mounting a host file system file or directory into the con-
tainer. This is not very different from mounting a CD-ROM onto a virtual
machine (VM). The host path may look like /srv/dir-to-mount, and inside
the container you may be able to access the directory at /mnt/dir-to-
mount.

130

Bind mounting is used all the time in development, but should never be
used in production. It ties the container to the specific host at runtime,
and if the host is lost, so is the data. Volumes are the answer for produc-
tion requirements.

Volumes

Volumes are the preferred way to use persistent storage in Docker.

This is slightly different from a simple bind mount. Here, Docker creates
a directory that is the volume, and mounts it just like a bind mount. In
contrast to bind mounts, Docker manages the lifecycle of this volume.
By doing so, it provides the ability to use storage drivers that enable the
backing storage to exist outside of the host running the container.

vSphere Integrated Containers leverages this to use vSphere storage
types like vSAN, iSCSI and NFS to back the volume. Doing this means you
can handle failures of any host running the container, and ensure access
to the data in the volume can resume when the container is started on a
different host.

Another example of leveraging the storage drivers of Docker volumes is
shown in vSphere Docker Volume Service. This driver enables the use of
vSphere-backed storage when using native Docker hosts, not vSphere
Integrated Containers.

For deeper coverage on volumes, see Docker’s volume document. Now,
let’s take a closer look at using volumes to persist data in vSphere Inte-
grated Containers.

vSphere Integrated Containers Volumes

Command line use of volumes in vSphere Integrated Containers is the
same as standard Docker, with the added benefit of the storage being
backed by vSphere Storage.

In vSphere Integrated Containers, if you want to use volumes that are pri-
vate to the container, you can use the iSCSI or vSAN storage in vSphere.
If you have data that should be shared into more than one container, you
can use an NFS backed datastore from vSphere.

When setting up a container host in vSphere Integrated Containers, you
specify the datastores that will be available for use by any containers
running against that host. These are specified using the --volume-store
argument to vic-machine. These backing volume-stores can be set

An Introduction to Cloud-Native Technology | 131

or updated using vic-machine configure. Volumes added can only be
removed by removing the container host, but that usually isn’t a problem.

Here is an example showing the command that would create the con-
tainer host and enable it to present volumes with various backing stores:
vic-machine
--volume-store vsanDatastore/volumes/my-vch-data:backed-up-
encrypted
--volume-store iSCSI-nvme/volumes/my-vch-logs:default
--volume-store vsphere-nfs-datastore/volumes/my-vch-li-
brary:nfs-datastore
--volume-store ‘nfs://10.118.68.164/mnt/nfs-
vol?uid=0\&gid=0:nfs-direct’

The first volume store is on a vSAN datastore and uses the label backed-
up-encrypted so that a client can type docker volume create –opt
VolumeStore=backed-up-encrypted myData to create a volume in that
store. The second uses cheaper storage backed by a FreeNAS server
mounted using iSCSI, and is used for storing log data. Note that it has the
label “default,” which means that any volume created without a volume
store specified is created here. The third and fourth are for two types of
NFS exports. The first being an NFS datastore presented by vSphere, and
the other a standard NFS host directly (useful if you want to share data
between containers).

Note regarding NFS gotcha: NFS mounts in container can be tricky. If you
notice that you cannot read or write files to an NFS share in container,
then you have probably hit this gotcha.Note the final volume store above
has uid and gid arguments. There are two competing concerns. First,
Docker will generally run as uid and gid 0, or as root. You can change that
behavior by specifying a USER in the Dockerfile or on the command line.
See Docker user command for details on how to set it. Second, NFS has
many ways permissions based on uid and gid are applied to the mounted
file system. You must ensure that the user of the running container
matches the uid and gid permissions on the files exported by NFS. Finally,
note that the syntax for native Docker NFS volumes and VIC NFS vol-
umes is different, so if you are trying to apply this to native Docker, you’ll
want to start here.

Once you’ve installed the VCH, you’ll notice that there are now empty
folders created on the respective datastores ready for volume data:
vsanDatastore/volumes/my-vch-data/volumes
iSCSI-nvme/volumes/my-vch-logs/volumes
vsphere-nfs-datastore/volumes/my-vch-library/volumes
nfs://10.118.68.164/mnt/nfs-vol/volumes

132

Creating and Using Volumes

Let’s go ahead and create volumes using the Docker client. Note the
implied use of the default volume store in the second example.
$ docker volume create --opt VolumeStore=backed-up-encrypted
--opt Capacity=1G demo_data
$ docker volume create --opt Capacity=5G demo_logs
$ docker volume create --opt VolumeStore=nfs-datastore demo_
nfs_datastore
$ docker volume create --opt VolumeStore=nfs-direct demo_
nfs_direct
After volume creation, you’ll see the following files were
created in the backing datastores:
vsanDatastore/volumes/my-vch-data/volumes/demo_data/demo_
data.vmdk
vsanDatastore/volumes/my-vch-data/volumes/demo_data/Image-
Metadata/DockerMetaData
iSCSI-nvme/volumes/my-vch-logs/volumes/demo_logs/demo_logs.
vmdk
iSCSI-nvme/volumes/my-vch-logs/volumes/demo_logs/ImageMeta-
data/DockerMetaData
vsphere-nfs-datastore/volumes/my-vch-library/volumes/demo_
nfs_datastore/demo_nfs_datastore.vmdk
vsphere-nfs-datastore/volumes/my-vch-library/volumes/demo_
nfs_datastore/ImageMetadata/DockerMetaData
nfs://10.118.68.164/mnt/nfs-vol/volumes/demo_nfs_direct
nfs://10.118.68.164/mnt/nfs-vol/volumes_metadata/demo_nfs_
direct/DockerMetaData

To show the most basic level of persistence, here we run a container
that drops some data on each of the datastores and check that it exists
from another container. In production, this could be a database workload
hosted in a container and operating on the persistent external storage.
$ docker run -it --rm -v demo_data:/data -v demo_logs:/logs -v demo_
nfs_datastore:/library -v demo_nfs_direct:/shared busybox sh

echo “some data” > /data/some-data ;
echo “some logs” > /logs/some-logs ;
echo “some library” > /library/some-lib;
echo “some shared” > /shared/some-shared ;
exit
$
$ docker run -it --rm -v demo_data:/data -v demo_logs:/logs
-v demo_nfs_datastore:/library -v demo_nfs_direct:/shared
alpine sh

An Introduction to Cloud-Native Technology | 133

cat /data/some-data /logs/some-logs /library/some-lib /
shared/some-shared
exit

Right now, only native NFS volumes are allowed to share data between
more than one container. Here is an example of sharing some storage
between containers using native NFS.

Open two terminals. In the first run this command to start nginx:
$ docker run --name nginx -v demo_nfs_direct:/usr/share/nginx/html:ro
-p 80:80 -d nginx

In the same terminal query, the nginx server you just created. Replace
192.168.100.159 with the ip address of the container running nginx:
$ curl 192.168.100.159
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</html>

In the second terminal, run this command to simultaneously mount the
shared filesystem and edit a file:
$ docker run -it --rm -v demo_nfs_direct:/shared busybox sh
echo “hello from $(date)” > /shared/index.html
Now that you’ve overwritten the shared index.html, go back
to the first terminal and rerun the curl command. You should
see something like this:
hello from Mon Oct 16 21:33:03 UTC 2017

As a final note, if you have a stateful process that can handle restart,
VMware HA will enable restarting the container on a new ESXi host if
the original ESXi host fails. If your process can’t implement a replay or
replication pattern to recover state on failure, then VMware Fault Toler-
ance enables transparent continuation of processing during an ESXi host
failure. In this case the container VM continues running on the new ESXi
host as though there were no failure of the original host. We’ll see if we
can make a blog entry demonstrating the Fault Tolerance feature.

Here is an example of VMware HA helping a container resume running on
a new host after failure of the initial ESXi host. This is the picture before

failure:

134

Figure 19: VMware HA helping a container resume running on a new host.

And after causing an ESXi host failure, the container is moved to and
started on a different ESXi host:

Figure 20: The container is moved to and started on a new ESXi host.

So, there you have it: vSphere Integrated Containers can provide resilient
storage and cope with host failures. It’s not mandatory during develop-
ment, but definitely a boon in the production landscape.

Setting Up a Developer Sandbox
vSphere Integrated Containers (VIC) includes the concept of the native
Docker Container Host (DCH). It is a built-in Docker image containing
a full-fledged Docker engine that runs using VIC. DCH is packaged as a
container and can be instantiated on VIC like any regular container.

An Introduction to Cloud-Native Technology | 135

The DCH image is distributed through Docker Hub and, as part of the VIC
product distribution, in the registry. All the official DCH images main-
tained by VMware are based on Project Photon OS, an open source Linux
operating system optimized for hosting containers and running cloud-na-
tive applications. The source, Dockerfiles and documentation are available
at github.com/vmware/vic-product.

DCH is well-suited for development use cases. Here are some examples:

•	 As part of a CI/CD pipeline, VIC can be used to enhance end-to-
end dev-build-push-deploy workflows. VIC with DCH can be used
as a (self-service) private cloud for CI/CD by enabling the easy
deployment and tear down of Docker hosts.

•	 VIC and DCH allow you to treat Docker Hosts as ephemeral com-
pute. This has the benefit of eliminating snowflakes (individually
managed Docker Hosts), which reduces Operating System OpEx
costs. For example, as part of a CI pipeline, you could instantiate
ephemeral Docker Hosts that exist only for the purpose of building
and pushing images, and only for the time it takes to complete that
task.

•	 An example of how VIC can be used to deploy Jenkins is given
here.

This section demonstrates how flexible this DCH abstraction is. The sec-
tion walks you through how a developer can leverage VIC 1.2 and DCH to
easily instantiate a Docker swarm using only well-known native Docker
commands. The section also shows how easy it is to create a complete
cluster of ephemeral compute using DCH.

Scripting the Deployment of Swarm Manager
and Worker Nodes

To illustrate this, look at the following script. This is a simple shell script
that deploys a Docker swarm manager node and then creates and joins a
user-defined number of worker nodes to the swarm.
 #!/bin/bash
 ## USER-DEFINED VARIABLES
 # Number of swarm workers desired
 NUM_WORKERS=3
 # name of routable (external) network
 # this needs to be defined on your VCH using the ‘--con-
tainer-network’ option
 # use ‘docker network ls’ to list available external

136

networks
 CONTAINER_NET=routable
 # Docker Container Host (DCH) image to use
 # see https://hub.docker.com/r/vmware/dch-photon/tags/
for list of available Docker Engine versions
 DCH_IMAGE=”vmware/dch-photon:17.06”
 ## NO NEED TO MODIFY BEYOND THIS POINT
 # pull the image
 docker pull $DCH_IMAGE

 # create a docker volume for the master image cache
 docker volume create --opt Capacity=10GB --name regis-
trycache
 # create and run the master instance
 docker run -d -v registrycache:/var/lib/docker \
 --net $CONTAINER_NET \
 -name manager1 -hostname=manager1 \
 $DCH_IMAGE
 # get the master IP
 SWARM_MASTER=$(docker inspect -f ‘{{range .NetworkSet-
tings.Networks}}{{.IPAddress}}{{end}}’ manager1)
 # create the new swarm on the master
 docker -H $SWARM_MASTER swarm init
 # get the join token
 SWARM_TOKEN=$(docker -H $SWARM_MASTER swarm join-token
-q worker)
 sleep 10

 # run $NUM_WORKERS workers and use $SWARM_TOKEN to join
the swarm
 for i in $(seq “${NUM_WORKERS}”); do

 # create docker volumes for each worker to be used as
image cache
 docker volume create --opt Capacity=10GB --name work-
er-vol${i}
 # run new worker container
 docker run -d -v worker-vol${i}:/var/lib/docker \
 --net $CONTAINER_NET \
 --name worker${i} --hostname=worker${i} \
 $DCH_IMAGE
 # wait for daemon to start
 sleep 10

 # join worker to the swarm

An Introduction to Cloud-Native Technology | 137

 for w in $(docker inspect -f ‘{{range .NetworkSettings.
Networks}}{{.IPAddress}}{{end}}’ worker${i}); do
 docker -H $w:2375 swarm join --token ${SWARM_TOKEN}
${SWARM_MASTER}:2377
 done

 done

 # display swarm cluster information
 printf “\nLocal Swarm Cluster\
n=========================\n”

 docker -H $SWARM_MASTER node ls

 printf “=========================\nMaster available at
DOCKER_HOST=$SWARM_MASTER:2375\n\n”

Let’s break this down to better understand what this script does.

User-defined Variables
 ## USER-DEFINED VARIABLES
 # Number of swarm workers desired
 NUM_WORKERS=3
 # name of routable (external) network
 # this needs to be defined on your VCH using the ‘--con-
tainer-network’ option
 # use ‘docker network ls’ to list available external
networks
 CONTAINER_NET=routable
 # Docker Container Host (DCH) image to use
 # see https://hub.docker.com/r/vmware/dch-photon/tags/
for list of available Docker Engine versions
 DCH_IMAGE=”vmware/dch-photon:17.06”

As a user of the script, this is the only section you need to modify.
NUM_WORKERS – this is the number of worker nodes that will be added
to the swarm, in addition to the manager node.
CONTAINER_NET – this is the network to be used by our Docker
Container Hosts. Here we leverage the ability of vSphere Integrated Con-
tainers to connect containers directly to vSphere Port Groups rather than
through the Container Host. This will allow for easier interaction with our
swarm.
DCH_IMAGE – here you can specify a different version of the Docker
engine by modifying the tag (e.g. ‘vmware/dch-photon:1.13’). You can see
the list of available tags/versions here.

138

The script will use these parameters to pull the images, instantiate the
swarm manager, initiate the swarm and instantiate and join the user-de-
fined number of worker nodes.

Creating the master, initiating the swarm and
getting the join token
 # create a docker volume for the master image cache
 docker volume create --opt Capacity=10GB --name regis-
trycache
 # create and run the master instance
 docker run -d -v registrycache:/var/lib/docker \
 --net $CONTAINER_NET \
 --name manager1 --hostname=manager1 \
 $DCH_IMAGE
 # get the master IP
 SWARM_MASTER=$(docker inspect -f ‘{{range .NetworkSet-
tings.Networks}}{{.IPAddress}}{{end}}’ manager1)
 # create the new swarm on the master
 docker -H $SWARM_MASTER swarm init

This is where we begin to see the DCH magic in action. Specifically, look
at the following command:
docker run -d -v registrycache:/var/lib/docker \
--net $CONTAINER_NET \
--name manager1 --hostname=manager1 \
$DCH_IMAGE

This starts up a full-fledged docker engine (running version 17.06) instan-
tiated as a container VM, using only a simple docker run command. As
you can see, DCH makes it very easy for developers to start up docker
engines on-demand, thus creating new self-service possibilities.

Once the manager is created, we initialize the swarm (docker -H
$SWARM_MASTER swarm init), and then we grab the join token (docker
-H $SWARM_MASTER swarm join-token -q worker) that will allow us to
join the worker nodes to the swarm in the next step.

Creating the workers and adding them to the
swarm
 # run $NUM_WORKERS workers and use $SWARM_TOKEN to join
the swarm
 for i in $(seq “${NUM_WORKERS}”); do

An Introduction to Cloud-Native Technology | 139

 # create docker volumes for each worker to be used as
image cache
 docker volume create --opt Capacity=10GB --name work-
er-vol${i}
 # run new worker container
 docker run -d -v worker-vol${i}:/var/lib/docker \
 --net $CONTAINER_NET \
 --name worker${i} --hostname=worker${i} \
 $DCH_IMAGE
 # wait for daemon to start
 sleep 10

 # join worker to the swarm
 for w in $(docker inspect -f ‘{{range .NetworkSettings.
Networks}}{{.IPAddress}}{{end}}’ worker${i}); do
 docker -H $w:2375 swarm join &ndash&ndashtoken ${SWARM_
TOKEN} ${SWARM_MASTER}:2377
 done

 done

This simple `for’ loop repeats NUM_WORKERS times. For each iteration, it:

•	 creates a volume to be used as the image cache for the worker

•	 instantiates a worker using the vmware/dch-photon:17.06 image

•	 joins the worker to the swarm using the join token (SWARM_
TOKEN) we fetched in the previous step

Once again, because we are using DCH with VIC, we see that it requires
only a very simple docker run command to create and run our Docker
Hosts that will be used as the swarm worker nodes.

Running The Script And Result

Before running the script, you need to point your Docker client to a
VIC Virtual Container Host endpoint. This is done by setting DOCKER_
HOST=<endpoint-ip>:<port>. This script requires a Virtual Container Host
endpoint—a requirement to run the DCH image, which enables all of the
above automation. You can find this information in the vSphere Client
portlet:

140

Figure 21: The vSphere Client.

You can use the following commands (replace with your own endpoint IP
address and make sure the script is in the current directory):
export DOCKER_HOST=192.168.100.144:2375
./dch-swarm.sh

Upon completion, the script prints information about the newly created
swarm:

Figure 20: Information about a newly created Swarm cluster.

An Introduction to Cloud-Native Technology | 141

We can also see our newly created containerVMs hosting the swarm
manager and the swarm workers in vSphere Client:

Figure 22: Container VMs holding the swarm manager and workers.

Finally, we can test the swarm by running the Docker Example Voting
App. We deploy the app against our swarm by using the docker stack
deploy command:

Figure 23: Running the docker stack deploy command.

We can see above that all of the required services were started. Testing
the application in the browser, we can see it is indeed running and func-
tional:

142

Figure 24: The example app is running.

Conclusion

You should now have a better understanding of how the newly intro-
duced VIC DCH feature helps address developer use cases. We have
shown how easy it is to automate the deployment of Docker hosts using
DCH. VIC provides end-users and developers with a Docker dial tone and
a very flexible consumption model on top of vSphere, while DCH enables
a new level of self-service.

If you’re interested in getting more hands-on knowledge around VIC,
check out our tutorials on GitHub: https://github.com/vmware/vic-prod-
uct/tree/master/tutorials

Deploying Jenkins by Using VIC
Containers have fundamentally changed how we consume software.
They’ve changed how we develop and package software. Containers have
also changed how we interact with infrastructure.

It has never been easier to deploy a service, an application, a database or
a cluster than with today’s container technologies. Consider the following:

•	 The immutability and portability of container images means that
workloads deploy predictably in multiple locations and scale up
and down with ease.

•	 The increasing sophistication of container registries incorporate
security capabilities and access control that simply weren’t avail-
able previously.

An Introduction to Cloud-Native Technology | 143

•	 The way that containers force developers to think about how state
is managed, in terms of persistence, scope and integrity is leading
to more flexible application architectures.

VMware vSphere Integrated Containers has brought all of these benefits
directly to VMware vSphere by giving you the ability to manage and con-
sume vSphere infrastructure using an prescribed container consumption
model.

What’s even better about vSphere Integrated Containers is that it goes
where many containers fear to tread. Take a large database for example.
Many people would tell you not to run a database in a container. Why?
Because you need data integrity, strong runtime isolation, and good
network throughput. With a regular Linux container, that would mean
deploying a dedicated Linux host, securing and patching it, configur-
ing it with a volume plugin that works with a storage LUN of some kind,
ensuring that no other containers run in that host, and making sure to
configure the container with host networking. vSphere Integrated Con-
tainers requires no such configuration. It will deploy a MySQL or MSSQL
container image out-of-the-box direct to vSphere as a strongly isolated
virtual machine that has encrypted, replicated persistent storage on
VMware vSAN, with its own vNIC and connected directly to an NSX logi-
cal switch.

Deploying workloads to vSphere has never been so easy. Jenkins is a
great example of a long-running stateful application that plays to vSphere
Integrated Containers’s strengths.

This section discusses the best practices around deploying Jenkins by
using vSphere Integrated Containers. The section covers how to maintain
the persistent state of Jenkins, how to configure security around image
management and access control, how to ensure that it has the resources
it needs, and how vSphere High Availability (HA) can make the master
node highly available.

Few would argue with the contention that containers make software
provisioning easier. As such, with vSphere Integrated Containers, it’s never
been easier to provision software to vSphere. This is just as true of Jen-
kins as any other application. However, with power comes responsibility
and if we want to deploy Jenkins, there’s a few critical factors we need to
consider:

•	 What are the software artifacts in the Jenkins image we want to
deploy?

•	 Do we trust the provenance of those artifacts?

•	 Do those software artifacts contain known vulnerabilities?

144

•	 What data needs to be persisted and what data should be ephem-
eral?

•	 What resource limits should we put around the container?

•	 Do we want the container to be highly available and if so, how?

Security of Software Artifacts

Deploying an image from a public registry without knowing its contents
or provenance is risky. To help you address these security concerns,
vSphere Integrated Containers comes with its own registry.

As a cloud admin, you can choose to build your own container images
using your own Dockerfiles, or you can start from a public image and
further modify it to your needs. As you’ll see from DockerHub, you can
choose from a Debian base or an Alpine base. The Alpine base is half
the download size and has less than half the packages, so that makes it
attractive, although there may be compliance considerations involved in
the decision.

As an example, let’s start by running the following commands to pull the
jenkins/jenkins:lts-alpine image from DockerHub, push it to a registry, and
scan it for vulnerabilities.
docker pull jenkins/jenkins:lts-alpine
docker tag jenkins/jenkins:lts-alpine vicregistry.myfirm.com/
myproject/jenkins:lts-alpine
docker push vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine

Figure 25: The vulnerabilities of an image.

An Introduction to Cloud-Native Technology | 145

At the time these commands were run, vSphere Integrated Containers
registry identified that the zlib package contains two high-level vulner-
abilities. (Your results might be different when you run the command.)
It provides a link to the CVE database, which describes the issue. It also
shows that there are updated versions of zlib in which the issue is fixed,
so we can use that information to create a Dockerfile that defines a new
image with updated packages.
cat Dockerfile
FROM jenkins/jenkins:lts-alpine
USER root
RUN apk update && apk upgrade
USER jenkins

docker build -t vicregistry.myfirm.com/myproject/jen-
kins:lts-alpine-upgrade .

docker push vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine-upgrade

Once the image is pushed, the vSphere Integrated Containers registry
shows that it is 100 percent green—no vulnerabilities.

Figure 26: A pushed image with no vulnerabilities..

As a cloud admin, you can choose to limit the vulnerability level images
can be deployed with. You can also restrict the images deployed to an
endpoint to only ones that have been signed by a service such as Notary.

146

Figure 27: Security thresholds for images.

Data Persistence

The Jenkins container is configured in such a way that all of the persistent
state is stored in one location: /var/jenkins_home. This means that you
can safely start, stop or even upgrade the Jenkins master container and
it will always come back up with all of the previous data, assuming you
specified a named volume.

This data includes job definitions, credentials, logs, plugins—important
data that should not only be persistent but should also have high integ-
rity. This is not data you want to have to recreate. vSphere Integrated
Containers makes it easy to store persistent data with these character-
istics by mapping a container volume to a persistent disk on a vSphere
datastore. The volume can then benefit from the security capabilities of
the datastore, such as encryption, and replication on a vSphere vSAN.

Resource Limits and HA

vSphere Integrated Containers makes it easy to specify how much
resource a container should consume when deployed by allowing for the
specification of vCPUs and a memory limit.

An Introduction to Cloud-Native Technology | 147

A vSphere Integrated Containers container has exclusive access to its
own guest buffer cache, so there’s no resource competition from other
containers.

If the vSphere cluster has HA enabled, then if an ESXi host goes down,
the endpoint VM and the containers will be automatically restarted on
other hosts.

Deploying Jenkins and Access Control

Now that we’ve thought about all of the implications, we can go ahead
and deploy Jenkins. This can be done either with the vSphere Integrated
Containers Management UI or by using an ordinary Docker command-line
client.

Figure 28: Provisioning a container.

Regardless of how it’s done, it should only be possible to authenticate
with the vSphere Integrated Containers endpoint with the appropriate
credentials. As a cloud admin, the Management UI gives you control over
who has access to those credentials, thereby limiting who has access
to certain deployment endpoints and ensuring that credentials are not
leaked.

In addition, vSphere Integrated Containers integrates with the vSphere
Platform Services Controller, which means that identities in the vSphere
Integrated Containers Management UI can be vSphere identities, but with
additional roles and responsibilities.

The Docker command-line that could be used to deploy Jenkins might
look like this:

148

docker volume create –opt VolumeStore=encryped –opt Capaci-
ty=5G my-named-volume

docker run -d –name jenkins-master –cpuset-cpus 2 -m 4g
-p 8888:8080 -e TINI_SUBREAPER= -v my-named-volume:/var/
jenkins_home vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine-upgrade

docker logs jenkins-master

Note that a named volume on the desired datastore should be created
first and then mapped to the appropriate mount point. Setting the
environment variable TINI_SUBREAPER to null ensures that the Tini init
process functions correctly, given that it won’t run as PID 1 in a vSphere
Integrated Containers container. When you start Jenkins, you need an
initial admin password that’s generated to the logs, so the docker logs
command will show you that password.

If you deploy the same container via the Management UI, you can create
a template that persists the configuration so that you can re-use it for
future deployments. Viewing the container once it’s deployed allows you
to see statistics and logs for the container.

Once Jenkins is up and running, you can access it at http://vch-end-
point-address:8888. It will ask for the password from the logs and then
ask you to create an Admin user. You can go ahead and take the default
plugins and once they’ve finished installing, you should see the Jenkins
dashboard ready for configuration.

Optimizing Cloud-Native Apps with
PCF and Developer-Ready
Infrastructure from VMware
Developer-ready infrastructure lays the foundation for agile application
development. A data center modernized with secure, software-driven
compute, storage, and networking can rapidly fulfill the needs of
developers seeking to build and deploy modern applications. When
developer-ready infrastructure reduces manual IT infrastructure processes
and provides the operational tooling required to run containerized work-
loads at scale, developers can focus their energy on delivering robust
cloud-native applications architected with microservices.

By scaling to meet demand and maintaining high availability for appli-
cations, Pivotal Cloud Foundry addresses the needs of modern agile
development techniques and application architectures. But if the under-

An Introduction to Cloud-Native Technology | 149

lying infrastructure is unable to match the platform’s resource demands,
performance can be impaired. Developer-ready infrastructure from
VMware supplies three key services that dynamically optimize resources
for Pivotal Cloud Foundry:

•	 Scalability

•	 Availability

•	 Security

This section explains how developer-ready infrastructure from VMware
helps Pivotal Cloud Foundry run in a demanding production environ-
ment. In particular, it examines how developer-ready infrastructure from
VMware works with Pivotal Cloud Foundry to address issues of scale,
availability, and security.

THE BENEFITS OF DEVELOPER-READY INFRASTRUCTURE
Developer-ready infrastructure helps modernize application development, yield-
ing benefits that ultimately bolster your competitive advantage

•	 Provide a consistent, cloud-independent networking and security layer

•	 Eliminate bottlenecks that hinder the provisioning of IT resources for
developers

•	 Reduce manual infrastructure processes

•	 Improve developer agility and productivity

•	 Shorten software’s time to market

How Pivotal Cloud Foundry Works

Pivotal Cloud Foundry (PCF) is a logical collection of services that
provide a platform upon which developers can run applications and
microservices in a stable, consistent, and fault-tolerant manner. With
native support for Java, Node, Golang, .Net, and many others, the
platform supports applications written in multiple languages. PCF auto-
matically detects your applications’ required runtime when applications
are published to it, giving a developers a range of options for writing
code with the language of their choice.

Applications are usually published on PCF through a continuous integra-
tion and continuous development pipeline. Using a CI/DI pipeline helps
developers quickly build, test, and deploy an application in a reliable,
repeatable, and automated way. With the PCF CI/CD model, developers

150

first check their source code into a source repository like Git. A pipe-
line automation engine, such as Jenkins, then triggers the commit of
the updated source code to Git. The result is an application artifact. For
example, a pipeline would produce a JAR or WAR file as an artifact for
a Java application. The pipeline then pushes the artifacts to PCF to be
instantiated as containers.

When an application is pushed to PCF, the artifact is staged, creating
an image that can be run as a container in PCF’s container execution
environment called Diego. In the staging process, PCF first identifies the
artifact type in order to match the appropriate “buildpack” to use in stag-
ing the application image. A buildpack is a library of application runtime
components. For example, the Java buildpack includes components such
as the Spring Boot framework and the TC server runtime to run the Java
application. In this way, containers streamline the process of developing
and staging an application.

THE BENEFITS OF MICROSERVICES INCREASE MODULARITY

•	 Make app easier to develop and test

•	 Parallelize development: A team can develop and deploy a service inde-
pendently of other teams working on other services

•	 Support continuous code refactoring to heighten the benefits of micros-
ervices over time

•	 Drive a model of continuous integration and delivery

•	 Improve scalability

•	 Simplify component upgrades

An Introduction to Cloud-Native Technology | 151

Running Application Instances

The staging process composes an application image by combining a
read-only root file system with the buildpack and the application artifacts.
This image, packaged as a tgz, is called a ‘droplet.’ PCF can then use its
Diego execution environment to run the droplet images as application
instances (AIs). Diego schedules the running of all application instances
and maintains their availability across the platform, which reduces the
workload of IT teams.

AI

Pivotal Cloud Foundry

BuildPack

Root FS
Artifact War

myapp.foo.com

P
U
S
H

{code}{ } SRC Build

Stage

Developer

GITJava Jenkins
Diego Container

Figure 29: The application pipeline and PCF.

Running an App by Using a Docker Image

PCF is also capable of running an application from a Docker image.
Docker images are uploaded to PCF pre-composed, so the push process
doesn’t stage in the same way as a Java application, but the end result is
the same: an application instance managed by PCF and Diego.

AI

AI

PCF and vSphere

Pivotal Cloud Foundry

BuildPack

Root FS

Docker
Image

Artifact
War

svc1.foo.com

myapp.foo.com

Diego Container

P
U
S
H

P
U
S
H

S2I Pipeline

{code}{ } SRC Build

Stage

Developer

GITJava Jenkins

 Figure 30: PCF with a Docker pipeline.

152

THE BENEFITS OF CONTAINERS FOR DEVELOPERS
Developers like working with containers because they make life easier, develop-
ment more engaging, and work more productive.

•	 Portability: Containers let developers choose how and where to deploy
an app.

•	 Speed: Containers expedite workflows like testing and speed up itera-
tions.

•	 CI/DI Pipeline: Containers support continuous integration and deploy-
ment.

•	 Flexibility: Developers can code on their laptops when and where they
want with the tools they like.

Reliable Service at Scale

In addition to running containers, PCF offers application routing ser-
vices, making it possible to bind multiple routes and domain URLs to any
application. PCF also ensures that application instances maintain a mini-
mum level of availability, offering protection from failures in the physical
infrastructure hosting PCF, as well as easily scaling application instances
dynamically to meet changes in demand.

PCF does this by scheduling multiple AIs per application and running
them in multiple PCF availability zones. These zones, typically created
in sets of three, maintain an application’s uptime if a fault occurs in the
infrastructure backing a zone.

AI

AI

AI

AI

AI

AZ1

Pivotal Cloud Foundry

BuildPack

Root FS

Docker
Image

Artifact
War

AZ3

svc1.foo.com

myapp.foo.com

Diego Container

P
U
S
H

P
U
S
H

S2I Pipeline

{code}{ } SRC Build

Stage

Developer

GITJava Jenkins

AZ2

Figure 31: PCF application instances and availability zones.

An Introduction to Cloud-Native Technology | 153

Delivering IaaS with VMware Solutions

Today, the infrastructure underlying Pivotal Cloud Foundry is typically
delivered through an Infrastructure as a Service (IaaS) solution like
VMware vSphere® and VMware vCenter®.

PCF interacts with the IaaS through BOSH, an open source tool for man-
aging the lifecycle of distributed systems. Pivotal Cloud Foundry deploys
BOSH as a virtual machine called the Ops Manager Director. BOSH
creates VM instances and assigns one or more jobs to each VM instance.
BOSH jobs provide a VM instance with desired service release com-
ponents of PCF; for example, a job called diego_cell contains all of the
release components required to stage and start containers in PCF. BOSH
will then ensure availability of all PCF services by deploying VM instances
across availability zones and ensuring jobs are assigned to them across
availability zones as well.

BOSH communicates with the IaaS through a cloud provider interface,
or CPI, to create, update, and remove VM instances. BOSH also uses an
agent communication path with the guest operating system of the VM
instance to automatically push configured jobs and collect service health.
If health is determined to not be in a desired state, BOSH can resurrect or
rebuild the instance and re-apply its jobs. This process ensures that PCF
services remain available even during faults in a given availability zone.

AI

AI

AI

AI

AI

MySQL

Service Tiles

RabbitMQ

External
Data

AZ1

BOSH Jobs
“instances”

Pivotal Cloud Foundry

IaaS vSphere

BuildPack

Root FS

Docker
Image

Ops
Man BOSH

PCF

Artifact

CTRL

War

AZ3

GR

GR = Go Routers
DC = Diego Cell

DC GR DC GR DC

svc1.foo.com

myapp.foo.com

Diego Container

S
er

vi
ce

 B
ro

ke
r

P
U
S
H

P
U
S
H

IaaS

vCenter NSX

S2I Pipeline

{code}{ } SRC Build

Stage

Agent

CPI

Developer

GITJava Jenkins

AZ2

Figure 32: PCF and vSphere.

154

Describing Deployments with Manifests

Configuration and interaction with BOSH is a potentially cumbersome
process that sometimes requires wrangling large YAML text files known
as manifests. Manifests describe how BOSH should deploy and scale PCF
and PCF services on a given IaaS.

Pivotal provides a tool called Operations Manager, which also communi-
cates with the IaaS through the CPI to create and manage BOSH itself.
Operations Manager offers an API as well as a graphical interface for a
platform operator to configure how PCF is deployed. Additionally it pro-
vides the platform operator a tool to scale, apply updates, and patch PCF.
This architecture improves the maintainability of the platform.

Self-Service Access for Rapid Application Development

Operations Manager allows a platform operator to deploy and manage
application services as part of their PCF deployment. PCF services can
provide developers policy driven, self-service access to components their
applications require through a “marketplace.” These services, such as
MySQL, RabbitMQ, and Redis, are instantiated by Pivotal Ops Manager
and BOSH across the availability zones.

PCF can also allow policy-driven access to services external to those it
manages, including mainframe data and other vendor-external informa-
tion and services. This is enabled by the PCF service broker layer, which
allows the platform to bind services and credentials to any application.

Scalability

While there are many ways in which Pivotal Cloud Foundry is designed to
scale, one of the most important is in scaling application instances. These
run on VM instances in PCF called Diego Cells.

Diego Cell-instance VMs are pre-created by BOSH for application
instances (AIs) to run on, and so when application instances start to
scale horizontally or become larger, they may require more Diego Cell VM
instances. It’s essential that the IaaS hosting Pivotal Cloud Foundry can
also scale its resources to allow BOSH to quickly add additional PCF VM
instances and associated jobs.

An Introduction to Cloud-Native Technology | 155

Supporting Multiple PCF Deployments on vSphere
Infrastructure

In a developer-ready infrastructure, that construct to scale resources is
the vSphere cluster. Defined within each cluster are one or more resource
pools, each of which is typically aligned with a PCF availability zone. One
or more availability zones align to a deployment of PCF. Aligning availabil-
ity zones to resource pools allows for multiple deployments of PCF across
a common infrastructure. For example, three vSphere clusters, each with
two resource pools, can support two PCF foundations in a highly avail-
able architecture of 3 x PCF availability zones. Resource pools can also
allow the platform operator to enable resource reservations and limits
when sharing multiple PCF deployments on common clusters. As a result,
vSphere can dynamically add or expand resources, hosts, and storage
without affecting PCF or its applications.

1

AI

AI

AI

AI

AI

MySQL

Service Tiles

RabbitMQ

External
Data

AZ1Metrics

BOSH Jobs
“instances”

vSphere
Clusters

Events

Pivotal Cloud Foundry

IaaS vSphere

BuildPack

Root FS

Fire
Hose

Docker
Image

Ops
Man BOSH

PCF CTRL

War

AZ2 AZ3

DC

svc1.foo.com

myapp.foo.com

Diego Container

GR DC GR DC GR

S
er

vi
ce

 B
ro

ke
r

P
U
S
H

P
U
S
H

IaaS

vCenter NSX

Scale What does PCF
need from IaaS?

1

Stage

DC

Cluster3
RP

GR
DC

Cluster2
RP

GR
DC

Cluster1
RP

GR

Agent

CPI

Figure 33: PCF and vSphere for scalability..

DYNAMICALLY SCALING RESOURCES FOR APPLICATIONS WITH VSPHERE

•	 Create multiple deployments of Pivotal Cloud Foundry across common
infrastructure

•	 Quickly and dynamically scale resources to add virtual machines and run
more application instances

•	 Reserve resources and set consumption limits

•	 Add storage without affecting running applications

156

Availability

Another key area in which vSphere supports Pivotal Cloud Foundry is
availability. PCF interacts with the IaaS through BOSH, which can detect
VM instance health and make sure that VM instances and their jobs stay
running. One way it does this it by automatic repairs and rebuilds to all
PCF VM instances when they are found to be unhealthy or unresponsive.

vSphere HA adds a complementary service here, helping reduce down-
time in case of a physical failure or in case of undesired VM guest faults.
The two technologies need to be scheduled appropriately so that they
don’t step over each other, but each works with the other to ensure that
PCF instances and their jobs are always available.

Availability Zones and Load Balancing

PCF also achieves availability through its availability zone constructs. As
noted earlier, application instances are distributed across Diego Cell VM
instances in multiple PCF availability zones. Another core PCF job called
a “router” is also required to route requests to the application instances.
Router jobs, also known as “GoRouters,” run in VM instances that will load
balance application requests to AIs running on Diego Cell VM instances,
across availability zones. This means router instances must also be highly
available and deployed across availability zones to allow requests to reach
their desired applications.

Other issues can affect availability. These issues can exist within both
PCF and the infrastructure hosting it. Platform operators must implement
effective monitoring of both PCF and the infrastructure hosting it. This is
critical to maintaining availability and scale.

Tracking Performance Indicators and Events with vRealize
Operations

Monitoring of key performance indicators (KPIs) and events is accom-
plished via a PCF service called the “firehose.” The firehose endpoint will
stream events and metrics for all PCF components, BOSH VM instances,
the jobs running on those instances, and all application instances (AIs).
This is essential because while BOSH makes deployment simple, PCF
itself is a complex distributed system that requires careful day-two
operations and management. Tapping into the firehose stream, VMware
vRealize® Operations™, a component of the VMware vRealize® Suite, can
help solve this platform operations problem.

vRealize Operations and VMware vRealize® Log Insight™ ingest PCF KPIs
and events as well as IaaS metrics and events from vCenter. Data, such as

An Introduction to Cloud-Native Technology | 157

application instance growth patterns and the speeds at which infrastruc-
ture resources are being consumed by developer tenants, allows vRealize
Operations to track if and when the underlying infrastructure capac-
ity will be exceeded. vRealize Operations also visualizes the complete
deployment of PCF in a set of dashboards detailing PCF key performance
indicators, and can alert you when there are unhealthy KPIs. vRealize
allows an operator to track and act upon significant log events that
may indicate PCF service and application failures. vRealize Operations
and vRealize Log Insight provide a comprehensive and unified view of
long-term trending availability and help maximize Pivotal Cloud Foundry
deployment uptimes.

THE BENEFITS OF MONITORING PIVOTAL CLOUD FOUNDRY WITH VREALIZE
OPERATIONS
Using vRealize Operations with vSphere adds critical monitoring that helps
Pivotal Cloud Foundry maintain high availability:

•	 Detailed view of Pivotal Cloud Foundry key performance indicators

•	 Proactive identification and remediation of emerging performance,
capacity, and configuration issues

•	 Comprehensive visibility across applications and infrastructure in a single
console

•	 Automated capacity optimization and planning

•	 Unified view of availability for maximizing deployment uptime

1

2 22

AI

AI

AI

AI

AI

MySQL

Service Tiles

RabbitMQ

External
Data

AZ1Metrics

BOSH Jobs
“instances”

vSphere
Clusters

Events

M
et

ric
s

Pivotal Cloud Foundry

IaaS vSphere

BuildPack

Root FS

Fire
Hose

Docker
Image

Ops
Man BOSH

PCF CTRL

War

AZ2 AZ3

DC

svc1.foo.com

myapp.foo.com

Diego Container

GR DC GR DC GR

S
er

vi
ce

 B
ro

ke
r

P
U
S
H

P
U
S
H

IaaS

vCenter NSX

vROps

vRealize

2

Scale What does PCF
need from IaaS?

1

2 Availability

Stage

DC

Cluster3
RP

GR
DC

Cluster2
RP

GR
DC

Cluster1
RP

GR

Agent

CPI

Figure 34: PCF and vSphere for availability.

158

Security

Lastly, Pivotal Cloud Foundry needs to run applications in a secure and
auditable fashion, which can be a major challenge in a distributed envi-
ronment where hundreds or thousands of applications can be running on
a single PCF deployment.

The key here is to secure control of network access points and also be
able to audit and report on all access as it occurs, both of which are
enabled by vRealize in conjunction with the VMware NSX network virtual-
ization and security platform.

PCF requires that an external load balancing service take in requests and
forward them to the GoRouters, which then route requests to the applica-
tion instances or AIs. The NSX Edge provides the load balancing services
that PCF requires as well as offering network address translation (NAT)
services and SSL cryptographic protocols for securing application traffic.

Providing Repeatability, Auditability, and Network Controls

NSX provides the key networking characteristics of a developer-ready
infrastructure: repeatability, auditability, and software-defined network
controls. NSX is repeatable in that all required network and security poli-
cies are driven by the API and automated. PCF and BOSH are capable of
dynamically creating all required security principals within NSX to secure
the platform. Network controls are also software defined and allow the
platform operator to provide policy-driven, auditable controls but still
allow developers self-service and agile consumption of PCF networking
services.

Another aspect of the security services for a developer-ready infrastruc-
ture is provided by vRealize Log Insight. It ingests log information and
events from applications, providing information not only about whether
applications are being shut down, but also about who is shutting them
down, and what is happening to the applications themselves—allowing an
audit trail of the application’s lifecycle and events.

An Introduction to Cloud-Native Technology | 159

1

3

2 22

AI

AI

AI

AI

AI

MySQL

Service Tiles

RabbitMQ

External
Data

AZ1Metrics

BOSH Jobs
“instances”

vSphere
Clusters

Events

Ev
en

ts

M
et

ric
s

Pivotal Cloud Foundry

IaaS vSphere

NSX Networking

BuildPack

Root FS

Fire
Hose

Docker
Image

Ops
Man BOSH

PCF CTRL

War

AZ2 AZ3

DC

svc1.foo.com

myapp.foo.com

Diego Container

GR DC GR DC GR

S
er

vi
ce

 B
ro

ke
r

P
U
S
H

P
U
S
H

LB
SSL
NAT

IaaS

vCenter NSX

VRLIvROps

vRealize

2

Scale What does PCF
need from IaaS?

1

2 Availability

3 Selectivity Stage

DC

Cluster3
RP

GR
DC

Cluster2
RP

GR
DC

Cluster1
RP

GR

Agent

CPI

Figure 35: PCF and vSphere for security.

A Productive, Symbiotic Relationship

vSphere, NSX, vRealize Operations, and vRealize Log Insight work
seamlessly with Pivotal Cloud Foundry to address issues of scalability,
availability, and security. This ideal developer-ready infrastructure helps
Pivotal Cloud Foundry run optimally in production.

The result puts infrastructure teams and application development teams
in a productive, symbiotic relationship that returns immediate value for
the business. IT teams get secure, software-driven compute, storage,
and networking that is optimized for running, managing, and monitoring
workloads at scale with minimal manual processes. Development teams
receive common, shared tools that help them rapidly build cloud-native
applications with agile processes and modern architectures.

Case Study: Optimizing Critical
Banking Workloads
The financial services industry is constantly innovating to interact with
their customers in new ways. At the same time, the IT environment must
maintain a high level of economic efficiency, security, and robustness.
The need for increased agility poses a challenge to the banking industry
because it is subject to strict regulatory compliance.

160

Building on the proven foundation in server virtualization, VMware is
enabling new consumption models, building on open technology like
containers, while allowing customers to maintain a common platform and
consistent operational model.

A leading financial group in Asia that serves more than four million
customers with over 280 branches in 18 markets is, like so many other
businesses, adapting to change. “The experience of telcos, transport, and
retailing shows that we’re changing the way we communicate, the way we
commute, and the way we consume. So why would banking be immune
or be safeguarded from any of this?” the CEO of this financial group said.

Recognizing that change is required in order for this financial institution
to maintain and expand their leadership in the industry, the company’s
CIO gave the infrastructure team three goals:

1.	 Build a robust platform: Strengthen the technology and
infrastructure platform to build world-class infrastructure

2.	 Be nimble: Develop solutions to support strategic priorities

3.	 Go explore: Nurture technology innovation to enhance customer
experience

The team started by modernizing their data centers. Building on the
existing vSphere foundation and following VMware Validated Design™ for
vSphere metro-stretched clusters, they built new robust infrastructure to
host their 4,000 legacy applications as well as applications being re-plat-
formed from Solaris, AIX, and mainframe.

By design, for disaster avoidance, these clusters require resources avail-
able at all times in both primary and secondary data centers. This results
in clusters being 30 to 40 percent utilized. The challenge was how to
optimize cluster resource utilization across both of their data centers.

As part of their daily operations, this financial institution runs a lot of
batch processing for applications such as grid computing and risk calcu-
lations. These applications typically required dedicated infrastructure that
was maintained continuously but used sporadically, creating additional
wasted resources.

As a result, the financial institution is striving to optimize resource utili-
zation in existing infrastructure and reduce its infrastructure footprint for
batch applications.

An Introduction to Cloud-Native Technology | 161

VMWARE FOOTPRINT

•	 Server virtualization technology

•	 vSphere Integrated Containers

•	 VMware Technical Account Manager Services

The Solution

SOLUTION

Re-platforming applications from legacy Unix to Linux, packaged in con-
tainers, and leveraging VMware vSphere® Integrated Containers™ to increase
agility in scheduling batch jobs for business applications and improve
resource utilization across clusters and data centers.

They started by looking for small applications that could be distributed
and scaled horizontally. Guided by their VMware Technical Account
Manager (TAM), they participated in the vSphere Integrated Containers
Early Access Program. vSphere Integrated Containers has an opinionated
provisioning model promoting strong isolation by provisioning containers
as virtual machines (called container VMs). This financial institution found
that, by containerizing the batch processing applications and running
them with vSphere Integrated Containers, they were able to bring up
capacity on-demand for any batch job, using the overhead capacity in
their metro clusters. They used three criteria to identify candidates:

•	 Applications that do not readily support NAT’ing and require a
unique routable IP address (with vSphere Integrated Contain-
ers, this can be achieved without the need for a network overlay
because container images are instantiated as VMs, connected
directly to vSphere Port Groups)

•	 Applications that need to be horizontally scaled up or down on
demand (container VMs have access to vSphere cluster resources
based on resource pool allocation allowing for dynamic resource
allocation and resource balancing with vSphere Distributed
Resource Scheduler™)

•	 Applications that require data persistence (vSphere Integrated
Containers facilitates this by leveraging underlying vSphere
storage)

This allowed this financial institution to change the VMware consumption
model in ground-breaking manner. The consumption is now based on

162

dynamic quota assigned from the unused metro cluster capacity that can
be provisioned directly via the Docker API. To quote the application team:
“Get what you need when you need it. Then discard.”

Business Results and Benefits

BUSINESS BENEFITS

•	 Accelerated application deployment from weeks to seconds.

•	 Reduced CapEx by eliminating legacy infrastructure necessary to run
batch jobs.

•	 Reduced OpEx associated with operating systems maintenance and
day-2 operations.

This financial institution is now running two business-critical applica-
tions through vSphere Integrated Containers and planning to expand
to other similar batch type workloads. The ability to spin up the neces-
sary applications on-demand in a predictable way allows the IT team to
rapidly respond to the needs of the internal lines of business. In fact, they
measured that deployment time for these batch applications servers
went down from weeks to around 60 seconds. By leveraging the existing
vSphere infrastructure and the well-recognized isolation boundary pro-
vided by the vSphere Virtual Machine, they were able to increase agility
while maintaining the required level of governance and compliance.

On top of business agility, they were also able to bring savings to their
infrastructure costs. They can now distribute the applications and have
them share the same compute resources though the use of their batch
scheduler. Where batch jobs used to have dedicated pools of resources,
the load is now spread across the same pool of resources and scheduled
on demand.

•	 Batch workloads are now running in vSphere alongside legacy
workloads, and using all of the available capacity (50% overhead
from metro clustering).

•	 vSphere Distributed Resource Scheduler (DRS) provides elastic
resource management allowing them to schedule the excess metro
cluster capacity in an efficient manner.

•	 Since vSphere Integrated Containers included in their vSphere
licensing, it allows them to deploy this solution to all of their clus-
ters without incurring additional licensing costs.

An Introduction to Cloud-Native Technology | 163

•	 Batch applications no longer incur overhead when not in use
(before re-platforming, they would require dedicated infrastruc-
ture)

The solution also had a positive impact on their operational costs. The
immutable and ephemeral quality of the Container VMs means that they
were able to drastically reduce the operating systems maintenance and
other day-2 operations costs. Because the container VMs are short-lived,
it also allowed them to eliminate some of the security costs associated
with agents licensing.

APPLICATIONS VIRTUALIZED

•	 Various business-critical batch applications required for risk calculations
(hsVaR) And grid computing.

•	 Build Slaves for Jenkins software development process automation.

Looking Ahead

As the next step, this financial institution is planning to migrate the rest of
the batch applications that are already targeted to move to this platform.
More teams at the company are also experimenting with vSphere Inte-
grated Containers. One application team is now using vSphere Integrated
Containers to provision ephemeral Jenkins build slaves to optimize their
continuous integration pipeline. Other applications being investigated
include:

•	 Big data analytics: Spark compute with an object store as backend,
spinning up Spark container VMs.

•	 Security scanning: Fortify port scanning requires resources on
demand, which would fit well in the current model.

164

Conclusion
This book has introduced you to the world of cloud-native technology
and practices. By explaining the business value of container technology,
by exploring the use cases for containers and Kubernetes, and by demon-
strating how to deploy cloud-native applications, this book primes you to
begin adopting emerging technology to propel your organization into the
digital era.

Indeed, the cloud-native elements covered in this book— such as contain-
ers, Kubernetes, microservices, container platforms, DevOps, and the CI/
CD pipeline—converge into a powerful recipe for digital transformation:
You can optimize the use of your computing resources and your software
development practices to extend your enterprise’s adaptability, produc-
tivity, innovation, competitive advantage, and global reach.

Glossary
This glossary presents definitions for terminology in the cloud-native
space. The definitions are not intended to be axiomatic, dictionary-style
definitions but rather plain-language descriptions of what a term means
and an explanation of why the technology associated with it matters. For
some of the terms, meaning varies by usage, situation, perspective, or
context.

A
ACID: ACID stands for Atomicity, Consistency, Isolation, and Durability—
properties of database transactions that, taken together, guarantee the
validity of data in the face of power failures or system errors.

Active Directory: Microsoft Active Directory (AD) is a directory service
that authenticates users and controls access to personal computers,
servers, storage systems, applications, and other resources. An Active
Directory domain controller combines a Kerberos key distribution center
(KDC) with an LDAP server to provide authentication and authorization.
To authenticate the identity of users, AD uses the highly secure Kerberos
protocol or the legacy NT LAN Manager (NTLM). To authorize access to
resources, AD typically uses a Privilege Attribute Certificate (PAC), which
is a data structure in a Kerberos ticket that contains group memberships,
security identifiers, and other information about a user’s profile. See
LDAP.

An Introduction to Cloud-Native Technology | 165

AKS: Azure Container Service (AKS) is Microsoft’s managed Kubernetes
service that runs in Azure.

API server: In Kubernetes, the API server provides a frontend that han-
dles REST requests and processes data for API “objects,” such as pods,
services, and replication controllers.

Azure Container Registry. ACR is a private image registry from Microsoft
that includes geo-replication.

B
build: With Docker, it is the process of building Docker images by using a
Dockerfile. In the context of the CI/CD pipeline, the build process gener-
ates an artifact, such as a set of binary files that contain an application.

BOSH: An open source system that unifies release engineering, deploy-
ment, and lifecycle management for large distributed systems. BOSH
performs monitoring, failure recovery, and software updates with
zero-to-minimal downtime. Just as Kubernetes maintains the desire state
of a containerized application, BOSH maintains the desired state of the
underlying infrastructure, including Kubernetes itself, on which the appli-
cation runs.

C
Cassandra: A NoSQL database, Apache Cassandra manages structured
data distributed across commodity hardware. Common use cases include
recommendation and personalization engines, product catalogs, play lists,
fraud detection, and message analysis.

cloud computing: Cloud computing is an umbrella term for elastic, on-de-
mand, shared computing resources and services—such as computational
power, storage capacity, database usage, analytics, and software appli-
cations—delivered as a service over the Internet, typically with metered
pricing. The organizations that provide cloud computing are frequently
referred to as cloud providers. See also the definitions of the three
cloud-computing service models: IaaS, PaaS, and SaaS. For a formal defi-
nition and taxonomy of cloud computing, see the The NIST Definition of
Cloud Computing, NIST Special Publication 800-145, at https://csrc.nist.
gov/publications/detail/sp/800-145/final.

Cloud Foundry Container Runtime. Formerly called Kubo, for Kubernetes
on BOSH, CFCR is an open source project for deploying and managing
Kubernetes by using BOSH. For more information on CFCR, see Cloud-
Foundry.org. See also: BOSH.

166

cloud Infrastructure encompasses the servers, virtual machines, storage
systems, networking, and other components required for cloud com-
puting and infrastructure as a service. Cloud infrastructure provides the
building blocks, or primitives, for creating hybrid and private clouds that
deliver cloud computing services.

cloud-native applications: Generally speaking, cloud-native applications
are apps that are developed and optimized to run in a cloud as dis-
tributed applications. More specifically, according to the Cloud Native
Computing Foundation, cloud-native applications, which are also gen-
erally referred to as “modern” applications, are marked by the following
characteristics:

•	 Containerized for reproducibility, transparency, and resource isolation.

•	 Orchestrated to optimize resource utilization.

•	 Segmented into microservices to ease modification, maintenance,
and scalability.

Different organizations, however, have different definitions. Dell EMC, for
example, defines cloud-native application as a highly scalable next-gener-
ation distributed application architecture that uses open standards and is
dynamic in nature.

Cloud-native applications are typically developed and deployed on a
containers as a service platform (CaaS) or a platform as a service (PaaS).
Which see. See also: 12-factor app.

Cloud Spanner: A globally distributed, strongly consistent database
service that combines the benefits of a relational database structure with
non-relational horizontal scale.

cluster: Three or more interconnected virtual machines or physical
computers that, in effect, form a single system. A computer in a cluster
is referred to as a node. An application running on a cluster is typically a
distributed application because it runs on multiple nodes. By inherently
providing high availability, fault tolerance, and scalability, clusters are a
key part of cloud computing.

CNCF: Cloud Native Computing Foundation. An open source project
hosted by the Linux Foundation, the CNCF hosts Kubernetes and other
key open source projects, including Prometheus, OpenTracing, Fluentd,
and linkerd. VMware is a member of the Linux Foundation and the Cloud
Native Computing Foundation.

An Introduction to Cloud-Native Technology | 167

CNI: Container Network Interface. It is a open source project hosted by
the CNCF to provide a specification and libraries for configuring network
interfaces in Linux containers.

Concourse: Concourse is a system for continuous integration and contin-
uous delivery that works with Pivotal Cloud Foundry and other platforms
to help enterprise development teams release software early and often.
Note that in the context of Concourse, the D in CI/CD stands for deliv-
ery, not deployment. Concourse automates the testing and packaging of
frequent code commits. See CI/CD.

CoreDNS: An open source project, CoreDNS can integrate with Kuber-
netes, etcd, Prometheus, and other software to provide DNS and service
discovery with plugins. CoreDNS is hosted by the CNCF.

container: A portable, executable format, known as an image, for pack-
aging an application with all its dependencies and instructions on how
to run it. When the container image is executed, it runs as a process on a
computer or virtual machine with its own isolated, self-described applica-
tion, file system, and networking. A container is more formally known as
an application container. The use of containers is increasing because they
provide a portable, flexible, and predictable way of packaging, distrib-
uting, modifying, testing, and running applications. Containers speed up
software development and deployment.

containerize: To package an application in a container.

containerized application: An application that has been packaged to run
in one or more containers.

containers as a service: A container-as-a service platform helps devel-
opers build, deploy, and manage containerized applications, typically by
using Kubernetes or another orchestration framework, such as Mesos or
Docker Swarm.

container host: A Linux operating system optimized for running contain-
ers. Examples include CoreOS and Project Photon OS by VMware.

container registry: See registry.

controllers: In Kubernetes, controllers are processes started by the Kuber-
netes Controller Manager to perform the routine tasks associated with
managing a cluster.

CI/CD: Refers to either the continuous integration and continuous deliv-
ery pipeline or the continuous integration and continuous deployment
pipeline. Context often, but not always, disambiguates the abbreviation.

168

See continuous integration, continuous deliver, and continuous deploy-
ment.

continuous integration constantly combines source code from different
developers or teams into an app and then tests it.

continuous delivery readies an application or part of an application for
production by packaging and validating it.

continuous deployment automatically deploys an application or part of
an application into production.

converged infrastructure: Technology that brings together the dispa-
rate infrastructure elements powering IT, including servers, data storage
devices, networking functions, virtualization, management software,
orchestration, and applications. See hyper-converged infrastructure.

D
day one: Refers to deployment.

day two: Refers to post-deployment operations.

desired state: A key benefit of Kubernetes is that it automatically main-
tains the desired state—the state that an administrator or platform
operator specifies an application should be in.

DevOps: Delivering software in an expedient, reliable, sustainable way
requires collaboration between IT teams and developers. DevOps takes
place when developers and IT come together to focus on operations in
the name of streamlining and automating development and deployment.
DevOps is a key practice driving the development and deployment of
cloud-native applications.

developer-ready infrastructure: VMware vSphere, VMware NSX, VMware
vSAN, and VMware vRealize Operations lays the foundation for a soft-
ware-defined data center (SDDC). Running VMware Pivotal Container
Service or Pivotal Cloud Foundry on top of a VMware SDDC, for example,
produces developer-ready infrastructure—agile, self-service infrastructure
that is ready to use to build and run cloud-native applications.

digital transformation: Optimizing the use of your computing resources,
organizational processes, and software development practices to extend
your enterprise’s adaptability, productivity, innovation, competitive advan-
tage, and global reach. At a high level, digital transformation often entails
the adoption of new technologies, including cloud computing, mobile
devices, social media, and big data analytics. At a lower level, cloud-native

An Introduction to Cloud-Native Technology | 169

technologies and practices—such as containers, Kubernetes, microser-
vices, container platforms, DevOps, and the CI/CD pipeline—converge
into a powerful recipe for digital transformation.

Docker is a widely used container format. Docker defines a standard
format for packaging and porting software, much like ISO containers
define a standard for shipping freight. As a runtime instance of a Docker
image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

Docker Swarm is the name of a standalone native clustering tool for
Docker. Docker Swarm combines several Docker hosts and exposes them
as a single virtual Docker host. It serves the standard Docker API, so any
tool that already works with Docker can transparently scale up to multiple
hosts.

E
elastic: A resource or service that can dynamically expand or contract to
meet fluctuations in demand.

ELK stack: Elasticsearch, Logstash, and Kibana combine to form the
ELK stack. Taken together, these three open source projects provide a
platform to collect, search, analyze, and visualize data. Elasticsearch is
a distributed search and analytics engine that lets data engineers query
unstructured, structured, and time-series data. Logstash lets you collect
unstructured data, enrich it, and route it to another application, such as
Elasticsearch. Kibana is a visualization engine to display data in dash-
boards as graphics and maps.

etcd: A distributed key-value store that Kubernetes uses to store data
about its state and configuration.

F
fault tolerance: Fault tolerance is the property that lets a system continue
to function properly in the event of component failure.

Fluentd: A data collector for unified logging. Fluentd, which works with
cloud-native applications, is hosted by the CNCF.

170

G
GCP open service broker: It lets apps access Google cloud APIs from
anywhere.

Gemfire: Pivotal Gemfire is a distributed data management platform that
compresses operational data and holds it in memory to provide real-time,
consistent, and scalable access to data-intensive NoSQL applications.

Google Cloud Platform: GCP.

Google Kubernetes Engine: It is a managed environment to deploy and
scale containerized applications that are orchestrated by Kubernetes.

Greenplum Database: An ACID-compliant transactional database that
employs a shared-nothing, massively parallel processing architecture,
Pivotal Greenplum complies with SQL standards. It interoperates with
industry-standard business intelligence and ETL tools as well as Hadoop.
With a library of analytics functions and a framework for building custom
functions, Greenplum addresses data warehousing use cases for big data.

GRPC: A project of the CNCF, GRPC is a open-source universal remote
procedure call (RPC) framework for distributed systems. You can use it to
define a service by using Protocol Buffers, a binary serialization language.
GRPC also lets you automatically generate client and server stubs for a
service in various languages.

H
Hadoop: Hadoop comprises the Hadoop Distributed File System (HDFS)
and MapReduce. HDFS is a scalable storage system built for Hadoop and
big data. MapReduce is a processing framework for data-intensive com-
putational analysis of files stored in a Hadoop Distributed File System.
Apache Hadoop is the free, open-source version of Hadoop that is
managed by the Apache Software Foundation. The open-source version
provides the foundation for several commercial distributions, including
Hortonworks, IBM Open Platform, and Cloudera. There are also Hadoop
platforms as a service. Microsoft offers HDInsight as part of its public
cloud, Azure. Amazon Elastic MapReduce, or EMR, delivers Hadoop as a
web service through AWS.

Harbor: An open source project from VMware formally known as Project
Harbor, it is a secure registry that hosts repositories of container images.

Helm Chart: A package of Kubernetes resources that are pre-configured,
customized, and reproducible; you can then manage a chart with the

An Introduction to Cloud-Native Technology | 171

Helm tool. The charts help improve the portability of Kubernetes appli-
cations. A single chart can contain an entire web application, including
databases, caches, HTTP servers, and other resources.

horizontal pod autoscaler: In Kubernetes, a horizontal pod autoscaler is a
controller that adds resources to handle an increase in demand when the
requests to a service exceed the threshold set by the administrator.

hybrid cloud: Any modernized infrastructure that involves two or more
delivery models, such as private cloud and public cloud resources.

hyper-converged infrastructure integrates the same key types of IT
components that converged infrastructure does, but in a scalable rack or
appliance that simplifies management, improves performance, and adds
elastic scalability. See converged infrastructure.

I
image: With Docker, an image is the basis of a container. An image
specifies changes to the root file system and the corresponding execu-
tion parameters that are to be used in the container runtime. An image
typically contains a union of layered files systems stacked on top of each
other. An image does not have state and it never changes.

infrastructure as a service (IaaS): Infrastructure-as-a-service (IaaS)
provides on-demand access to underlying IT infrastructure, including
resources for storage, networking, and compute. With IaaS, a user can
provision IT services when they need them to deploy and run arbitrary
software. Users typically pay only for the resources they consume. The
user, however, does not manage or control the underlying cloud infra-
structure. See cloud computing.

ingress: In Kubernetes, ingress refers to an API object that controls exter-
nal access to the services in a Kubernetes clusters, such as HTTP and
HTTPS. Ingress can perform load balancing.

J
Jaeger: A distributed tracing system released as open source software by
Uber Technologies, Jaeger can monitor microservice-based architectures.
Use cases include distributed transaction monitoring, root cause analysis,
service dependency analysis, and performance optimization. Jaeger is
hosted by the CNCF.

JSON: JavaScript Object Notation is a minimalist data-interchange format
commonly used to annotate data, such as API output.

172

K
K8s: An abbreviation of sorts for Kubernetes.

KaaS: Kubernetes as a service.

Kafka: Apache Kafka partitions data streams and spreads them over
a distributed cluster of machines to coordinate the ingestion of vast
amounts of data for analysis. More formally, Kafka is a distributed pub-
lish-subscribe messaging system. A key use of Kafka is to help Spark or
a similar application process streams of data. In such a use case, Kafka
aggregates the data stream—for example, log files from different serv-
ers—into “topics” and presents them to Spark Streaming, which analyzes
the data in real time.

kops: This term stands for Kubernetes Operations, a command-line tool to
help you install, maintain, and upgrade Kubernetes clusters.

Kubernetes: An orchestration system that automates the deployment
and management of containerized applications. As an application and its
services run in containers on a distributed cluster of virtual or physical
machines, Kubernetes orchestrates all the moving pieces to optimize the
use of computing resources, to maintain the desired state, and to scale on
demand. Kubernetes is also referred to as an orchestration framework or
an orchestration engine. See desired state and orchestration.

kubectl: A command-line interface that you install on your computer and
use to run commands that control and manage Kubernetes clusters.

kubelet: The agent that runs on each node in a Kubernetes cluster to
manage pods. A PodSpec specifies how kubelet is to work. A PodSpec
is a YAML or JSON object that describes a pod. The kubelet takes a set
of PodSpecs that are provided through various mechanisms (primarily
through the API server) and ensures that the containers described in
those PodSpecs are running and healthy.

Kubo: See Cloud Foundry Container Runtime.

L
LDAP: Lightweight Directory Access Protocol. It is a standard protocol for
storing and accessing directory service information, especially usernames
and passwords. Applications can connect to an LDAP server to verify
users and groups.

Lightwave: An open source security platform from VMware, Project
Lightwave secures cloud platforms by providing a directory service,

An Introduction to Cloud-Native Technology | 173

Active Directory interoperability, Kerberos authentication, and certificate
services. Lightwave empowers IT security managers to impose the proven
security policies and best practices of on-premises computing systems on
their cloud computing environment. More specifically, Lightwave includes
the following services:

•	 Directory services and identity management with LDAP and Active
Directory interoperability

•	 Authentication services with Kerberos, SRP, WS-Trust (SOAP),
SAML WebSSO (browser-based SSO), OAuth/OpenID Connect
(REST APIs), and other protocols

•	 Certificate services with a certificate authority and a certificate
store

linkerd: A service mesh that adds service discovery, routing, failure han-
dling, and visibility to cloud-native applications. linkerd is hosted by the
CNCF.

M
Memcached: As a system that caches data in the distributed memory of
a cluster of computers, Memcached accelerates the performance of web
applications by holding the results of recent database calls in random-ac-
cess memory (RAM).

microservices: A “modern” architectural pattern for building an appli-
cation. A microservices architecture breaks up the functions of an
application into a set of small, discrete, decentralized, goal-oriented pro-
cesses, each of which can be independently developed, tested, deployed,
replaced, and scaled. See cloud-native application.

micro-segmentation: With VMware NSX, micro-segmentation policies
can specify granular traffic flow patterns among, for instance, the Kuber-
netes namespaces in which containerized applications are running. With
micro-segmentation, you can craft rules that impose security require-
ments on workloads and isolate resources at the level of microservices.

Minikube: A tool that lets you run a single-node Kubernetes cluster inside
a virtual machine or locally on a personal computer.

MongoDB: A distributed NoSQL document database, MongoDB stores
data with a flexible, schema-free data model that can adapt to change.
MongoDB includes secondary indexes, geospatial search, and text search.
Common use cases include serving data to mobile applications and per-
forming real-time analytics.

174

MySQL: It is an open source relational database management system
(RDMS) that is commonly used in various types of applications, especially
web apps. It is also widely embedded in the solutions distributed by inde-
pendent software vendors (ISV) and original equipment manufacturers
(OEM). In the name, SQL stands for Structured Query Language.

N
namespace: In the context of a Linux computer, a namespace is a feature
of the kernel that isolates and virtualizes system resources. Processes that
are restricted to a namespace can interact only with other resources and
processes in the same namespace.

In Docker, namespaces isolate system resources like networking and
storage.

In Kubernetes, when many virtual clusters are backed by the same under-
lying physical cluster, the virtual clusters are called namespaces.

NIST: The National Institute of Standards and Technology, which is part of
the U.S. Department of Commerce. NIST publishes standards, guidelines,
and requirements for information security.

NodePort: In Kubernetes, a NodePort presents a service, such as a web
server, on a port on the nodes in a Kubernetes cluster for external access.

NoSQL: A NoSQL database stores data that is structured in a way other
than the tabular relationships of traditional relational databases. NoSQL is
also known as non-SQL, non-relational, and not-only SQL. NoSQL data-
bases are commonly used for big data and real-time data processing.
Popular examples of NoSQL databases include MongoDB, Cassandra, and
Pivotal Gemfire.

NSX: VMware NSX is a product that provides software-defined network
virtualization.

O
OCI stands for Open Container Initiative, an organization dedicated to
setting industry-wide container standards. OCI was formed under the
auspices of the Linux Foundation for the express purpose of creating
open industry standards around container formats and runtime. The OCI
contains two specifications: the Runtime Specification (runtime-spec)
and the Image Specification (image-spec). VMware is a member of OCI.
See https://www.opencontainers.org/.

An Introduction to Cloud-Native Technology | 175

OpenTracing: A vendor-neutral standard for distributed tracing. It is
hosted by the CNCF.

opinionated platform: See prescriptive platform.

orchestration: Because it can automatically deploy, manage, and scale a
containerized application, Kubernetes is often referred to as an orches-
tration framework or an orchestration engine. It orchestrates resource
utilization, failure handling, availability, configuration, desired state, and
scalability.

P
PaaS: See platform as a service.

PAS: Pivotal Application Service. Formerly known as Elastic Runtime, PAS
runs Java, .NET, and Node apps on Pivotal Cloud Foundry.

PCF: Pivotal Cloud Foundry, a private platform as a service for developing
and deploying cloud-native applications.

PKS: Pivotal Container Service, a Kubernetes-based container service.

Photon OS: An open source project from VMware, Project Photon OS is a
Linux operating system optimized for running containers.

platforms: The overarching business objective of using a container
platform is to accelerate the development and deployment of scalable,
enterprise-grade software that is easy to modify, extend, operate, and
maintain. Three types of platforms provide varying degrees of support for
container technology:

•	 A platform for running individual container instances. A platform
for running container instances helps developers build and test
a containerized application. It does not, however, orchestrate the
containerized application with Kubernetes, nor does it provide a
service broker so that developers can integrate tools, databases,
and services with an app. An example of a container instance plat-
form is VMware vSphere Integrated Containers.

•	 Containers as a service.

•	 Platform as a service.

platform as a service: platform-as-a-service (PaaS) is a cloud-based
environment for developing, testing, and running applications using pro-
gramming languages, libraries, services, and tools supported or offered
by the platform’s provider. A platform as a service is sometimes referred

176

to simply as an application platform. In this context, an application
platform helps developers not only write code but also integrate tools
and services, such as a database, with their application as, for instance,
microservices. An example of a private platform as a service that is also
referred to as an application platform is Pivotal Cloud Foundry. See con-
tainers as a service, infrastructure as a service, and cloud computing.

platform developer: An engineer who customizes a Kubernetes platform
(or another modern platform) to fit the needs of their project or organi-
zation.

platform operator: An engineer who manages a platform like Kubernetes.

pod: On Kubernetes, a pod is the smallest deployable unit in which one
or more containers can be managed—in other words, you run a container
image in a pod. A set of pods typically wraps a container, its storage
resources, IP address, and other options up into an instance of an applica-
tion that will run on Kubernetes. Docker is usually the container runtime
used in a pod. A Kubernetes administrator or application developer
specifies a pod by using a YAML file. Pods are commonly managed by a
deployment, which see.

PostgreSQL: Also known as Postgres, it is an extensible object-relational
database management system that securely stores data for large Inter-
net-facing applications or data warehouses. Postgres is ACID-compliant;
see ACID.

prescriptive platform: In the context of application platforms, a pre-
scriptive platform hides the platform’s complexity from developers by
prescribing that developers use the system’s formats, pipeline, and meth-
ods for building and running applications. For example, a prescriptive
container platform might prescribe a scheduler, a runtime engine, inte-
gration with the underlying infrastructure, continuous delivery, and other
aspects of the platform. A prescriptive platform is also referred to as an
“opinionated” platform.

private cloud: A fully virtualized data center that includes two key
capabilities that increase agility and are different from a virtualized data
center: self-service and automation.

Prometheus: A open source monitoring system for Kubernetes. Pro-
metheus is hosted by the CNCF.

pull: Downloading a container image from a registry into a local cache so
that you can launch containers based on the image.

An Introduction to Cloud-Native Technology | 177

Q
quality of service: It is often abbreviated QoS.

R
RabbitMQ: An open source message broker, RabbitMQ implements the
Advanced Method Queuing Protocol to give applications a common inter-
mediate platform through which they can connect and exchange data.

RBAC: role-based access control. On Kubernetes, RBAC is a module that
authorizes access to resources by role. RBAC empowers administrators to
dynamically configure access policies through the Kubernetes API.

Redis: A key-value database, Redis can store a dataset in a networked,
in-memory cache. Because keys in Redis can contain strings, hashes, lists,
sets, sorted sets, bitmaps, and hyperlogs, Redis is often referred to as a
data structure server. Data scientists, for instance, can perform operations
on these data types to do things like compute set intersection, union and
difference, and ranking.

registry: A hosted service that contains repositories of container images.
Harbor, an open source project from VMware, is an example of a registry.

replica set: In Kubernetes, a replica set is a controller that manages the
lifecycle of pods. See controllers.

repository: In the context of containers, a repository is a set of container
images. The repository can be shared with other users through a registry
server, and the images in the “repo” can be tagged with labels.

refactoring: Re-architecting an application or modifying its code to
improve it. An application might, for example, be refactored by decom-
posing it into microservices.

repackaging: Placing a traditional application in a container format.

replatforming: Moving an application to another, more efficient platform.
If the application being migrated is a traditional application and if the new
platform uses containers, replatforming also involves repackaging.

rkt: Pronounced like rocket, rkt is a standards-based container engine
from CoreOS.

runC: The code module that launches containers. It is part of containerd
and managed by OCI, which stands for Open Container Initiative. See OCI.

178

S
scheduler: A module of a system or a software component that sched-
ules and runs the deployment of containers, jobs, tasks, or another type
of workload. Most public cloud services, such as Microsoft Azure, include
a scheduler that lets you create jobs in the cloud. The jobs can, in turn,
invoke services or tasks, such as backing up data or cleaning up logs.

service: The definition of service varies by context. In Kubernetes, it is an
API object that describes how to access applications, such as a set of
pods, by using methods like ports or load-balancers.

A service may also be a microservice within the context of some larger
application. An HTTP server, for example, is a service.

service discovery: The automatic detection of services in a given context.

software-defined data center (SDDC): A data center in which infrastruc-
ture is virtualized and delivered as a service. The infrastructure of an
SDDC includes virtualized networking and software-defined data storage
and management. An SDDC supports applications in a way that is more
flexible, agile, efficient, and cost-effective than traditional approaches. In
a SDDC, all the components of infrastructure—compute, networking, stor-
age, security, and availability—are abstracted and delivered as automated,
policy-driven software. An SDDC radically reduces manual processes,
speeds up IT service delivery, reduces costs, and improves ROI.

software as a service (SaaS): An application running on a cloud infra-
structure that is used over a network, typically the Internet, instead of
being downloaded and installed on local machines. The consumer of the
service does not manage or control the underlying cloud infrastructure or
the application’s capabilities. Also known as a web app.

Spanner: See Cloud Spanner.

Spark: Apache Spark is an engine for large-scale data processing that can
be used interactively from the Python shell. Spark combines streaming,
SQL, and complex analytics by powering a stack of tools that can coexist
in the same application. Spark can access diverse data sources, including
not only the Hadoop File System (HDFS) but also Cassandra and Mon-
goDB. Data scientists like Spark because they get access to Python’s
powerful numeric processing libraries.

spec: In Kubernetes, spec stands for specification. The specification is a
description of a desired state, including the configuration supplied by a
user.

An Introduction to Cloud-Native Technology | 179

Spring Cloud Data Flow: A toolkit for building data integration and real-
time data processing pipelines. The Spring Cloud Data Flow server uses
Spring Cloud Deployer to integrate pipelines with Pivotal Cloud Foundry,
Mesos, or Kubernetes. Spring Cloud Data Flow helps engineers develop
analytics pipelines by providing a distributed system that unifies inges-
tion, real-time analytics, batch processing, and data export.

StatefulSet: In Kubernetes, a StatefulSet manages the deployment and
scaling of a set of pods according to your desired state. A stateful set
can, for example, manage persistent storage and other resources for
stateful pods.

swarm: With Docker, a swarm is a cluster of one or more Docker Engines
running in swarm mode. Docker Swarm, however, is not the same thing as
the swarm mode features in Docker Engine. See Docker Swarm.

T
tag: With Docker, a tag is a label that a user applies to a Docker image to
distinguish it from other images in a repository.

the cloud: Computing resources available over the Internet. See cloud
computing.

traditional application: A traditional application is monolithic in design
with an n-tier application architecture that generally consists of database,
application, and web servers. These components are usually tightly cou-
pled with the infrastructure and dependent on it for high availability.

U
UID: It can stand for user identifier, user ID, or unique identifier, depending
on the context or the system. With Kubernetes, for example, a UID is a
string that uniquely identifies an object.

V
Vagrant: HashiCorp’s Vagrant turns a machine’s configuration into a dis-
tributable template to produce a predictable development environment
for applications.

W
workload: A workload is the computational or transactional burden of
a set of computing, networking, and storage tasks associated with an
application. Similar apps with the same technology and tools can have
radically different workloads under different circumstances or during

180

different times. Workloads can often be measured by CPU or memory
consumption, network traffic, requests, database queries, transactions,
and so forth. In very basic, broad terms, an application is a thing that
processes something; a workload is the processing that’s being done; and
a use case is the reason that you do it. In the context of cloud computing
and Kubernetes clusters, a workload can be seen as the amount of work
that an instance of an app or part of an app performs during a certain
time period.

X
XML: Extensible Markup Language. It is a flexible but verbose format for
structuring and exchanging data. XML is often used in legacy applica-
tions, Java applications, and web applications for a variety of purposes,
such as structuring configuration files or exchanging data. Although XML
is sometimes used in cloud-native applications, JSON or YAML (which
see) are the preferred data formats.

Y
YARN: A sub-project of Apache Hadoop, YARN separates resource man-
agement from computational processing to expand interactional patterns
beyond MapReduce for data stored in HDFS. YARN allocates resources
for Hadoop applications such as MapReduce and Storm as they perform
computations. YARN, in effect, stands at the center of a Hadoop environ-
ment by providing a data operating system and pluggable architecture
for other applications.

YAML: A human-readable data serialization standard commonly used in
configuration files to structure information and commands. In Kubernetes,
specification files are written in YAML.

volume: With Docker, a volume (or data volume) is a designated direc-
tory within one or more containers that bypasses the Union File System.
Volumes are designed to persist data independent of the container’s life
cycle.

Z
ZooKeeper: Apache ZooKeeper coordinates distributed applications mas-
querading as animals. It provides a registry for their names. It configures
and synchronizes them. It keeps them from running amok.

An Introduction to Cloud-Native Technology | 181

Numbers
12-factor app: A methodology for developing a software-as-a-service
(SaaS) application—that is, a web app—and typically deploying it on a
platform as a service or a containers as a service.

VMware, Inc.
3401 Hillview Avenue
Palo Alto CA 94304
USA Tel 877-486-9273
Fax 650-427-5001
www.vmware.com.

Copyright © 2018 VMware, Inc. All rights reserved. This product is protected by U.S. and inter-
national copyright and intellectual property laws. VMware products are covered by one or more
patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trade-
mark of VMware, Inc. and its subsidiaries in the United States and/or other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies.

