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Introduction 
Digital transformation, the commoditization of IT, the Internet of things, 
the proliferation of mobile devices, the growing popularity of public 
clouds, big data, and other seismic technological changes are radically 
altering the way businesses are run. Innovative software applications 
are, for many businesses, a critical objective. Consumers, customers, and 
keeping ahead of the competition demand it.  

But one-time innovation is often not enough. The digital era calls for 
continuous innovation at an accelerated pace—and the kind of modern-
ized data centers and software development technologies that make it 
possible. 

Container technology can help transform a company into a digital 
enterprise focused on delivering innovations at the speed of business. 
Containers package applications and their dependencies into a distribut-
able image that can run almost anywhere, streamlining the development 
and deployment of software. 

By adopting containers, organizations can take a vital step toward 
remaking themselves into flexible, agile digital enterprises capable of 
accelerating the delivery of innovative products, services, and customer 
experiences. Enterprises can become the disrupters instead of the dis-
rupted.

But containers create technology management problems of their own, 
especially when containerized applications need to be deployed and 
managed at scale, and that’s when Kubernetes comes into play. Kuber-
netes automates the deployment and management of containerized 
applications. More specifically, Kubernetes orchestrates containerized 
applications to manage and automate resource utilization, failure han-
dling, availability, configuration, desired state, and scalability.

This book introduces you to containers and Kubernetes, explains their 
business value, explores their use cases, and illuminates how they can 
accelerate your organization’s digital transformation.

Organization of this Book 
The chapters at the beginning of the book explain the business value 
container technology and examine how enterprises are modernizing their 
data centers to take advantage of cloud-native innovations. 

After briefly examining the architectural patterns, practices, processes, 
and pipelines that help propel you toward digital transformation, the book 
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considers the kind of infrastructure, virtualization technologies, systems, 
and security required by next-generation data centers. 

The chapters that follow become increasingly technical as they use two 
key products from VMware—VMware vSphere Integrated Containers 
and VMware Pivotal Container Service—to explain the architecture of 
cloud-native applications, the capabilities of Kubernetes, and the use 
cases for container technology. 

The final sections of the book turn to examples that demonstrate how to 
exploit the power of containers and Kubernetes to solve technical 
problems. 

Point of Departure: 
Cloud-Native Terminology
Container technology comes with its own lexicon. If you’re familiar with 
the basic terminology around containers, Kubernetes, and cloud-native 
applications, you can skip this section. For plain-language descriptions of 
terminology in the cloud-native space, see the glossary at the end of the 
book.

Containers

Container: A portable format, known as an image, for packaging an 
application with instructions on how to run it as well as an environment 
in which the image is executed. When the container image is executed, it 
runs as a process on a computer or virtual machine with its own isolated, 
self-described application, file system, and networking. A container is 
more formally known as an application container. The use of containers 
is increasing because they provide a portable, flexible, and predictable 
way of packaging, distributing, modifying, testing, and running applica-
tions. Containers speed up software development and deployment.

Docker is a widely used container format. Docker defines a standard 
format for packaging and porting software, much like ISO containers 
define a standard for shipping freight. As a runtime instance of a Docker 
image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

Containerized application: An application that has been packaged to run 
in a container.
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Kubernetes and Orchestration

Kubernetes: A system that automates the deployment and manage-
ment of containerized applications. As an application and its services 
run in containers on a distributed cluster of virtual or physical machines, 
Kubernetes manages all the moving pieces to optimize the use of com-
puting resources, to maintain the desired state, and to scale on demand. 
On Kubernetes, a container (or a set of related containers) is deployed in 
a logical unit called a pod. In addition to scheduling the deployment and 
automating the management of containerized applications, a key bene-
fit of Kubernetes is that it maintains the desired state—the state that an 
administrator specifies the application should be in.

Cluster: Three or more interconnected virtual machines or physical 
computers that, in effect, form a single system. A computer in a cluster 
is referred to as a node. An application running on a cluster is typically a 
distributed application because it runs on multiple nodes. By inherently 
providing high availability, fault tolerance, and scalability, clusters are a 
key part of cloud computing.

Orchestration: Because it can automatically deploy, manage, and scale a 
containerized application, Kubernetes is often referred to as an orches-
tration framework or an orchestration engine. It orchestrates resource 
utilization, failure handling, availability, configuration,desired state, and 
scalability.

Application Types and Architectural Patterns

Microservices: A “modern” architectural pattern for building an appli-
cation. A microservices architecture breaks up the functions of an 
application into a set of small, discrete, decentralized, goal-oriented pro-
cesses, each of which can be independently developed, tested, deployed, 
replaced, and scaled.

Cloud-native applications: Generally speaking, they are developed and 
optimized to run in a cloud as distributed applications. According to the 
Cloud Native Computing Foundation, cloud-native applications, which 
are also generally referred to as “modern” applications, are marked by the 
following characteristics:

•	 Containerized for reproducibility, transparency, and resource 
isolation.
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•	 Orchestrated to optimize resource utilization.

•	 Segmented into microservices to ease modification, maintenance, 
and scalability.

Cloud-native applications are typically developed and deployed on a con-
tainers as a service platform (CaaS) or a platform as a service (PaaS).

12-factor app: A methodology for developing a software-as-a-service 
(SaaS) application—that is, a web app—and typically deploying it on a 
platform as a service or a containers as a service.

Platforms

The overarching business objective of using a container platform is to 
accelerate the development and deployment of scalable, enterprise-grade 
software that is easy to modify, extend, operate, and maintain. Three 
types of platforms provide varying degrees of support for container tech-
nology:

•	 A platform for running individual container instances.

•	 Containers as a service.

•	 Platform as a service.

A platform as a service is often referred to simply as an application plat-
form. In this context, an application platform helps developers not only 
write code but also integrate tools and services, such as a database, with 
their application as microservices. An example of a private platform as a 
service that is also referred to as an application platform is Pivotal Cloud 
Foundry.

A container-as-a service platform helps developers build, deploy, and 
manage containerized applications, typically by using Kubernetes or 
another orchestration framework. An example of a container as a service 
platform is VMware Pivotal Container Service.

A platform for running container instances helps developers build and 
test a containerized application. It does not, however, orchestrate the 
containerized application with Kubernetes, nor does it provide a ser-
vice broker so that developers can integrate tools, databases, and 
services with an app. An example of a container instance platform is 
VMwarevSphere Integrated Containers.
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Platforms and Developer Operations

Delivering software in an expedient, reliable, sustainable way requires col-
laboration between IT teams and developers. DevOps takes place when 
developers and IT come together to focus on operations in the name of 
streamlining and automating development and deployment. DevOps is a 
key practice driving cloud-native applications.

To help DevOps, a container platform provides some or all of the follow-
ing services:

•	 Lets developers add tools and services to their app through a ser-
vice broker or catalog.

•	 Adds security, logging, monitoring, analytics, dashboards, mainte-
nance, and other operational features.

•	 Provides container networking.

•	 Exposes an API.

•	 Automates some or all delivery and deployment processes.

•	 Eases continuous integration, continuous delivery, and continuous 
deployment.

Continuous Integration, Delivery, and 
Deployment

Continuous integration constantly combines source code from different 
developers or teams into an app and then tests it. Continuous delivery 
readies an application or part of an application for production by pack-
aging and validating it. Continuous deployment automatically deploys an 
application or part of an application into production. The entire process 
forms the CI/CD pipeline when the D in the abbreviation is assumed to 
represent deployment.
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Digital Transformation

All the modernizing elements covered in this section—containers, 
Kubernetes, microservices, container platforms, DevOps, and the CI/CD 
pipeline—converge into a powerful recipe for digital transformation: You 
can optimize the use of your computing resources and your software 
development practices to extend your enterprise’s adaptability, produc-
tivity, innovation, competitive advantage, and global reach.

THE BUSINESS BENEFITS OF MODERNIZATION
The use of containers, microservices, and Kubernetes modernizes application 
development, yielding business benefits that ultimately bolster your competitive 
advantage:

•	 Shorten software’s time to market

•	 Improve developer agility and productivity

•	 Respond faster to change
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Driving Digital Transformation with 
Containers and Kubernetes
Container technology is a key contributing factor to achieving digital 
transformation. This chapter connects the dots between containers and 
Kubernetes on the one hand and digital transformation and business 
value on the other.

The Business Value of Digital 
Transformation
The reasons enterprises are undergoing digital transformation are clear:

•	 Create new applications that engage customers in innovative and 
captivating ways.

•	 Improve operations to more efficiently deliver better products and 
services at a lower cost to the business.

•	 Generate new revenue streams by rapidly adapting to changes in 
market conditions and consumer preferences.

The ingredients for building effective applications are less clear than the 
desired outcomes.

To be effective in this era, applications require an architecture that fosters 
fluid, rapid, responsive development and deployment while still main-
taining the security, performance, and cost-effectiveness of established 
patterns. Containers provide the basis for a new application architecture 
that supports digital transformation and lays the foundation for innova-
tion. Organizations that are adopting containers see them as a fast track 
to building and deploying cloud-native applications and twelve-factor 
apps.

Cloud-Native Applications
The Cloud Native Computing Foundation, a project of The Linux 
Foundation, defines cloud-native applications as follows:1

1.	 Containerized—Each part (applications, processes, etc.) is 
packaged in its own container. This facilitates reproducibility, trans-
parency, and resource isolation.

1 This definition is from the FAQ of the Cloud Native Computing Foundation, 
https://www.cncf.io/about/faq/.
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2.	 Dynamically orchestrated—Containers are actively scheduled and 
managed to optimize resource utilization.

3.	 Microservices oriented—Applications are segmented into micros-
ervices. This segmentation significantly increases the overall agility 
and maintainability of applications.

Kubernetes covers the second part of the definition by scheduling and 
managing containers. For the third part, both Kubernetes and Docker 
help implement microservices.

The key element, however, is the container—a process that runs on a 
computer or virtual machine with its own isolated, self-described applica-
tion, file system, and networking. A container packages an application in a 
reproducible way: It can be distributed and reused with minimal effort.

DOCKER CONTAINER DEFINED
With containers, Docker has defined a standard format for packaging and port-
ing software, much like ISO containers define a standard for shipping freight. As 
a runtime instance of a Docker image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

—Adapted from the Docker Glossary

Docker containers are the most widely deployed container. A manifest, 
called a Dockerfile, describes how the image and its parts are to run in 
a container on a host. To make the relationship between the Dockerfile 
and the image concrete, here’s an example of a Dockerfile that installs 
MongoDB on an Ubuntu machine running in a container. The lines starting 
with a number sign are comments describing the subsequent commands.

# MongoDB Dockerfile from https://github.com/dockerfile/mon-
godb
# Pull base image.
FROM dockerfile/ubuntu
# Install MongoDB.
RUN \
  apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 
--recv 7F0CEB10 && \
  echo ‘deb http://downloads-distro.mongodb.org/repo/ubun-
tu-upstart dist 10gen’ > /etc/apt/sources.list.d/mongodb.
list && \
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  apt-get update && \
  apt-get install -y mongodb-org && \
  rm -rf /var/lib/apt/lists/*
# Define mountable directories.
VOLUME [“/data/db”]
# Define working directory.
WORKDIR /data
# Define default command.
CMD [“mongod”]
# Expose port 27017 for the process and port 28017 for http
EXPOSE 27017
EXPOSE 28017

12-Factor Apps: A Methodology for 
Delivering Software as a Service
In contrast to the cloud-native application, the 12-factor app is defined as 
much by its processes as by its systemic properties. It is a methodology 
for developing a software-as-a-service (SaaS) application—that is, a web 
app—and typically deploying it on a platform-as-a-service (PaaS), such as 
Pivotal Cloud Foundry. Here are the 12 factors with a brief explanation of 
each one:2

1.	 Deploy the application many times from one codebase. The 
codebase is stored in a repository, managed with a version con-
trol system such as Git as it is modified, and then deployed many 
times as a running instance of the app from the same codebase. As 
a result, a deployment is often running in three environments: on 
each developer’s local environment, in a staging environment, and 
in the production environment.

2.	 Declare and isolate dependencies. The app does not implicitly rely 
on system-wide packages; instead, it declares the dependencies 
in a declaration manifest. Explicitly declaring dependencies makes 
it easier for new developers to set up their development environ-
ment.

3.	 Store the configuration in the environment, not the code. For con-
figuration information that varies by deployment, the app stores 
the information in environmental variables. The environmental 
variables are granular controls that are managed independently 
for each deployment so that the app can easily scale into more 
deployments over time.

4.	 Connect to supporting services, such as a database or a storage 
system, instead of including it in the code. The app treats such 

2 The twelve factors are paraphrased from the descriptions at the Twelve-Factor 
App web site.	
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services as resources that can be attached to or detached from a 
deployment by modifying the configuration.

5.	 Treat build and run as separate stages. A deployment of the 
codebase takes place in three separate stages: build, release, and 
runtime. The build stage converts the codebase into an execut-
able—a build—and then the release stage combines the build with 
the configuration to produce a release that’s ready for execution in 
the runtime environment.

6.	 Run the app as stateless processes. The processes share nothing 
with other processes, and data that must persist is stored in a data-
base running as a stateful supporting service.

7.	 Expose services by using port binding. Taking HTTP as an example, 
the app exports HTTP as a service by binding to a port and listen-
ing on the port for incoming requests.

8.	 Scale out by adding concurrent processes. The app handles 
workloads by assigning each type of work to a process type. A 
web process, for example, handles HTTP requests, while a worker 
process manages background tasks.

9.	 Ensure durability with disposability. Processes are disposable—they 
can be started or stopped quickly to make sure that the application 
can be changed or scaled easily.

10.	Make development and production peers. The app is geared 
toward continuous deployment by allowing developers to integrate 
new code quickly and to deploy the app themselves in a produc-
tion environment. The production and development environments 
should be as similar as possible.

11.	 Process logs as event streams. The app neither routes nor stores 
the output stream from its logs but instead writes it as a stream of 
data to standard output, where it is to be collected by the execu-
tion environment and routed to a tool or system, such as Hadoop, 
for storage or analysis.

12.	Run one-off management scripts and tasks, such as a database 
migration, in an environment identical to that of the app’s long-run-
ning processes.

Containers and Kubernetes help satisfy aspects of these imperatives. 
Containers, for example, play a key role in 12-factor apps by letting you 
declare and isolate dependencies. Containers also help ensure durability 
with disposability by, among other things, starting quickly and stopping 
gracefully. Many of the other factors are supported by Kubernetes.
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The Business Value of Kubernetes
Kubernetes uses its architecture and capabilities to manage containerized 
applications in a distributed cluster. The results help fulfill the business 
promise of digital transformation:

•	 Kubernetes makes it easier and cheaper to run applications in 
public, private, or hybrid clouds.

•	 Kubernetes accelerates application development and deployment.

•	 Kubernetes increases agility, flexibility, and the ability to adapt to 
change.

ADVANTAGES OF USING KUBERNETES

•	 Consolidate servers and reduce costs through efficient resource utiliza-
tion.

•	 Ease and expedite application deployment.

•	 Decouple applications from machines for portability and flexibility.

•	 Easily modify, update, extend, or redeploy applications without affecting 
other workloads.

•	 Elegantly handle system faults and machine failures through automation, 
self-healing. and high availability.

•	 Automate scalability for containerized applications.

An Example Use Case
A short case study provides a high-level use case for managing contain-
ers with Kubernetes.

A taxicab company in a major metropolitan area is losing riders to 
car-sharing services, imperiling its once-strong local market share. It 
needs to transform itself into a digital enterprise capable of competing 
with car-sharing companies. To do so, the company wants to develop its 
own mobile app, cost-effectively run the app in its modest data center, 
and attempt to provide innovative services.

To its credit, the taxi company retains a number of advantages: a 
well-known, long-established local brand with a reputation for timely, 
courteous, safe drivers.

As recently hired developers work on the mobile app, the taxi company 
modernizes its data center with commodity hardware and virtualization. 
To maximize resource utilization of its small data center and to minimize 
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costs, the company plans to run its new app in Docker containers on vir-
tual machines. Kubernetes will orchestrate the containerized application.

After being rolled out and advertised in and on its cars, the app is an 
instant success. To meet fluctuations in use of the app, the company 
uses Kubernetes to dynamically scale the number of containers running 
the app. For example, when metrics for the app hit a predefined thresh-
old indicating high usage, which typically happens during rush hour, the 
company’s DevOps team uses the horizontal pod autoscaling feature 
of Kubernetes to automatically maximize the number of containers so 
that the system can match demand. At 4 am, in contrast, the number of 
containers is reduced to elastically match the low demand at that time, 
conserving resources.

The mobile app correlates ride requests with location. By mining the 
data and combining it with its intimate historic knowledge of the city’s 
patterns, the cab company can station cabs in the perfect locations for 
hailing customers—preempting some car requests to the competition. 
What’s more, because the company processes the app’s logs as event 
streams, the company can do this dynamically during day and night, 
shifting cars to hot spots.

Because the company implemented the app by using containers, devel-
opers can roll out new changes daily. The data that the app collects helps 
the company pinpoint new features and quickly innovate to focus on 
its strengths, such as identifying recurring customers and rolling out a 
rewards program to retain them.

The business benefits of the company’s technical agility, containerized 
application, and Kubernetes orchestration add up to a competitive 
advantage:

•	 The scheduling policies in Kubernetes give the company the elas-
ticity it needs to dynamically match demand in a cost-effective way 
with its modest but now-modernized data center.

•	 Faults and failures are handled automatically by Kubernetes, reduc-
ing troubleshooting demands on its small DevOps staff.

•	 The seamless modification of the app and its features helps the 
company beat its bigger, less local rivals by being more agile and 
better able to apply its knowledge of local patterns.

•	 Containers and Kubernetes make it easier and cheaper to run the 
app.

•	 The ease with which the DevOps team can port containers from 
the test environment to production accelerates the development 
and deployment of new features.
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Demystifying Kubernetes
As an emerging technology with a Greek name, Kubernetes carries 
mythical connotations. Some of its features only add to the suspicion of 
magic—the meaning of capabilities like automatic binpacking, horizon-
tal scaling, self-healing, and secret management might not be readily 
apparent. The sense of power that these terms engender, however, seems 
palpable: The potential to automatically place, pilot, scale, and heal an 
application in secret would turn the head of anyone working in IT.

This chapter aims to demystify Kubernetes by presenting a concise 
overview of the platform and by addressing some of the common mis-
conceptions surrounding the platform. Here you’ll find brief explanations 
of what it is, what it isn’t, how it works, what it does, and why you should 
care.

Platform vs. Runtime Environment
Kubernetes is not a runtime environment. It is a platform for managing, 
or orchestrating, application containers. The platform deploys, scales, and 
operates containers.

As an application and its services run in containers on a distributed 
cluster of virtual or physical machines, Kubernetes choreographs all the 
moving pieces so they operate in a synchronized way to optimize the use 
of computing resources and to maintain the correct state.

Maintaining the desired state of a distributed application running in con-
tainers is one of the key value propositions of Kubernetes—you specify 
the state you want the application to be in, and Kubernetes manages all 
the application’s services and resources to establish and maintain that 
desired state.

In Kubernetes, the container runtime itself is typically provided by Docker, 
but you can optionally use other container runtimes, such as rkt (pro-
nounced the same as the word rocket). In other words, containers have 
their own runtime.

Although you don’t need Kubernetes to use containers, you will likely 
need Kubernetes if you want to robustly and repeatedly deploy and auto-
mate a containerized application in a production environment.
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Robust Open-Source Technology from 
a Google Production System
Kubernetes started out as a closed-source project at Google based on an 
orchestration system called Borg. Google uses Borg to initiate, schedule, 
restart, and monitor public-facing applications, such as Gmail and Google 
Docs, as well as internal frameworks, such as MapReduce.3 Kubernetes 
was heavily influenced by Borg and the lessons learned from running 
Borg on a massive scale in a production environment. In 2015, Google 
open-sourced Kubernetes. Shortly afterward, Google donated it as seed 
technology to the Cloud Native Computing Foundation, a newly formed 
open-source project hosted by the Linux Foundation. (VMware is a member 
of the Linux Foundation and the Cloud Native Computing Foundation.)

A burgeoning open-source ecosystem around Kubernetes is rapidly 
evolving. A project called Prometheus adds monitoring; containerd and 
rkt provide alternative container runtimes; linkerd establishes a service 
mesh; and a number of other projects cover additional requirements, such 
as logging and service discovery. A open source project called Cloud 
Foundry Container Runtime, formerly known as Kubo, brings the industri-
al-strength release engineering, deployment, and lifecycle management 
capabilities of BOSH to Kubernetes.

Defogging the Abstract Terminology 
of Kubernetes
Terminology is partly responsible for enshrouding Kubernetes in myth. 
Even the name itself sounds somewhat mythical—it’s the Greek word for 
helmsman or pilot. But there’s an assortment of other terms that help 
push the system’s intelligibility into the shadows: pod, kubelet, replica set, 
NodePort, horizontal autoscaler, and stateful set.

Other terms, abbreviations, and acronyms taint the fringes of the Kuber-
netes platform as it bumps up against containers on the one hand and 
the accompanying infrastructure on the other: runC, OCI, YAML, JSON, 
IaaS, PaaS, and KaaS. There’s even the odd abbreviation of Kubernetes 
itself: K8s.

Yet once you become familiar with the system, its relationship to contain-
ers, and the infrastructure at its edges, the meaning of the terms comes 
into focus.

3For more on Borg, see Research at Google, Large-Scale Cluster Management at 
Google with Borg, 2015.
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On Kubernetes, a pod is the smallest deployable unit in which one or 
more containers can be managed—in other words, you run a container 
image in a pod. A set of pods typically wraps a container, its storage 
resources, IP address, and other options up into an instance of an applica-
tion that will run on Kubernetes. Docker is usually the container runtime 
used in a pod. As a Kubernetes administrator, you specify a pod by using 
a YAML file.

Another fundamental term in Kubernetes is kubelet. It manages pods. 
The lifecycle of pods is in turn managed by a replica set. And when a pod 
provides a service, such as a web server, a NodePort presents the service 
on a port on the nodes in the cluster for external access. When requests 
of that service exceed a threshold, the horizontal pod autoscaler adds 
resources to handle the increase in demand. If the service happens to be 
a stateful application running in a set of pods, the stateful set allocates 
and manages resources for the stateful pods, such as persistent storage.

Some terms repeatedly come up in relation to containers or infrastruc-
ture. runC refers to the code module that launches containers; it is part 
of containerd and managed by OCI, which stands for Open Container 
Initiative, an organization dedicated to setting industry-wide container 
standards. IaaS stands for infrastructure as a service; PaaS stands for plat-
form as a service; and KaaS stands for Kubernetes as a service.

An example of a platform as a service is Pivotal Cloud Foundry, which 
in turn requires elastic infrastructure as a service—such as VMware 
vSphere® or a VMware software-defined data center—to meet its resource 
demands.

For definitions of more Kubernetes terms, see the glossary at the end of 
the book.

A Concise Overview of Kubernetes
Google originally developed Kubernetes. The company uses its predeces-
sor, called Borg, to initiate, schedule, restart, and monitor public-facing 
applications, such as Gmail and Google Docs, as well as internal frame-
works, such as MapReduce.4 Based on Google’s original system plus 
enhancements from the lessons learned with Borg, Kubernetes can work 
in your data center, across clouds, and in a hybrid data center. Kubernetes 
automatically places workloads, restarts applications, and adds resources 
to meet demand.

4Large-Scale Cluster Management at Google with Borg, Research at Google, 2015.
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Here, briefly, is how it works. A Kubernetes cluster contains a master node 
and several worker nodes. Then, when you deploy an application on the 
cluster, the components of the application run on the worker nodes. The 
master node manages the deployment.

Main Components

Kubernetes includes these components:

•	 The Kubernetes API

•	 The Kubernetes command-line interface, kubectl

•	 The Kubernetes control plane

The control plane comprises the processes running on the Kubernetes 
master and on each worker node. On the master, for example, Kubernetes 
runs several processes: the API server, the controller, the scheduler, and 
etcd. The worker nodes run the kubelet process to communicate with the 
master and the proxy process to manage networking.

Kubernetes Object Model

One of the keys to the Kubernetes system is how it represents the 
state of the containerized applications and workloads that have been 
deployed. Kubernetes represents state by using “objects,” such as service, 
namespace, and volume. These objects are typically set by an object 
specification, or spec, that you create for your cluster.

In the Kubernetes object model, the concept of a Pod is the most basic 
deployable building block. A Pod represents an instance of an app 
running as a process on a Kubernetes cluster. Here’s where the Docker 
runtime comes back into the equation—Docker is commonly used as the 
runtime in a Kubernetes Pod.

Kubernetes also includes Controllers that implement most of the logic in 
Kubernetes. The Controllers provide features such as the replica set and 
the stateful set.

Maintaining the Desired State

The Kubernetes control plane manages the state of all these objects to 
ensure that they match your desired state. You can specify a desired state 
by creating an object specification for a service with a YAML file. Here’s 
an example:
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apiVersion: v1
kind: Service
metadata:
  name: nginx-demo-service
  labels:
    app: nginx-demo
spec:
  type: NodePort
  ports:
  - port: 80
    protocol: TCP
    name: http
  selector:
    app: nginx-demo
---
apiVersion: v1
kind: ReplicationController
metadata:
  name: nginx-demo
spec:
  replicas: 3
  template:
    metadata:
   labels:
    app: nginx-demo
   spec:
    containers:
    - name: nginx-demo
      image: myrepo/nginx
    ports:
        - containerPort: 80

When you submit this file to the Kubernetes master with the kubectl 
command-line interface, the Kubernetes control plane implements the 
instructions in the file by starting and scheduling applications so that the 
cluster’s state matches your desired state. The Kubernetes master and the 
control plane then maintain the desired state by orchestrating the clus-
ter’s nodes, which can be actual servers or virtual machines.

The core of the architecture is an API server that manages the state of 
the system’s objects. The API server works with Kubernetes subcompo-
nents, or clients, that are built as composable microservices, such as the 
replication controller specified in the YAML file. The replication controller 
regulates the desired state of pod replicas when failures occur.
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MANAGING CONTAINERIZED APPLICATIONS WITH KUBERNETES

•	 Kubernetes orchestrates distributed, containerized applications to:

•	 Optimize utilization of computing resources.

•	 Provide policies for scheduling.

•	 Maintain desired state.

•	 Handle faults and failures with automation.

•	 Provide high availability.

•	 Monitor jobs in real-time.

•	 Manage an application’s configuration.

•	 Dynamically scale to meet changes in demand.

Just Another Fad in the Hype Cycle?
In July, Kubernetes celebrated its second anniversary. Kubernetes is 
among the highest velocity cloud-related open-source development proj-
ects in the world; for a listing of facts and figures detailing the project’s 
popularity and adoption, see the Kubernetes retrospective.

In addition, the membership of the Cloud Native Computing Foundation, 
which is the open-source group managing Kubernetes, has attracted 
major players in the cloud-computing space, including Dell Technologies, 
IBM, Amazon, Microsoft, Google, Intel, AT&T, and many more. End-user 
members include Twitter, Capital One, eBay, and Goldman Sachs. For a 
list of members, see the Cloud Native Computing Foundation web site.

Kubernetes in Production Environments
In fact, numerous organizations have deployed Kubernetes in production 
environments. Although it is an emerging technology with a burgeoning 
ecosystem, the feature set and API of Kubernetes are robust for a two-
year-old open-source project. Keep in mind, though, that the predecessor 
of and the principles behind Kubernetes have been running in produc-
tion at Google since 2005, orchestrating applications such as Gmail in 
Google’s cloud-scale production environment. The Kubernetes website 
contains several case studies that detail how different organizations have 
adopted Kubernetes.
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In addition, surveys in both 2016 and 2017 showed not only large growth 
in the adoption of containers but also significant increases in the number 
of organizations using Kubernetes.5

Implementing Kubernetes in production, however, is likely to require the 
addition of other projects and tools in the container ecosystem.

A Rapidly Maturing Ecosystem
Fortunately, the container ecosystem is rapidly maturing. A clear marker 
of that increasing maturity is the expansion of projects hosted by the 
Cloud Native Computing Foundation. To support Kubernetes deploy-
ments, the foundation hosts key open-source projects, including the 
following:

•	 Prometheus, a monitoring system for Kubernetes

•	 OpenTracing, a vendor-neutral standard for distributed tracing

•	 Fluentd, a data collector for unified logging

•	 linkerd, a service mesh that adds service discovery, routing, failure 
handling, and visibility to cloud-native applications

In addition, there are a variety of enterprise-grade, production-ready 
technologies for working with Kubernetes in a software-defined data 
center, such as VMware vRealize® Log Insight™, which can process a con-
tainer’s standard output as a data stream.

Kubernetes Won’t Solve 
All Your Problems
Kubernetes probably won’t solve all your IT, application development, and 
deployment problems. But as your organization undergoes digital trans-
formation, Kubernetes might solve some of the most pressing challenges 
in deploying and managing applications at scale.

Production deployments of Kubernetes show that it delivers substantial 
IT business benefits as well as benefits to a business’s bottom line. In 
summary, here are some of the benefits for IT, system administrators, and 
DevOps:

5: See Portworx, “2017 Annual Container Adoption Survey: Huge Growth in Containers,” 
April 12, 2017; April 12, 2017; ClusterHQ, “Container Market Adoption Survey 2016”; Sysdig, 
“The 2017 Docker Usage Report,” Apurva Dave, April 12, 2017; and Forbes, “2017 State of 
Cloud Adoption and Security,” Louis Columbus, April 23, 2017.	
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•	 Consolidate servers and reduce costs through efficient resource 
utilization.

•	 Elegantly handle machine failure through self-healing and high 
availability.

•	 Ease and expedite application deployment, logging, and 
monitoring.

•	 Automate scalability for containers and containerized applications.

•	 Decouple applications from machines for portability and flexibility.

•	 Easily modify, update, extend, or redeploy applications without 
affecting other workloads.

These technical benefits bubble up into significant business benefits that 
improve your competitive advantage, reduce costs, save time, and bolster 
the bottom line:

•	 Shorten software’s time to market.

•	 Improve developer agility and productivity.

•	 Respond faster to change.

BENEFITS FOR DEVELOPERS
The business value of containers and Kubernetes isn’t limited to the business as 
a whole or the office of the CIO. Developers like containers because they make 
life easier, development more engaging, and work more productive.

•	 Portability: Containers let developers choose how and where to deploy 
an app.

•	 Speed: Containers expedite workflows like testing and speed up itera-
tions.

•	 CI/CD Pipeline: Kubernetes and containers support continuous integra-
tion and continuous deployment.

•	 Flexibility: Developers can code on their laptops when and where they 
want with the tools they like.

•	 The 13th Factor: Containers and Kubernetes are seen as fashionable 
technologies. Developers are highly motivated to use them.
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Introduction to Cloud-Native 
Architectures and Practices
This chapter briefly surveys some of the application architectures and 
development processes that underlie cloud-native applications.

Microservices
The digital transformation is driving a shift toward new application archi-
tectures. Developing a new application or refactoring an existing one with 
containers and microservices is often motivated by the following out-
comes:

•	 Extend an application’s capabilities more easily

•	 Add new features faster and easier

•	 Improve maintainability

•	 Reduce vulnerabilities

•	 Make it perform faster or scale better

Microservices, coupled with containers, are increasingly becoming the 
architectural pattern of choice for developing a new application. A micro-
services architecture breaks up the functions of an application into a set 
of small, discrete, decentralized, goal-oriented processes, each of which 
can be independently developed, tested, deployed, replaced, and scaled. 
For cloud-native applications, the services often take the form of data-
bases, message queues, key-value stores, tooling, and so forth.

For the software development process, a key outcome of using micros-
ervices with containers is continuous integration and continuous delivery. 
A software developer can modify, test, or scale one part of the applica-
tion without other developers having to rebuild and redeploy other parts 
of the application. Running containers on virtual machines also adds a 
beneficial level of isolation to applications built with microservices. You 
can isolate a set of services from each other and then group them inside 
a virtual machine.

Applications built with a microservices architecture, however, do not 
come without their challenges. Running the application’s services in 
production and at scale requires coordination and the right infrastruc-
ture. Trying to develop an application with microservices on a laptop or 
desktop can hit performance and memory constraints. Even when an 
application does not use microservices, a laptop might not have enough 
resources to run a copy of a development environment. Developers can 
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exploit the capacity of a vSphere software-defined data center to develop 
and test a containerized application, which is a pre-existing advantage for 
organizations with vSphere environments who want to begin building and 
deploying cloud-native applications.

For example, VMware Pivotal Container Service (PKS), which includes 
a commercially supported distribution of Kubernetes, provide a ready-
made platform for building cloud-native and twelve-factor applications 
on existing vSphere infrastructure. When an application built with micro-
services is deployed with PKS, Kubernetes manages the microservices, 
each of which can reside in its own container for scalability.

With PKS, Kubernetes works with a VMware SDDC to supply persistent 
storage with VMware vSAN™, micro-segmentation with VMware NSX®, 
and security mechanisms like role-based access control. After a Kuberne-
tes cluster is provisioned in PKS, it can be managed with high availability, 
auto-recovery from failure, auto-scaling, upgrades, and monitoring.

Using vSphere and PKS to support a microservices architecture is cov-
ered in greater detail in later chapters.

THE BENEFITS OF MICROSERVICES
Coupled with containers, microservices are increasingly becoming the archi-
tectural pattern of choice for developing a new application. The architecture 
breaks up the functions of an application into a set of small, discrete, decentral-
ized, goal-oriented processes, each of which can be independently developed, 
tested, deployed, replaced, and scaled.

•	 Increase modularity

•	 Make apps easier to develop and test

•	 Parallelize development: A team can develop and deploy a service inde-
pendently of other teams working on other services

•	 Support continuous code refactoring to heighten the benefits of micros-
ervices over time

•	 Drive a model of continuous integration and continuous deployment

•	 Improve scalability

•	 Simplify component upgrades
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Deconstructing the Monolith and 
Other Use Cases
Although Kubernetes is an excellent system for orchestrating container-
ized applications built with microservices, Kubernetes can serve other use 
cases, most notably 12-factor apps. The 12-factor app is a methodology 
for developing a software-as-a-service (SaaS) application—that is, a web 
app—and deploying it on a platform as a service (PaaS), such as Pivotal 
Cloud Foundry.

Transitioning to cloud-native architectures is also a key Kubernetes use 
case. Even though you might not plan on using microservices in the near 
future, implementing Kubernetes and the right underlying infrastructure 
will ease the transition to a microservices architecture when you are ready 
to take that step.

Kubernetes along with developer-ready infrastructure addresses a 
lingering problem that undermines many organizations: the monolithic 
application. It is difficult to modify, scale, and redeploy. Lifting and shifting 
a monolithic application to containers and Kubernetes opens the door 
to begin breaking it up into easily modifiable, scalable parts later. Its new 
packaging in a container also increases its agility and portability now.

Another compelling use case is portability. Kubernetes works across 
different types of clouds. In other words, the portability of containers 
combined with the power of Kubernetes gives you cloud independence: 
You can move the same containerized application among a private cloud, 
a public cloud, or a hybrid cloud with minimal effort.

Flexibility is an intriguing characteristic of Kubernetes. Although it’s not 
a use case per se, flexibility helps you adapt to unknown use cases in the 
future. For example, you might think of the current mantra of “deliver-
ing applications early and often” as a use case. But as your application 
matures, you might find that other use cases, such as service discovery, 
become more important. In other words, once you can successfully fulfill 
one use case, you might aim for another one. The flexibility and evolving 
power of Kubernetes can help improve your application development and 
deployment practices over time.

The engineers working on Kubernetes recognize that the platform’s 
flexibility can address new use cases as they emerge. “In our experience, 
any system that is successful needs to grow and change as new use cases 
emerge or existing ones change. Therefore, we expect the Kubernetes 
API to continuously change and grow,” the Kubernetes website says.6

6: Kubernetes.io, The Kubernetes API.	
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Kubernetes for Cloud-Native and 
12-Factor Applications
Kubernetes makes containerized applications work in a manageable way 
at scale. Recall the second part of the definition of cloud-native applica-
tions: They are dynamically orchestrated in such a way that containers are 
actively scheduled and managed to optimize resource utilization. Kuber-
netes does exactly that. It orchestrates containers and their workloads to 
optimize the utilization of the virtual machines and physical servers that 
make up the nodes in a cluster.

Revisiting the 12 factors from the previous chapter details how Kuber-
netes streamlines application management. In general, Kubernetes can 
deploy and run 12-factor apps.

HOW KUBERNETES AND CONTAINERS 
STREAMLINE APPLICATION MANAGEMENT

Factor Benefit

1 Deploy the application many 
times from one codebase.

Kubernetes can deploy applications with 
one code base many times by giving a 
pod a specification that includes a con-
tainer image reference.

2 Declare and isolate 
dependencies.

Containers can express dependencies.

3 Store the configuration in 
the environment, not the 
code.

You can store aspects of an application’s 
configuration in the Kubernetes envi-
ronment. For example, the ConfigMaps 
construct separates configuration arti-
facts from an image’s instructions.

4 Connect to supporting 
services, such as a database, 
instead of including it in the 
code.

Kubernetes lets you deploy supporting 
services, such as a database, in separate 
containers and then manages all the 
containerized components together to 
ensure availability and performance.

5 Treat build and run as 
separate stages.

You can, for example, build the appli-
cation by using Jenkins (a pipeline 
automation server separate from Kuber-
netes) and then run the Docker images 
by using Kubernetes.
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6 Run the app as stateless 
processes.

Kubernetes makes it easy to run stateless 
applications. Kubernetes allows states to 
be maintained independently in an etcd 
data store, for instance, while the appli-
cation runs. Kubernetes also allows you 
to attach persistent storage. The spec file 
defining a Pod, for example, can require 
a persistent volume; if the Pod goes 
down, the replacement Pod connects to 
the same persistent volume.

7 Expose services by using 
port binding.

Kubernetes includes configuration 
options for exposing services on ports. 
In the nginx example YAML file that 
appeared earlier, the nginx web server 
was bound to Port 80 and exposed as a 
service.

8 Scale out by adding 
concurrent processes.

Kubernetes scales an application by 
adding more Pods. Kubernetes can use 
the replication controller, for example, to 
add multiple Pods at the same time.

9 Ensure durability with 
disposability.

Containers running in Kubernetes are 
seen as mutable—they are to be stopped 
and replaced on demand or on a sched-
ule.

10 Make development and 
production peers.

The Kubernetes environment lets 
development and production code be 
rigorously tested in the same way. For 
instance, you can use a Kubernetes 
deployment with two pods, one pod 
that contains the production environ-
ment and another pod that contains the 
staging environment, which in effect 
makes staging and production peers. In 
addition, the environment specified in a 
container is uniform across development 
and production environments.

11 Process logs as event 
streams.

Kubernetes lets you access the standard 
output of a container so that you can 
process its output as a data stream with 
the tool of your choice, such as VMware 
vRealize® Log Insight™.

12 Run management tasks as 
one-off processes.

You can schedule a Pod consisting of the 
application container using a different 
entry point to run a different process, 
such as a script to migrate a database.
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DevOps
DevOps is a key practice driving the development and deployment of 
cloud-native applications and 12-factor apps. When developers and 
IT personnel collaborate on operations to release software early and 
often, or daily or hourly for that matter, you can see DevOps at work in 
practices, processes, and automation behind the building, testing, and 
releasing of software.

DevOps breaks down the organizational barriers between developers 
and IT operators to align both types of roles behind the common goal 
of quickly turning ideas and innovations into releasable, maintainable 
software, often by building and using a pipeline for continuous inte-
gration, delivery, and deployment. A culture of collaboration is key, not 
only between the two types—who often come together to form a single 
team—but also with other teams and organizations, such as security.

There are common, if not universally accepted, guidelines that underscore 
DevOps:

•	 Move the infrastructure for production deployments into the deliv-
ery pipeline

•	 Treat infrastructure as code

•	 View infrastructure as immutable

•	 Employ agile methodologies

•	 Produce small, frequent releases

Profile of a DevOps Engineer: 
Responsibilities and Skills
Here’s an example of what a hypothetical engineer working in a geo-
graphically distributed DevOps team might do. In general, the engineer’s 
focus is on building and operating PaaS, SaaS, and on-premise solutions 
to help the consumers of the solutions manage, govern, and secure 
applications running in private and public clouds. The DevOps engineer 
applies innovations from both open-source and proprietary solutions.

Here are some of the DevOps engineer’s responsibilities:

•	 Designing, building, and managing DevOps processes, infrastruc-
ture, and tools throughout the CI/CD pipeline. The work includes 
planning, coding, testing, releasing, deploying, maintaining, and 
monitoring systems and apps.
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•	 Creating and implementing automation to test and validate soft-
ware artifacts as they move through the CI/CD pipeline.

•	 Interacting with developers to make sure that the CI/CD pipeline, 
automation tests, infrastructure, and tools fulfill requirements for 
usability, scalability, performance, security, and productivity.

And here are some of the DevOps engineers skills:

•	 The ability to write Bash scripts and to code in scripting languages 
like Python.

•	 A thorough understanding of microservices architectures as well as 
traditional monolithic architectures. Both skills are useful because 
legacy apps with monolithic architectures might be refactored with 
a microservices architecture.

•	 Experience creating and operating a CI/CD pipeline and its associ-
ated processes for SaaS and on-prem applications by using Maven, 
Git, Gerrit, and Jenkins.

•	 Hands-on experience with NoSQL databases like MongoDB, Redis, 
and Cassandra

•	 Hands-on experience with datastores and libraries for search sys-
tems, such as Lucene, Solr, and Elasticsearch.

•	 Expertise with configuration management tools, including Ansible, 
Chef, Puppet.

•	 Experience designing and operating solutions on such cloud plat-
forms as Google, Azure, and AWS.

•	 Familiarity with logging and monitoring tools like Prometheus and 
vRealize Log Insight.

•	 The ability to deploy and operate virtual machines and containers 
by using cloud-native technology: Vagrant, Docker, Kubernetes.

Continuous Integration and Continuous 
Deployment
Developers and DevOps engineers use the CI/CD pipeline to develop, 
commit, integrate, and test code in the process of creating a software 
artifact that can be automated, configured, deployed, and monitored. 
Although different teams frequently use different tools, a prototypical CI/
DC pipeline might look something like this:

1.	 Use tools such as JIRA or GitHub Issues to plan a release or 
changes to a release.
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2.	 Use a tool such as Atom to write code and unit tests in languages 
like Python, Java, and Go.

3.	 Commit changes with Git or GitHub.

4.	 Use tools such as Jenkins and Gerrit to continuously integrate 
those changes.

5.	 Use a tool such as vRealize Automation to test code.

6.	 Create a software artifact by using JFrog Artifactory.

7.	 Perform continuous deliver by using Jenkins.

8.	 Manage configuration by using Chef, Ansible, or Puppet.

9.	 Monitor the application by using vRealize Operations and vRealize 
Log Insight.
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Container Technology in the 
Software-Defined Data Center
The problems that a software-defined data center (SDDC) addresses 
stem from the digital transformation reshaping business. Companies of all 
types are under pressure to create innovative software that engages their 
customers. The digital technologies at the source of this shift are cloud 
computing, mobile devices, and data analytics. Companies can exploit 
these technologies to lower costs, connect with customers, and improve 
their bottom line.

But reinventing a traditional company, or even a technology company, 
as a contemporary software-centric enterprise requires the creation of 
applications that run in the cloud and the infrastructure and tools to build 
them. To accelerate the development of innovative software and to adapt 
to changes in the marketplace, you are likely to need such technologies 
as containers, microservices, distributed systems, orchestration tools, and 
virtualization.

For their infrastructure, technology-savvy companies seek robust, API-
driven solutions that scale to handle large volumes of data at pace. But 
putting in place scalable, flexible infrastructure that fosters the develop-
ment and deployment of cloud applications can be complex, difficult, and 
costly.

The fast track to cost-effectively adopt containers is to transform your 
existing virtualized infrastructure into a flexible, scalable, modernized data 
center capable of deploying cloud-native applications as well as continu-
ing to host traditional apps. Enterprises are increasingly moving toward 
container-based architectures to develop applications faster, increase 
automation, and reduce server costs.

VMware vSphere plays a central role in this approach. 

THE BENEFITS OF MODERNIZING

•	 Faster development and deployment

•	 Agility

•	 Flexibility

•	 Scalability

•	 Portability

•	 Process automation
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•	 Resource optimization

•	 Easier maintenance

•	 Automated operations

•	 Heightened security

VMware vSphere and the SDDC
Enterprises worldwide have used VMware vSphere® to significantly 
improve IT efficiency and performance, yet the mobile cloud era presents 
new challenges. To meet this challenge, IT organizations need to virtualize 
the rest of the data center so all infrastructure services become as inex-
pensive and easy to provision and manage as virtual machines.

The software-defined data center (SDDC) establishes the ideal architec-
ture for private, public, and hybrid clouds. Pioneered by VMware, SDDC 
extends the virtualization concepts you know—abstraction, pooling, and 
automation—to all data center resources and services, including network 
virtualization and software-defined storage.

At the same time, automated management delivers a framework for 
policy-based management of data center application and services. The 
result is unprecedented IT agility and efficiency, with flexibility to support 
a range of hardware and applications. As a result, infrastructure utilization 
and staff productivity increase, substantially reducing both capital expen-
ditures and operating costs.

Abstract and Automate: Network 
Virtualization
VMware NSX provides network virtualization for an SDDC, abstracting 
Layer 2 through Layer 7 networking functions—such as switching, firewall-
ing, and routing—on top of your existing physical network. NSX embeds 
the networking and security functionality typically handled by hardware 
directly in the hypervisor. NSX creates what can be thought of as a “net-
work hypervisor” that is distributed throughout the data center.

Virtualization thus becomes the operational model for networking and 
security, unlocking the ability for IT to move at the speed of business. By 
moving network and security services into the data center virtualization 
layer, network virtualization enables IT to create, snapshot, store, move, 
delete, and restore entire application environments with the same simplic-
ity and speed that they now have when spinning up virtual machines.
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This abstraction, in turn, enables levels of security and efficiency that 
were previously infeasible. IT is empowered to become an enabler of 
innovation for the organization. IT can help multiple stakeholders instead 
of treating their requests as competing and mutually exclusive.

IT can, for example, apply micro-segmentation with distributed stateful 
firewalling and dynamic security policies attached directly to individual 
workloads. Micro-segmentation is defined and discussed in detail later in 
this chapter.

Risk-Free Scale Out with Ease: Virtual 
Storage
As the only vSphere-native software-defined storage platform, VMware 
vSAN accelerates the modernization of infrastructure by delivering an 
agile solution ready for next-generation applications. vSAN seamlessly 
extends virtualization to storage with a secure, flash-optimized solution 
that integrates with the the VMware ecosystem to handle critical work-
loads running at cloud scale.

vSAN is built on industry-standard x86 servers and components that help 
lower TCO by up to 50 percent compared with traditional storage solu-
tions. vSAN pools together server-attached storage to provide a highly 
resilient shared datastore suitable for any virtualized workload, including 
cloud-native applications and DevOps infrastructure. By being tightly 
integrated with the vSphere kernel, vSAN sits directly in the I/O data 
path, where it can optimize the data I/O path with high performance and 
minimal impact on CPU and memory.

For a software-defined data center, vSAN gives you granular non-dis-
ruptive scale-up or scale-out store so that you can expand capacity and 
performance by adding hosts to a cluster (scale-out) or expand only 
capacity by adding disks to a host (scale-up).

Also in keeping with a key feature of an SDDC, vSAN includes VM-cen-
tric policy-based management: vSAN uses storage policies, applied 
on a per-VM basis, to automate provisioning and balancing of storage 
resources.

vSAN also includes built-in failure tolerance and advanced availability. 
More specifically, vSAN leverages distributed RAID and cache mirroring 
to ensure that data is never lost if a disk, host, network, or rack fails. vSAN 
seamlessly supports vSphere availability features like vSphere Fault Tol-
erance and vSphere High Availability. Using vSAN for storing the data of 
cloud-native applications is discussed later in the book.
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Put a Lid on It: Security for Containers
Security poses an obstacle to container adoption. The increased attack 
surface of containers and other factors can heighten risk. Running con-
tainerized applications on virtual machines, however, decreases the attach 
surface of containers and lowers risk.

Heightening Security by Running Containers 
on VMs

In September 2017, the National Institute of Standards and Technology 
published Application Container Security Guide, which is also known as 
NIST Special Publication 800-190. It explains the potential security con-
cerns surrounding the use of containers and sets forth recommendations 
for addressing these concerns.

The National Institute of Standards and Technology (NIST) is a U.S. 
federal technology agency working with industry to develop and apply 
technology, measurements, and standards. NIST works with standards 
bodies to create international cybersecurity standards.

An important implication of the Application Container Security Guide is 
to run containerized applications on virtual machines. “While containers 
provide a strong degree of isolation, they do not offer as clear and con-
crete of a security boundary as a VM. Because containers share the same 
kernel and can be run with varying capabilities and privileges on a host, 
the degree of segmentation between them is far less than that provided 
to VMs by a hypervisor.”7

One conern of the Application Container Security Guide is that containers 
or the operating system of a physical host can easily be misconfigured, 
increasing the attack surface and the level of risk. In contrast, the abstrac-
tion, automation, and isolation of an operating system running on a virtual 
machine in a hypervisor environment reduces the attack surface and 
decreases the risk of a security breach. “Carelessly configured environ-
ments can result in containers having the ability to interact with each 

7 NIST Special Publication 800-190, Application Container Security Guide, by Murugiah 
Souppaya, Computer Security Division Information Technology Laboratory; John Morello, 
Twistlock, Baton Rouge, Louisiana; Karen Scarfone, Scarfone Cybersecurity, Clifton, Virginia. 
September 2017. This publication is available free of charge from https://doi.org/10.6028/
NIST.SP.800-190
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other and the host far more easily and directly than multiple VMs on the 
same host,” the Application Container Security Guide says.8

Virtual machines and containers should be seen as complements, not 
substitutues. “Although containers are sometimes thought of as the next 
phase of virtualization, surpassing hardware virtualization, the reality for 
most organizations is less about revolution than evolution. Containers and 
hardware virtualization not only can, but very frequently do, coexist well 
and actually enhance each other’s capabilities, the Application Container 
Security Guide says. “VMs provide many benefits, such as strong isolation, 
OS automation, and a wide and deep ecosystem of solutions. Organiza-
tions do not need to make a choice between containers and VMs. Instead, 
organizations can continue to use VMs to deploy, partition, and manage 
their hardware, while using containers to package their apps and utilize 
each VM more efficiently.”

Securing the Orchestration System

Another concern of the Application Container Security Guide is recom-
mending countermeasures to secure the orchestration system managing 
containers. The suggested countermeasures in the guide include the 
following:

•	 Granular access control of administrative actions based on hosts, 
containers and images as parameters.

•	 The use of enterprise-grade authentication services using strong 
credentials and directory services.

•	 Isolating containers to separate hosts based on the sensitivity level 
of the applications running in them.

Another NIST document, Security Assurance Requirements for Linux 
Application Container Deployments, sets forth security requirements and 
countermeasures to help meet the recommendations of the Application 
Container Security Guide when containerized applications are deployed 
in production environments. The orchestration system or its components 
and tools should meet the following capabilities8:

•	 Logging and monitoring of resource consumption of containers to 
ensure availability of critical resources.

•	 The orchestration system must work with many container hosts, 

8 NIST.IR 8176, Security Assurance Requirements for Linux Application Container 
Deployments, by Ramaswamy Chandramouli, Computer Security Division, Information 
Technology Laboratory. October 2017. This publication is available free of charge from 
https://doi.org/10.6028/NIST.IR.8176
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not just one, to be able to provide a global summary of resource 
usage for all running containers.

Micro-Segmentation for Containerized 
Workloads
Micro-segmentation uses network virtualization to divide a data center 
and its workloads into logical segments, each of which contain a single 
workload. You can then apply security controls to each segment, restrict-
ing an attacker’s ability to move to another segment or workload.9

From this basic definition, you can see that for a data center, micro- 
segmentation reduces the risk of attack, limits the damage from an 
attack, and improves security. According to VMware NSX Micro-segmen-
tation Day 1, the micro-segmentation capabilities of VMware NSX can 
implement the following security controls:10

•	 Distributed stateful firewalling, which can protect each application 
running in the data center with application level gateways that are 
applied on a per-workload basis.

•	 Topology agnostic segmentation, which protects each application 
with a firewall indepedent of the underlying network topology.

•	 Centralized ubiquitous policy control of distributed services, which 
controls access with a centralized management plane.

•	 Granular unit-level controls implemented by high-level policy 
objects, which can create a security perimeter for each application 
without relying on VLANs.

•	 Network-based isolation, which implements logical network 
overlays through virtualization.

•	 Policy-driven unit-level service insertion and traffic steering, which 
can help monitor network traffic.

NIST Special Publication 800-125B, Secure Virtual Network Configura-
tion for Virtual Machine (VM) Protection, sets forth recommendations for 
securing virtualized workloads. The micro-segmentation capabilities of 
NSX satisfy the security recommendations made by NIST for protecting 
virtual machine workloads. For more information, see VMware NSX Micro- 
segmentation Day 1.

9 For more information about what micro-segmentation is and what is isn’t, see Micro-seg-
mentation for Dummies, by Lawrence Miller and Joshua Soto, published by John Wiley & 
Sons, Inc. 2015.

10 VMware NSX Micro-segmentation Day 1, by Wade Holmes, published by VMware Press, 
2017.	
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Linux Container Hosts
Linux distributions built specifically for running containers are another 
piece of the cloud-native puzzle and the modernized data center. These 
container-specific operating systems typically minimize the number 
of packages, components, and tools they include, focusing instead on 
providing just-enough of an operating system for efficiently and securely 
running containerized applications. Container-specific operating systems 
include Google Container-Optimized OS, CoreOS Container Linux, Project 
Atomic, and Project Photon OS.

This section looks at an example of a Linux container host—Photon OS—
to explain the part it plays in solving a range of problems that would 
otherwise limit the deployment of cloud-native applications.

Photon OS Overview

Project Photon OS™ is an open source Linux container host optimized for 
cloud-native applications, cloud platforms, and VMware infrastructure. 
Photon OS provides a secure runtime environment for running containers.

By minimizing the number of packages, focusing on security, and provid-
ing advanced lifecycle management, Photon OS efficently runs containers 
on VMware vSphere, Microsoft Azure, Google Compute Engine, and 
Amazon Elastic Compute Cloud.

Photon OS comes in a minimal version and a full version. Each version 
contains only the elements necessary to fulfill its use case. The minimal 
version is a lightweight host tailored to running containers when perfor-
mance is paramount. The full version of Photon OS includes additional 
packages to help develop, test, and deploy containerized applications. 
Both versions of Photon OS yield several benefits:

•	 An improvement in resource-efficiency by using smaller server 
builds

•	 A reduction in security risks by removing vulnerable components

•	 A decrease in management effort by having fewer components to 
update

Photon OS includes the open source version of Docker to streamline 
the workflow of getting a container running in a hypervisor. A developer 
can install a hypervisor such as VMware Fusion® on a laptop, replicate a 
cluster of virtual machines, and then, with Photon OS, build containerized 
applications.
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Security-Hardened Linux

The design of Photon OS prioritizes security. Photon OS secures itself 
with its build process, compiler settings, root password rules, and PGP-
signed packages and repositories. A system administrator or DevOps 
manager can enforce security with vulnerability scans, the pluggable 
authentication modules, the Linux auditing service, and many other mea-
sures.

Photon OS also works with VMware’s open source Lightwave project to 
set up a certificate store and a secure LDAP directory service. Lightwave 
also integrates Photon OS machines with Microsoft Active Directory or 
LDAP for authentication and access control. See the section on Light-
wave.

As a streamlined Linux operating system that the Photon OS team com-
piles from source, Photon OS is hardened in part by its build process. 
The Photon OS team can audit packages, such as OpenSSL, to identify 
vulnerabilities before releasing the system. Vulnerabilities can be fixed by 
applying and testing security patches as soon as they become available.

Life-Cycle Management

Photon OS seeks to reduce the burden and complexity of managing 
clusters of Linux machines by including an efficient packaging model, 
extensibility, and centralized administration in its fundamental design. 
Here are some of Photon’s design elements that simplify life-cycle man-
agement:

•	 Atomic updates with RPM-OSTree

•	 Incremental stateful updates (RPMs)

•	 Package repositories curated by VMware

•	 Extensible distribution: You can add and remove functionality incre-
mentally

•	 Signed repositories

These design elements come together to make it easy to update the 
system, perform in-place upgrades, and refresh installed packages like 
Docker and Kubernetes. Because the minimal version of Photon OS is 
designed to be mainly a read-only OS, it can be replaced in an atomic 
fashion.
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Photon OS performs incremental stateful updates of RPMs. As a DevOps 
manager, you can update an application such as Docker individually with-
out having to update an entire branch, as some other operating systems 
require you to do.

The RPM-based approach to managing the operating system makes 
Photon OS extensible. As an extensible RPM-based distribution, you can 
add or remove applications individually. For example, you can take the 
minimal version and then just install postgres if that is all the support your 
application needs.

Moving Containerized Applications from 
Development to Production

By integrating seamlessly with the VMware ecosystem—including VMware 
vSphere—Photon OS delivers a ready-made foundation for rapidly build-
ing and deploying cloud-native applications while continuing to fulfill such 
IT requirements as cost-effectiveness, performance, and security.

Because Photon OS is optimized to work with VMware vSphere, VMware 
Workstation Pro™, and VMware Fusion, Photon OS empowers you to 
seamlessly migrate container-based applications from development to 
production while—unlike other systems—helping to maintain the isolation 
and security of the application running in the container.

Running applications in containers on Photon OS machines integrated 
with vSphere overcomes a significant problem that plagues containerized 
applications: They are difficult to deploy into production securely. The 
security of virtual machines running in vSphere coupled with the secu-
rity-first design of Photon OS and your own network security measures 
helps establish production-level security for the containerized application.

There is another hurdle that keeps developers from deploying containers 
in production: IT operations. At many companies, developers and IT are 
separate entities. Without the cooperation and commitment of IT, devel-
opers can do little to move their Docker workloads into production. By 
tying in seamlessly with VMware vSphere, which often forms the basis of 
the production environment that is owned and operated by IT, Photon OS 
paves the way to put containerized applications into production. Photon 
OS takes this connection with virtual infrastructure one step further—and 
helps alleviate IT concerns over security—by integrating with VMware’s 
Project Lightwave™, a security suite for cloud-native platforms.
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KEY PHOTON OS PROPERTIES

Photon OS is a lightweight Linux operating system optimized for running con-
tainers in a software-defined data center.

•	 Optimized kernel: The Linux kernel is tuned for performance when 
Photon OS runs on VMware ESXi™ and VMware vSphere.

•	 Docker ready: The Docker daemon is included in the distribution to ease 
running containers.

•	 Security-hardened Linux: The kernel is configured according to the rec-
ommendations of the Kernel Self-Protection Project (KSPP).

•	 Curated packages and repositories: Packages are built with hardened 
security flags.

•	 Secure EFI boot: The operating system boots with validated trust.

•	 Secure remote management: The Photon Management Daemon securely 
manages the firewall, network, packages, and users on remote Photon 
OS machines by using API calls over a command-line utility, Python, or 
REST.

•	 Support for persistent volumes: Photon OS supports persistent volumes 
to store the data of cloud-native apps on VMware vSAN™.

•	 Project Lightwave™ integration: Lightwave is an open source security 
platform from VMware that authenticates and authorizes users with 
Active Directory or LDAP.

•	 Advanced lifecycle management: There are timely security patches and 
updates to container packages, such as Docker and Kubernetes.

Securing Cloud Platforms with 
Lightwave
The need for security in the cloud is acute. Extending the security frame-
works, standards, and policies of your on-premises infrastructure to your 
resources in the cloud establishes the level of consistency that’s required 
to protect the integrity, availability, and confidentiality of your cloud-na-
tive operations.

To consistently apply your on-premises security controls and policies in 
the cloud, several requirements for high-quality identity and access man-
agement come to the fore:

•	 Standards

•	 Flexibility, portability, and cloud-platform independence



46  

•	 Interoperability

•	 Scalability

•	 Administrative control

Standards are a key requirement because they let you apply trusted 
tools and protocols across disparate environments to reduce the risk of 
security incidents and compliance problems. Flexibility enables you to 
port your security policies and controls from one environment to another 
as you move a server or application. As more workloads migrate to the 
cloud, the cloud-platform independence of your identity service helps 
you move from one cloud provider to another without having to redeploy 
or reconfigure identity management systems.

Interoperability ensures that security mechanisms are compatible with 
other systems. Scalability addresses the need for cloud-scale as opera-
tions expand. And administrative control empowers you to implement 
the security frameworks and policies that you want while reducing your 
reliance on cloud providers and third parties.

Security Problems in Cloud Computing

The multitenant environment of public clouds complicates identity and 
access management. In the cloud, it is important to securely authenticate 
system users and administrators, giving them access only to the resources 
they own or need to do their jobs. But authentication and access control 
become difficult when assets are spread across both on-premises data 
centers and cloud services. Porting identities and access policies to the 
cloud depends on how easily you can integrate your corporate identity 
directories and policies with the service provider’s systems.

Implementing seamless security across both your on-premises environ-
ment and multiple public clouds is increasingly becoming a necessity. 
Project Lightwave™ is a massively scaled, multitenant, open-source 
identity platform from VMware that solves this problem by delivering a 
standards-based directory service, Active Directory integration, certificate 
services, and Kerberos authentication. 

LIGHTWAVE SERVICES

•	 Identity management and directory services

•	 Authentication and authorization

•	 Certificates
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Implementing Cloud-Scale Security with 
Lightwave

Lightwave meets the requirements of these use cases with its directory 
service, Active Directory interoperability, Kerberos authentication, and 
certificate services. Lightwave provides the following services:

•	 Directory services and identity management with LDAP and Active 
Directory interoperability

•	 Authentication services with Kerberos, SRP, WS-Trust (SOAP), 
SAML WebSSO (browser-based SSO), OAuth/OpenID Connect 
(REST APIs), and other protocols

•	 Certificate services with a certificate authority and a certificate 
store

Using these Lightwave security services in the cloud empowers IT 
security managers to impose the proven security policies and best 
practices of on-premises computing systems on their cloud computing 
environment. The Lightwave security services work in the cloud, in an 
on-premises data center, and in a hybrid cloud. The security frameworks, 
standards, and policies that come with Lightwave can follow users, appli-
cations, and workloads nearly anywhere.

Directory Services and Identity Management

Lightwave is an extensible identity platform that works with multiple 
identity sources, including Microsoft Active Directory, LDAP, OpenLDAP, 
and MIT Kerberos with LDAP. The platform includes a REST API for LDAP, 
integrated DNS, and support for the System for Cross-domain Identity 
Management (SCIM). SCIM is an open standard that simplifies identity 
management in the cloud by automatically exchanging user identities 
with a REST API between domains.

At the core of Lightwave is a standards-based, AD-compatible LDAP 3 
directory service with multimaster replication. The LDAP service, which 
can be managed with LDAP-compliant browsers, supports such oper-
ations as bind, add, modify, delete, search, extended operation, and 
controls. It manages users and groups, including nested groups, and 
provides policy-based password management.

The directory service uses the following secure data access mechanisms:
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•	 Generic Security Service Application Program Interface (GSSAPI) 
over the Secure Remote Password protocol (SRP)

•	 Simple Authentication and Security Layer (SASL) over SRP

Designed for multitenancy, the directory service includes a hierarchical 
directory store that can accommodate multiple tenants at scale. A direc-
tory information tree (DIT) isolates the data of each tenant by placing 
each tenant in its own subtree. The ACL for a tenant’s subtree is for only 
the tenant’s own administrator. Each entry under a tenant gets its own 
ACL that is based on a security descriptor; each object, that is, receives 
its own ACL. Lightwave includes a tool for browsing and editing entries in 
the directory.

Scalability and Performance

For scalability, the directory service includes an extensible LDAP schema, 
an active-active multimaster scheme, and dynamic indexing. For perfor-
mance, the directory service uses a Lightning Memory-Mapped Database 
(LMDB). It is an ACID-compliant persistent data store from OpenLDAP 
that has the following performance-enhancing features:

•	 B+ tree key-value store

•	 Single writer plus many readers

•	 Multi-version concurrency—the readers never block the writer

•	 Memory-mapped file with copy-on-write

•	 Write-ahead logging developed by VMware

Replication

For replication, the directory service uses a state-based scheme for even-
tually consistent multi-node LDAP replication. Every directory node in a 
Lightwave domain accepts write requests. On Lightwave, the replication 
service includes a tool with a user interface and a single command to 
add or remove a node, which simplifies topology management. In addi-
tion, backup and restore is supported on a per-node basis. Overall, this 
approach to replication simplifies the life-cycle management of a domain.

Architecture

The following architectural diagram summarizes the main components of 
the Lightwave directory service.
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Figure 1: The architecture of the Lightwave directory service. 

Authentication Services

The authentication services of Lightwave contain two main compo-
nents: A server that acts as a Kerberos 5 key distribution center and a 
secure token service that supports the OIDC, WS-TRUST, and SAML 2.0 
(WebSSO) standards for single sign-on.

In Lightwave’s converged identity model, Kerberos, OAuth 2.0, and OIDC 
are integrated with the LDAP directory server process.

The secure token service can issue Security Assertion Markup Language 
(SAML) 2.0 tokens as well as OIDC tokens. Lightwave can be integrated 
with Active Directory to issue secure tokens to principals defined in 
Active Directory forests. With SAML 2.0, Lightwave gives a user SSO 
access to different services by using the same credentials.

Lightwave works with OAuth 2.0 and OpenID Connect, a protocol for 
authentication and authorization that lets you set up one SSO service for 
different cloud services. After users enter their credentials to access one 
service, they don’t need to do it again to access others.

Lightwave also works with the WS-Trust standard to issue and vali-
date security tokens and to broker trust relationships between parties 
exchanging secure messages.
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Kerberos Key Distribution Center

The Kerberos key distribution center (KDC) handles authentication and 
authorization for Kerberized applications. LDAP, SASL, DCE/RPC, and 
GSSAPI applications can all use Kerberos. Security principals are stored 
in a replicated directory, and Kerberos service tickets are extended to 
include Lightwave authorization data.

Features and Capabilities

The secure token service supports the WS-Trust, SAML, OAuth2 and 
OpenID Connect standards with the following capabilities:

•	 Browser-based single sign-on (SSO)

•	 Full multi-tenancy support

•	 External SAML Federation

•	 Just-in-time provisioning (JIT)

•	 IDP discovery and selection

•	 Multiple identity sources, including the native VMware directory, 
Microsoft Active Directory, and OpenLDAP

•	 Full Kerberos support and full AD domain trust support for inte-
grating authentication with Microsoft Windows and Active 
Directory

•	 Schema customization for OpenLDAP to support a broad range of 
OpenLDAP deployments

•	 Two-factor smart card support with a common access card (CAC) 
or with an RSA SecurID token

•	 REST management APIs

COMPONENTS IN THE LIGHTWAVE ARCHITECTURE
To summarize, the Lightwave security services form an architecture that com-
prises these components:

•	 The directory service and its directory store

•	 A Kerberos key distribution center that is integrated with the directory 
service

•	 An integrated DNS server

•	 A multi-protocol secure token service (STS) for authentication and 
authorization

•	 A certificate authority

•	 A certificate store
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Certificate Services

The Lightwave certificate service includes an X509-compliant certif-
icate authority and a certificate store. The certificate authority issues 
and revokes certificates, and the certificate store holds certificates and 
keys. Together they provide a complete certificate management stack 
that integrates with LDAP and establishes user identities with Kerberos 
authentication.

The Lightwave Certificate Authority

The certificate authority issues signed X.509 digital certificates and sup-
ports the PKIX standard. It can distribute CA roots and CRLs over HTTP 
and LDAP in accordance with RFC 4387. It also supports CSR and key 
generation as well as auto-enrollment and certificate revocation. Secured 
and authenticated by Kerberos, the certificate authority validates certifi-
cate requests by analyzing key usage, extensions, SAN, and other factors. 
Server policies can be used to automatically approve or reject certificates. 
The certificate authority has a dual mode in which it can act as an enter-
prise root CA or as a subordinate or intermediate CA. The key lengths are 
strong, ranging from 1 K to 16 K, and the hashing algorithms use SHA-1 or 
SHA-2, the latter of which is the default. The key usage is encryption and 
signing. The certificate file formats are PKCS12, PEM and JKS.

For administration, Lightwave lets you access the certificate authority 
with a user interface or command-line utilities, including diagnostic tools. 
It also supports certificate-auditing requirements.

The Lightwave Certificate Store

The Lightwave endpoint certificate store holds certificates, private keys, 
and certificate revocation lists (CRLs). Lightwave controls access to the 
certificate store by using Kerberos. By default, only the user who created 
the store—that is, the owner—has access. The certificate store typically 
contains three kinds of entries:

•	 A private key associated with a certificate or certificate chain

•	 A certificate of a trusted entity

•	 A certificate revocation list published by the Lightwave certificate 
authority
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Lightwave in vSphere and vCenter

Lightwave acts as the directory service, authentication engine, secure 
token service, lookup service, certificate authority, and certificate store in 
deployments of VMware vCenter® and VMware vSphere® 6. In addition, 
Lightwave lets system administrators join a vCenter instance to Active 
Directory. In vSphere 6, the Lightwave components are collectively known 
as the VMware Platform Services Controller (PSC).

It handles such security functions as single sign-on and certificate man-
agement. vCenter provides an example of how Lightwave delivers single 
sign-on to an enterprise platform. When a user authenticates with the 
Lightwave identity management service on vCenter, the user receives a 
SAML token issued by the embedded Lightwave secure token service. 
With the SAML token, the user can then use any vCenter service (and 
perform actions the user has privileges for) without having to sign in 
again. The vCenter single sign-on service signs tokens with a signing cer-
tificate and stores the token-signing certificate. The service’s certificate is 
also stored.

As you will see in later chapters, understanding the security components 
and capabilities of Lightwave is important because Lightwave plays a fun-
damental underlying role in securing VMware platforms that use vSphere 
to deliver containers and Kubernetes as a service. Using Lightwave 
security services in the cloud empowers IT administrators and DevOps 
managers to impose the proven security policies and best practices of 
on-premises computing systems on their cloud computing environment. 
The security standards and protocols that come with Lightwave can work 
across clouds, on-premises data centers, and hybrid clouds.

Managing Container Images with 
Harbor
This section looks at a secure container registry called Harbor to shed 
light on the role a registry plays in a modernized data center.

Project Harbor is an open source, enterprise-class registry server from 
VMware that stores and distributes Docker images in a private registry 
behind your firewall. Harbor extends the open source Docker distribution 
by adding such functionality as security and management. Harbor can 
be set up with multiple registries, and images can be replicated across 
the registries. Harbor provides a graphical portal, shown in the following 
image, and a RESTful API for managing repositories. Images are pro-
tected with role-based access control.
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Figure 2: The graphical user interface of the Harbor portal.

For security, Harbor integrates with Project Lightwave, Active Directory, 
or LDAP to authenticate users. Harbor also tracks user interactions for 
auditing.

Use Cases
•	 Enterprise-wide use of container technology.

•	 Secure container images for use in production.

•	 Extend Docker with management and security, including integra-
tion with identity management systems.

•	 Manage access to container images with Microsoft Active Directory, 
LDAP, or Lightwave.

Key Features and Benefits of Harbor

By placing registries closer to the build-and-run environment, Harbor 
improves image transfer efficiency. It also supports the setup of multiple 
registries and replicates images between them. Storing images within 
the private registry keeps data behind the enterprise firewall. In addition, 
Harbor offers advanced security features, such as user management, role-
based access control (RBAC), notary, and activity auditing.

•	 Image replication images can be synchronized between multiple 
registry instances, aiding load balancing, availability, and flexibility 
of adoption.

•	 Graphic user portal: enables browse and search functions for 
Docker repository management.



54  

•	 Role-based access control: users can be added to specific projects 
with varying levels of permission.

•	 AD/LDAP support Harbor integrates with existing enterprise AD/
LDAP for user authentication and management.

•	 Image deletion and garbage collection images can be deleted and 
their space recycled.

•	 Auditing all repository operations are tracked.

•	 Notary image authenticity is ensured.

•	 Internationalization: localized for English and Chinese.

•	 RESTful API provided for most administrative operations of Harbor, 
easing integration with other management software.

•	 Easy deployment: installable both online and offline.

•	 Secure container images with role-based access control, integration 
with identity management systems, and vulnerability scanning.

•	 Manage images and repositories with an intuitive, dynamic user 
interface.

Component Architecture

Here is a diagram that depicts the architecture of Harbor.

 Figure 3: The component architecture of Harbor.
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Proxy: The components of Harbor, such as the registry, UI, and token ser-
vices, are all behind a reversed proxy. The proxy forwards requests from 
browsers and Docker clients to the backend services.

Registry: The registry stores Docker images and processes Docker push 
and pull commands. Because Harbor enforces access control to images, 
the registry directs clients to a token service to obtain a valid token for 
each pull or push request.

UI: The graphical user interface helps you manage images on the registry 
webhook, which is a mechanism configured in the registry to populate 
changes in the status of images. Harbor uses the webhook to update 
logs, initiate replications, and perform some other functions.

Token service: The token service issues a token for every docker push or 
pull command.

Database: The database stores the metadata of projects, users, roles, 
replication policies, and images.

Job services: The job services replicates and synchronizes images across 
instances of Harbor.

Log collector: It collects the logs of other modules in a single place.

Implementation

Each component of Harbor is wrapped as a Docker container. Naturally, 
Harbor is deployed by Docker Compose. In the source code (https://
github.com/vmware/harbor), the Docker Compose template used to 
deploy Harbor is located at /Deployer/docker-compse.yml. Opening this 
template file reveals the six container components making up Harbor.

proxy: Reverse-proxy formed by the Nginx Server.

registry: Container instance created from the official image of Docker 
distribution.

UI: Core services within the architecture. This container is the main part of 
Project Harbor.

MySQL: Database container created from the official MySql image.

job services: Replicating images to a remote registry via state machines. 
Image deletion can also be synchronized to a remote Harbor instance.
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log: Container that runs rsyslogd, used for collecting logs from other con-
tainers through the log-driver mode.

These containers are linked through DNS service discovery in Docker. By 
this means, each container can be accessed by their names. For the end 
user, only the service port of the proxy (Nginx) needs to be revealed.

Component Interaction

The following examples of Docker commands illustrate the interaction 
among Harbor’s components.

The process of docker login

Suppose Harbor is deployed on a host with the following IP address: IP 
192.168.1.10. A user runs the docker command to send a login request to 
Harbor:
$ docker login 192.168.1.10

After the user enters the required credentials, the Docker client sends an 
HTTP GET request to the address “192.168.1.10/v2/”. The different contain-
ers of Harbor will process it according to the following steps:

(a) First, this request is received by the proxy container listening on port 
80. Nginx in the container forwards the request to the Registry container 
at the backend.

(b) The Registry container has been configured for token-based authen-
tication, so it returns an error code 401, notifying the Docker client to 
obtain a valid token from a specified URL. In Harbor, this URL points to 
the token service of Core Services.

(c) When the Docker client receives this error code, it sends a request to 
the token service URL, embedding username and password in the request 
header according to basic authentication of HTTP specification.

(d) After this request is sent to the proxy container via port 80, Nginx 
again forwards the request to the UI container according to pre-config-
ured rules. The token service within the UI container receives the request, 
it decodes the request and obtains the username and password.

(e) After getting the username and password, the token service checks 
the database and authenticates the user by the data in the MySql data-
base. When the token service is configured for LDAP/AD authentication, 
it authenticates against the external LDAP/AD server. After a successful 
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authentication, the token service returns a HTTP code that indicates the 
success. The HTTP response body contains a token generated by a 
private key.

At this point, one docker login process has been completed. The Docker 
client saves the encoded username/password from step (c) locally in a 
hidden file.

The Process of docker push

After the user logs in successfully, a Docker image is sent to Harbor via a 
Docker Push command:
# docker push 192.168.1.10/library/hello-world

(a) Firstly, the docker client repeats the process similar to login by send-
ing the request to the registry, and then gets back the URL of the token 
service;

(b) Subsequently, when contacting the token service, the Docker client 
provides additional information to apply for a token of the push operation 
on the image (library/hello-world);

(c) After receiving the request forwarded by Nginx, the token service 
queries the database to look up the user’s role and permissions to push 
the image. If the user has the proper permission, it encodes the informa-
tion of the push operation and signs it with a private key and generates a 
token to the Docker client;

(d) After the Docker client gets the token, it sends a push request to the 
registry with a header containing the token. Once the Registry receives 
the request, it decodes the token with the public key and validates its 
content. The public key corresponds to the private key of the token ser-
vice. If the registry finds the token valid for pushing the image, the image 
transferring process begins.

Integration with Kubernetes

Here’s how to deploy Harbor on Kubernetes. This section assumes you 
know the following aspects of Kubernetes work: Replication Controller, 
Service, Persistent Volume, Persistent Volume Claim, Config Map.

First, you need to download the docker images of Harbor.

1.	 Download the offline installer of Harbor from the release page.
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2.	 Uncompress the offline installer and get the images tgz file har-
bor.*.tgz.

3.	 Load the images into docker by running the following command: 
docker load -i harbor.*.tgz

Second, you need to configure it.

A Python script make/kubernetes/prepare is provided to generate 
Kubernetes ConfigMap files. The script is written in Python, so you need a 
version of Python in your deployment environment. Also the script needs 
openssl to generate private key and certification, so make sure you have a 
workable openssl.

For more information and a link to the release page, see Integrate with 
Kubernetes at https://github.com/vmware/harbor/blob/master/docs/
kubernetes_deployment.md.

Integration with VMware vSphere Integrated 
Containers for Improved Security

Enterprise private container registry: With Harbor, vSphere Integrated 
Containers offers an enterprise private container registry with advanced 
security features such as identity management, LDAP integration, role 
based access control, and trusted content, all of which help ensure 
security for container images. With the private registry, you can furnish 
project-level content trust and notary services to container images. 
Vulnerability scanning helps prevent vulnerable container images from 
running in your data center.

More Info on Project Harbor

Download the installer from the https://github.com/vmware/harbor/
releases. Then see the Installation and Configuration Guide at https://
github.com/vmware/harbor/blob/master/docs/installation_guide.md for 
intructions.

After installation, see the user guide at https://github.com/vmware/
harbor/blob/master/docs/user_guide.md.

Providing Persistent Storage

A lack of persistent storage can stand in the way of container adop-
tion, especially for stateful, data-intensive applications. A data-intensive 
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containerized application requires a robust, elastic, and programmable 
storage infrastructure with the same level of security, data integrity, high 
availability, and storage services that are used for traditional applications 
and IT infrastructure.

Although it is relatively easy to run stateless microservices using con-
tainer technology, stateful applications require slightly different treatment. 
Multiple factors need to be considered when containerized applications 
call for persistent data:

•	 Because containers are ephemeral by nature, the data needs to 
persist after a container is restarted or rescheduled.

•	 When a container is rescheduled, it can start on a different host 
than the one on which it had been running, and the storage must 
be made available on the new host so that the container can start 
quickly and gracefully.

•	 You should not have to worry about whether the volume and data 
will be available for a containerized application. The underlying 
infrastructure should handle the complexity of unmounting and 
mounting a volume. Some applications, such as Kafka and Elastic-
search, can have strict identity and ID requirements; if a container 
with a certain ID gets re-scheduled, the the disk associated with 
that ID must be re-attached to the new container instance.

Project Hatchway

Project Hatchway, an open source storage project from VMware, provides 
storage infrastructure options for containers in vSphere environments, 
including hyper-converged infrastructure (HCI) with by VMware vSAN.

By integrating with Kubernetes, Hatchway lets developers consume 
storage infrastructure as code, abstracting complexity of the underlying 
storage infrastructure.

Through Project Hatchway, data services such as snapshot, cloning, 
encryption, de-duplication, and compression are available at the level of a 
container volume.

Storage for Stateful Apps in Kubernetes

Stateful containers orchestrated by Kubernetes can also use the storage 
options of vSphere—vSAN, VMFS, NFS, and VVol—with Kubernetes per-
sistent volume, dynamic provisioning, and StatefulSet primitives.
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With Hatchway and vSpherre, storage policy-based provisioning of 
persistent volumes enables applications to specify SLAs and quality of 
service at the granularity of container volumes. Database workloads scale 
on demand as a result of the tight integration with the Kubernetes sched-
uler and features like StatefulSet.

Microservices Meets Micro- 
segmentation: Delivering Developer- 
Ready Infrastructure for Modern 
Application Development with NSX
Customer benefits abound when microservices meet micro-segmen-
tation. At its core, developer-ready infrastructure is about dealing with 
the practical realities and complications of making a modern developer 
application development platform (like Pivotal Cloud Foundry) work in 
harmony with a modern enterprise private cloud (like a VMware SDDC).

Over the last six to nine months, the container ecosystem has really 
woken up to the production challenges of using any of the leading con-
tainer frameworks in production. We have discussed this topic on the 
VMware cloud-native blog recently in relation to Kubernetes and Docker.

Last month, with the introduction of Pivotal Cloud Foundry 1.10, both the 
VMware NSX team and the Pivotal team shared some initial concepts 
around developer-ready infrastructure. Both are good reads if you are 
itching for some technical details.

Developer-ready infrastructure is about removing human bottlenecks 
from the interaction between developers and IT. The result for the cus-
tomers of VMware is better products and services, delivered faster than 
ever to their customers while continuing to meet operational goals of 
efficiency, security, and reliability.

Let’s drill down on that last paragraph. In our customers’ environments, 
the “business” drives much of the overall operating envelope, guidelines 
and rules that developers and IT alike must adhere to. The problem is that 
manual intervention is involved at each step of the way, leading to errors, 
inconsistencies, delays, and inefficiencies.

Before an application change or update happens, there is usually a 
business requirement or reason that sets the developer in motion. From 
there, the developer gets to work to modify the application to address 
the business requirements. Let’s call that developer intent. At that point, 
IT gets the hand off and does the work needed to make that application 
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update “live” for the customers of the business. You can refer to this as 
infrastructure response. At some point down the road, for most of our 
enterprise customers, there is some sort of audit or compliance check 
that they must adhere to and pass or they will get fined. We will call that 
audit readiness.

The process seen in most customer environments today is typically a 
one-way process with manual human-driven actions along each step of 
the way. When you consider the magic and automation possible with 
modern application development practices and then you try apply those 
practices in the real world where terms like “manual,” “one-way,” and 
“human-driven” are regularly used to describe the current state of most 
organizations application release and operations model, the helium is 
removed from the proverbial balloon.

Developer-ready infrastructure puts the helium back in the microservices 
balloon by allowing organizations to remove the one-way, human-driven 
process between developers and IT. Let’s take a specific example. With 
Pivotal Cloud Foundry, developer intent is captured in the application 
metadata produced when developers create or modify an application. 
That application metadata can then be used by VMware NSX to automati-
cally program the infrastructure response in the form networks segments, 
load balancer configuration and firewall permissions. Once programmed, 
both the infrastructure configuration and the application metadata can 
be queried at a moment’s notice (audit readiness) to satisfy a compliance 
check on the business.

Developer-ready infrastructure radically reduces manual infrastructure 
processes and developers handling non-development tasks resulting 
in increased developer productivity. It provides secure, software-based 
compute, storage, networking, and operational tooling optimized for 
microservice-based application workloads running in containers.

Combining a VMware SDDC with Pivotal’s cloud-native application plat-
form enables developers to deploy the right software, faster and more 
frequently by eliminating the drag of traditional operational concerns, 
delays, and extra code to guard against infrastructure issues. Beyond the 
Pivotal Cloud Foundry and VMware NSX integration, the entire VMware 
SDDC portfolio is evolving to better support the needs of modern appli-
cation development platforms.

There is another problem: How do you automate the interaction between 
business requirements and developer intent? That, too, is a manual, error 
prone process. For platform deployment and operations, a large part of 
the solution to that problem is BOSH.



62  

BOSH
BOSH is an open source tool that enables deployment and lifecycle man-
agement of distributed systems. It is the primary method used to deploy 
Pivotal Cloud Foundry and is contributed to by many key members of 
the Cloud Foundry Foundation, such as Google, Pivotal, and VMware. It 
can support deployments across many different IaaS providers. Some of 
these providers are:

•	 VMware vSphere

•	 Google Compute Platform

•	 Amazon Web Services EC2

•	 Microsoft Azure

•	 OpenStack
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Figure 4: An overview of BOSH.

BOSH accomplishes deployments by creating several major abstraction 
objects that make it easy and repeatable to deploy complex systems. 
Referencing the figure above, these objects include:

1.	 CPI: The cloud provider interface, or CPI, is the executable library 
BOSH uses to interact with any given IaaS. One CPI is available 
for every BOSH-supported IaaS, and when you deploy the BOSH 
instances you can define which ones it will use. In the image above, 
a vSphere CPI is shown. It allows BOSH to perform all the required 
IaaS actions, such as creating a VM or instance, as well as various 
other instance, network, and storage primitives required to instanti-
ate a deployment.
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2.	 BOSH stemcell: A stemcell is a versioned base operating system 
image built for each CPI that BOSH supports. It is commonly based 
on Canonical’s Ubuntu distribution, but is also available in RHEL 
and even Windows image ports. Typically, the stemcell is a hard-
ened base OS image with a BOSH agent predeployed. BOSH will 
use this agent to install and manage the lifecycle of software on 
that VM for instance.

3.	 BOSH release: A BOSH release is a versioned tarball containing the 
complete source code and job definitions required to describe to 
BOSH how that release of software should be deployed on a VM 
or instance provisioned from a stemcell. An example is the Kubo 
release which includes all the packages and details required to 
allow BOSH deploy a fully functional Kubernetes cluster.

4.	 BOSH deployment manifest: BOSH needs to receive some declar-
ative information to actually deploy something. This is provided by 
an operator via a manifest. A manifest defines one or more releases 
and stemcells to be used in a deployment and provides some key 
variables like IPstack info, instance count, and advanced configu-
ration of the given release(s) you want to deploy. This manifest is 
typically written in a YAML format.

5.	 BOSH deployment: BOSH needs some declarative information 
before it can deploy anything. This is provided by an operator via a 
deployment manifest and a cloudconfig manifest. These manifests 
are typically written in a YAML format.

•	 cloud-config manifest: This YAML is specific to an IaaS as defined 
by the properties made available in its CPI. It will provide defi-
nitions for things like networks, VM sizes, storage locations, 
and availability zone mappings. This manifest is global, which 
means that there can be only one instance per BOSH, and can be 
referred to by multiple deployment manifests.

•	 deployment-manifest: This manifest refers to objects in the 
cloud-config and focuses on properties for the releases. The 
manifests define one or more releases and stemcells to be used 
in a deployment and provide some key variables like instance 
count and advanced configuration of the given release(s) to be 
deployed. This allows for deployment manifests to be portable 
across CPIs.
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What Problems Does BOSH Solve?

BOSH lets release developers easily version, package, and deploy soft-
ware in a reproducible manner. Operators can consume BOSH releases 
and be guaranteed that deployments are repeatable with predictable 
results across environments. To accomplish this, BOSH lets release devel-
opers focus on providing some key abilities when building a release:

Identifiability: An operator needs to be able to document the deployment 
of software and its versions. A BOSH release, by design, requires the 
developer to declare and package everything in the release. The release 
itself must also be versioned. This allows an operator to fully understand 
what is deployed as well as consistently upgrade or downgrade versions 
of software in a release.

Example: In Figure 2, an operator defining a deployment can refer to 
one or more versioned releases in a deployment manifest. This allows for 
identification of the software versions used. In the image above, BOSH 
has two versions of the Kubo release available: versions 0.0.5 and 0.0.6. 
The operator has defined the use of version 0.0.5 of the release in the 
deployment manifest, which will enforce the use of Kubernetes version 
1.6.6 across the deployment called “mykubo-deployment.”

BOSH Release: kubo-release
Version: 0.0.5

Package(s): 
  kubernetes: kubernetes-1.6.6/*

nginx: nginx/
     nginx-release-1.11.4.tar.gz

BOSH Release: kubo-release
Version: 0.0.6

Package(s): 
  kubernetes: kubernetes-1.7.1/*

nginx: nginx/nginx-release-1.11.4.tar.gz

BOSH 
Deployment 

Manifest 

CPI-vSphere 

BOSH 

Network(s) 

Running BOSH 
Deployment 

VM 
KBS 

V1.6.6 

vSphere 

VM 
KBS 

V1.6.6 

VM 
KBS 

V1.6.6 

Name:  mykubo-deployment 
 releases: 
 -  name: kubo-release 
  version: 0.0.5 
 -  name: docker 
  version: 28.0.1 

mykubo-deployment

Figure 5: BOSH identifiability.

Reproducibility: Another key tenant in releasing software addressed by 
BOSH is reproducibility. To an operator, this means that software should 
be deployed in exactly the same way across multiple environments in 
order to guarantee operational stability.
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Example: In the figure on the following page, a single manifest can 
deploy Kubernetes in a consistent way, providing the same functional 
deployment with the same releases across multiple environments. Those 
environments can even cross multiple IaaS providers by using the CPI 
abstraction. The simplified and partial deployment manifest in the image 
above is declaring which BOSH stemcell, BOSH Release, and config prop-
erties to use to deploy functionally identical Kubernetes clusters in two 
different environments.

Name:  mykubo-deployment 
 releases: 
 -  name: kubo-release 
  version: 0.0.5 
 -  name: docker 
  version: 28.0.1 
 -  name: kubo-etcd 
  version: 2 
 stemcells:
 -  alias: trusty 
  os: ubuntu-trusty 
  version: latest 
 instance_groups: 
 -  name: etcd 
  instances: 2 
  network: alpha 
  azs: [az1] 
  jobs: alpha 
  -  name: etcd 
   release: kubo-etcd 
   properties: [ ] 
  stemcell: trusty 
 -  name: master 
  instances: 2 
 -  name: worker 
  instances: 3 
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Figure 6: BOSH reproducibility.

Consistency: BOSH also enforces consistency in BOSH release develop-
ment to ensure that virtually any software can be packaged, versioned, 
and deployed in a similar pattern. This also provides operational stability.

BOSH Use Cases and Benefits

BOSH’s principal value lies in simplifying the deployment and day 2 
lifecycle management of complex systems. It was primarily developed to 
deploy Cloud Foundry but has been extended by developers to deploy 
many other environments, both simple and complex. Systems to which 
BOSH can deploy can be found in two primary locations. The first is 
Pivotal Network, where Pivotal curates commercial BOSH releases of 
Pivotal Cloud Foundry as well as Pivotal services that are typically driven 
by Pivotal Operations Manager plus BOSH. The second location is BOSH.
io, which hosts an OSS community repo of various systems that can be 
deployed.
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A prime example of a BOSH use case is Kubernetes powered by BOSH, 
formerly known as Kubo.
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Figure 7: A use case with Kubernetes powered by BOSH.

Referencing Figure 8, we can see the key benefits that BOSH provides the 
operator.

1.	 Repeatability: In a cloud native development environment, the 
operator can generate two or more similar deployment manifests 
to deploy two or more unique but functionally identical Kubernetes 
deployments to meet the needs of multiple developer consumers.

2.	 Day 2 operations: BOSH lifecycle management makes it easy to 
keep all of the Kubernetes deployments healthy.

•	 Maintain health: Each VM or instance deployed by BOSH also 
deploys an agent that communicates health back to BOSH. If a 
Kubo node is unhealthy, BOSH will automatically try to repair and 
or rebuild the affected node. This improves uptime.

•	 Increase uptime: Each release job instance type can have multiple 
VMs or instances distributed across availability zones to ensure 
services provided are not affected by physical faults in a given 
availability zone. Availability zones are only supported on certain 
CPIs, such as the vSphere CPI where availability zones map to 
vCenter clusters.
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•	 Patching: Because BOSH uses versioned releases, it is trivial for 
an operator to upgrade the Kubernetes Kubo release and apply it 
to all running deployments with little to no interruption of service. 
BOSH will update each deployment as well as maintain its state by: 
(1) detaching persistent disks, (2) rebuilding the affected VMs or 
instances, and then (3) re-attaching persistent disks.

BOSH Architecture

BOSH is typically deployed as a single VM or instance. That VM/instance 
has many components that perform vital roles in enabling BOSH to 
manage deployments at scale:

•	 NATS: Provides a message bus via which the various services of 
BOSH can interact.

•	 POSTGRESQL: BOSH writes all of its state into a database. Typ-
ically that database is internal to a single VM BOSH deployment 
and provided by Postgres. This can be modified, however, to use 
an external data source so that the BOSH VM can be rebuilt and 
reconnect to the database to reload its persistent state.

•	 BLOBSTORE: Each stemcell and release uploaded to BOSH is 
stored in a blobstore. Default deployments of BOSH use an internal 
store (webdav), but, like the Postgresql database, this can also be 
externalized.

•	 Director: The main API that the BOSH CLI will interface with to 
allow an operator to create and manage BOSH deployments.

•	 Health Monitor: BOSH requires that each VM it deploys have an 
agent that it can communicate with to assign and deploy jobs from 
BOSH releases that are defined in a deployment manifest. It will 
also maintain the health of each VM or instance it has deployed. 
The agent will report vitals back to BOSH and in cases where ser-
vices in the VM are faulted, or the agent is unreachable, the Health 
Monitor can use plugins to restart services and even rebuild the VM 
or instance.

•	 CPI: The CPI is the IaaS-specific executable binary that BOSH uses 
to interact with the defined IaaS in its deployment YAML.

•	 UAA: Provides user access and authentication that allows BOSH to 
authenticate operators via SAML or LDAP backends.

•	 CREDHUB: Manages credentials like passwords, certificates, certif-
icate authorities, SSH keys, RSA keys, and arbitrary values (strings 
and JSON blobs). BOSH will leverage credhub to create and store 
key credentials for deployments, like public certificates and keys.
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•	 CLI: A final component, which is not shown in the architecture 
diagram, is the command-line interface. BOSH is deployed by using 
the BOSH CLI, passing the correct cmd line arguments, or storing 
those arguments as variable data within additional YAML files to 
define how BOSH itself will be deployed. This cookBook section 
outlines the steps required to deploy BOSH, and offers guidance 
for a basic Kubo deployment.
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master 1 
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Availability Zone 1 Availability Zone 2 Availability Zone 3 
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Figure 8: The architecture of BOSH.

For a step-by-step guide to deploying BOSH, see An Introduction to 
BOSH.

CFCN for Deploying and Operating 
Kubernetes
Cloud Foundry Container Runtime (CFCR), formerly known as Kubo, is an 
open source project that delivers the functionality of both Day 1 (deploy-
ment) and Day 2 (operations) for Kubernetes clusters. The initial genesis 
behind CFCR was to make deploying and running Kubernetes clusters 
across different environments more portable and operational.

Until now, there has been no reliable or convenient way to deliver a strong 
level of operational capability to a consumer who may want to run Kuber-
netes in production on their own on-premises and public clouds. To solve 
this problem, Google partnered with Pivotal (the leading contributor to 
BOSH) to build Cloud Foundry Container Runtime. CFCR was formerly 
known by the acronym Kubo, meaning Kubernetes on BOSH. BOSH is 
an open source tool for the deployment, release engineering, lifecycle 
management, and monitoring of distributed software systems. Google 
and Pivotal saw BOSH as a tool with the potential to facilitate produc-
tion-grade Kubernetes operations.
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Self-Care for the Kubernetes Control Plane

On its own, Kubernetes does a great job maintaining healthy running 
workloads. However, it’s not so great at self-care of its control plane 
components like its API, controller manager, etc., or its core kubelet pro-
cesses. BOSH provides health and monitoring capabilities to the complete 
Kubernetes control plane to keep not only app workloads healthy, but 
also Kubernetes itself healthy and running.

To accomplish this, CFCR is deployed a little differently than when 
deployed with tools like kubeadmin or kops. When BOSH deploys a 
Kubernetes cluster, each core component of the Kubernetes control plane 
is instantiated as a virtual machine (VM) instance. BOSH deploys an agent 
on each VM instance to monitor the health of the key Kubernetes control 
plane processes, as well as the overall health of each VM instance. BOSH 
will also dynamically repair and rebuild any VM that is unhealthy, no 
manual intervention required.

In addition to the health management of Kubernetes, CFCR deployments 
gain the added benefits of scaling, patching and upgrading Kubernetes 
clusters easily via a simple interaction with BOSH. Why is this so advan-
tageous? Customers running Kubernetes will likely at some point need to 
upgrade and re-deploy, which is a taxing process. BOSH greatly simplifies 
this.

Alleviating the Operational Complexity 
of Kubernetes

Operating Kubernetes is difficult, generally speaking. CFCR was designed 
to address the complexity of Kubernetes deployment and make it easier 
to deploy, patch, upgrade, scale and operate. The BOSH approach to 
Kubernetes provides some nice advantages. One of those advantages is 
repeatability. BOSH can deploy Kubernetes across multiple IaaS providers, 
such as vSphere, Google Cloud Platform and Amazon Web Services. This 
is accomplished through the BOSH Cloud Provider Interface (CPI), which 
allows BOSH to create and manage VM instances, storage, and network-
ing constructs across supported CPIs.

BOSH also utilizes a few additional abstractions, such as “releases” to 
package software, “stemcells” to define a secure VM image, and “man-
ifests” to define how the releases get deployed across one or more VM 
instances based on the stemcells. A platform reliability engineer can use 
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these abstractions to make Kubernetes deployments easy and repeatable 
across any of the CPIs available to BOSH, thereby creating a great 
common operational model across any cloud.

Supplying Repeatable Automation with 
BOSH

Cloud Foundry Container Runtime also has a lot to offer when it comes 
to Day 2 operations, that is, operations that take place after the Kuber-
netes clusters have been deployed. Tasks like patching CVEs, upgrading 
Kubernetes or rotating key credentials can be pretty cumbersome. BOSH 
offers platform reliability engineers the ability to automate all of these 
tasks in a consistent and repeatable manner, driving down costs and the 
time to deliver software. Additionally, spinning up or decommissioning 
multiple Kubernetes clusters when they are no longer necessary can also 
be automated and logged in the BOSH database to provide a level of task 
auditing.

CFCR is a fundamental part of VMware Pivotal Container Service (PKS). 
The primary objectives of CFCR and PKS are to make Kubernetes and the 
operations of Kubernetes as a service simple and production ready. PKS 
is discussed in the next chapter.
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Container Platforms and 
Services
The objective of this chapter is to help you understand container plat-
forms from VMware, their underlying technology, and their business value 
so that you can make an informed decision about the best platform for 
your organization, its use cases, and its goals.

As you turn to container technology, an effective strategy for digital 
transformation includes matching the architecture and workloads of your 
applications to the right platform for the job. Different types of plat-
forms are primed for different levels of container adoption, organizational 
requirements, and use cases.

High-Level Use Cases for Container 
Platforms
The following use cases coincide with the extent to which an enterprise 
has embraced container technology, defining a sort of container-adoption 
continuum that takes place after an initial stage of experimentation and 
evaluation:

•	 Establishing a developer sandbox or self-service agile infrastruc-
ture.

•	 Repackaging a legacy application in a container.

•	 Migrating, or replatforming, a traditional app to a container plat-
form.

•	 Replatforming a legacy app and re-architecting, or refactoring, it by 
using microservices.

•	 Building cloud-native apps or developing on and for the cloud.

Maturity of Container Adoption
In the early stages of container adoption, organizations seek ready-
to-go development tools and a service portal so that developers can 
self-service their needs with agile infrastructure. In the middle stage of 
the journey, organizations strive to accelerate software development by 
repackaging traditional applications in containers to simplify developer 
workflows and application maintenance. This kind of a lift-and-shift use 
case eventually leads to replatforming the repackaged application so that 
its deployment can be automated, orchestrated, and scaled on demand.
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Cloud Natives
Then there are the cloud natives who live in and build for the cloud. They 
seek to build new applications by using architectural patterns like micros-
ervices and methodologies like the 12-factor app. When it makes sense to 
do so, they are also working to refactor legacy monolithic applications as 
cloud-native apps. Organizations at this stage are focused on automation, 
optimization, and rapid innovation.

Matching the Platform to the Project
Different platforms address different situations, and several factors come 
into play in analyzing the platform that’s right for your stage of container 
adoption and your use cases:

•	 Identifying your target use cases or application types and matching 
them with the best-suited platform—that is, using the right tool for 
the job.

•	 Determining how much operational work is to be handled by 
DevOps or spread among developers and traditional IT teams—that 
is, having the right workers for the job.

•	 Deciding how much flexibility you want, including how you handle 
continuous integration, continuous delivery, and continuous 
deployment—that is, finding the right balance between prescription 
and complexity.

Prescription and Complexity
The more prescriptive the platform is, the more it hides the complexity 
of the platform from developers. A prescriptive platform prescribes a 
scheduler, a runtime engine, integration with the underlying infrastructure, 
continuous delivery, and other aspects of the platform. (A prescriptive 
platform is also referred to as an opinionated platform.)

For example, a prescriptive platform includes its own scheduler for con-
tainers and specifies how to use it to run containerized applications. The 
main advantage of a perscriptive platform is that it places the platform’s 
complexity in a layer of abstraction—all developers have to do is write 
their code and generate an application artifact, and the platform handles 
the rest. The disadvantage is that you have fewer options and less flexibil-
ity in how you delivery and deploy your app. A prescriptive platform also 
imposes methods of using containers on you; as a result, you might be 
unable to manage containers with standard APIs, such as the Docker API 
or the Kubernetes API.
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FACTORS IN SELECTING A CONTAINER PLATFORM
The platform that you select will depend on your unique situation and goals. 
Here are some factors to consider:

•	 Use cases

•	 Application types and their workloads

•	 Software development methods and processes

•	 Operations

•	 Security and compliance

•	 Networking

•	 People and their skill sets

•	 Maturity of your organization’s container adoption

•	 Maximizing flexibility vs. minimizing complexity

•	 Business objectives

Closing the Container Platform 
Confidence Gap

In a recent report titled “Closing the Digital Transformation Confidence 
Gap in 2017,” The Hackett Group surveyed executives from more than 180 
large companies. The report found a wide confidence gap “between the 
high expectations for digital transformation’s business impact and the low 
perception of the business’s capability to execute digital transformation.” 
The Hackett group says that the findings demonstrate the need for IT to 
invest in the necessary tools and to adopt rapid application development 
techniques, such as agile processes.11

Although containers themselves are not new, barriers have hindered their 
use for building and deploying enterprise applications. Until fairly recently, 
containers lacked the tooling and ecosystem for enterprise-grade deploy-
ment, management, operations, security, and scalability. In addition, the 
requirements of IT administrators often went unfulfilled: Infrastructure for 
running containers has neglected networking, storage, monitoring, log-
ging, backup, disaster recovery, maintenance, and high availability.

11Despite High Expectations for Digital Transformation Led by Cloud, Analytics, Robotic 
Process Automation, Cognitive & Mobile, IT & Other Business Services Areas See Low Ca-
pability to Execute, The Hackett Group, March 16, 2017. A version of the research is available 
for download, following registration, at http://www.thehackettgroup.com/research/2017/
social-media/key17it/.
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VMware vSphere Integrated Containers and VMware Pivotal Container 
Service changes all that. These cloud-native solutions from VMware help 
you quickly and cost-effectively put containers into production, improv-
ing your ability to carry out digital transformation.

Running containers on VMs also adds a beneficial level of security to 
containerized applications, especially in the context of the third tenet of 
cloud-native applications—microservices. According to a Docker white 
paper on security, “Deploying Docker containers in conjunction with VMs 
allows an entire group of services to be isolated from each other and then 
grouped inside of a virtual machine host.”12

Deploying containers with VMs encases an application with two layers of 
isolation, an approach that is well-suited to cloud-style environments with 
multitenancy and multiple workloads. “Docker containers pair well with 
virtualization technologies by protecting the virtual machine itself and 
providing defense in-depth for the host,” the Docker security white paper 
says. Container security is discussed further in a later section.

vSphere Integrated Containers
VMware vSphere Integrated Containers, a comprehensive container solu-
tion built on VMware vSphere, enables you to run modern and traditional 
workloads in production on their existing software-defined data center 
(SDDC) infrastructure with enterprise-grade networking, storage, security, 
performance, and visibility.

vSphere Integrated Containers offers the quickest and easiest way for 
vSphere users to start using containers today without additional capital 
or labor investment. Its tight integration with the entire VMware SDDC 
environment, as well as its support for leading container technologies like 
Docker, makes it a great solution for a seamless transition to container 
adoption. You can tap the benefits of containers for enhanced developer 
productivity, business agility, and fast time-to-market.

The following sections examine the architecture and capabilities of 
vSphere Integrated Containers when deployed as an integrated system 
with VMware vSphere, NSX, vSAN, and several external systems, including 
Microsoft Active Directory and Docker Hub.

Before diving into the details of the system architecture, here’s a brief 
review of the system’s design objectives. vSphere Integrated Containers 
addresses the following commonly occurring objectives:

12 Introduction to Container Security, Docker white paper, Docker.com.	
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•	 Enable a universal platform for transitioning to modern develop-
ment practices.

•	 Enable the infrastructure to support the coexistence of both 
traditional and modern application designs on common, existing 
hardware and software.

•	 Improve developer agility, shorten time to market, and maximize 
application resiliency

•	 Developers need an environment where they can build, test, and 
run their applications using native container tools with minimal 
involvement from IT.

•	 Support a standard framework for orchestrating the deployment of 
cloud native applications and automating management of applica-
tion availability in operation.

•	 Provide integration with the enterprise-grade capabilities of 
VMware infrastructure.

•	 Provide security and availability of application when running in 
production.

•	 Increase visibility into container deployments using standard 
VMware tools for better operability.

•	 Streamline development team access to tools and infrastructure 
resources.

•	 Eliminate extensive approval processes for acquisition and manual 
provisioning of infrastructure, which frequently results in develop-
ers pursuing alternative paths of less resistance such as rogue IT or 
public offerings.

Architecture

vSphere Integrated Containers is a product designed to tightly integrate 
container workflow, lifecycle and provisioning with the vSphere SDDC. 
It provides a container management portal, an enterprise-class registry, 
and a container runtime for vSphere fully integrated into a commercial 
distribution. 
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Figure 9: The architecture of vSphere Integrated Containers. 

With these capabilities, vSphere Integrated Containers enables VMware 
customers to deliver a production-ready container solution to their devel-
opers and DevOps teams. By leveraging their existing SDDC, customers 
can run container-based applications alongside existing virtual machine 
based workloads in production without having to build out a separate, 
specialized container infrastructure stack.

As an added benefit for customers and partners, vSphere Integrated 
Containers is modular. So, for example, if your organization already has a 
container registry in production, you can use that registry with vSphere 
Integrated Containers Engine and vSphere Integrated Containers Man-
agement Portal.

Components

vSphere Integrated Containers is built on these major open source 
products:

1.	 vSphere Integrated Containers Engine is a container runtime for 
vSphere that enables the provisioning and management of appli-
cations packaged as Docker images into vSphere clusters. With the 
vSphere Integrated Containers Engine Developers can deploy con-
tainer images alongside traditional workloads on vSphere clusters. 
The vSphere Integrated Containers engine gives developers the 
agility and speed they need, while allowing operations to reuse the 
tools, processes and people they’ve already invested in.

2.	 Harbor is an enterprise-class private container registry that stores 
and distributes container images. It extends the Docker Distribution 
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open source project by adding the functionalities that enterprises 
require, such as security, auditing and identity management.

3.	 Admiral is a container management portal. It provides a GUI for 
DevOps teams to provision and manage containers, and includes 
the ability to obtain statistics and information about container 
instances. It provides both Docker compose and a proprietary 
application definition through templating to combine different 
containers into an application. It also supports containers scaling 
in and out. Advanced capabilities, such as approval workflows, are 
available when integrated with vRealize Automation.

4.	 Photon OS is a minimal Linux container host, optimized to run on 
VMware platforms. It is used throughout vSphere Integrated Con-
tainers wherever a Linux guest kernel is required.

The core SDDC infrastructure subsystems, vSphere, NSX, and vSAN com-
plement vSphere Integrated Containers by extending trusted capabilities 
such as:

•	 Distributed Resoource Scheduling (DRS)

•	 vMotion

•	 High Availability (HA)

•	 Secure isolation, micro-segmentation, and RBAC

•	 SSO via PSC with extension to external identity sources such as 
Active Directory/LDAP

•	 Granular monitoring and logging visibility via vCenter, vRealize 
Operations, and VRNI

•	 vSAN, iSCSI, NFS shared storage

•	 Direct deployment to Distributed vSwitch and NSX Logical 
Switches, and integration with NSX virtual network infrastructure 
components

•	 Unified, full-stack monitoring and logging visibility

Deployment Options

vSphere Integrated Containers supports multiple ways to deploy and run 
containers. Its deep integration with an existing VMware SDDC environ-
ment provides the best of both worlds for your developers and IT staff, 
while supporting a variety of container use cases for the modern 
enterprise.
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Small businesses to large enterprises can leverage the capabilities of 
vSphere Integrated Containers as it deploys to vSphere infrastructures 
of various sizes. A container deployment model can, for example, overlay 
typical management and control plane components along with the two 
container deployment model options over two vSphere clusters of ESXi 
hosts. Traditional VMs could also exist on a common cluster with the 
containers.

Figure 10: Container deployment models. 

Virtual Container Hosts

vSphere Integrated Containers leverages the native constructs of vSphere 
for provisioning container-based applications. IT admins can deliver a 
production-ready container solution to their developers and app teams 
without having to build out a separate, specialized container infrastruc-
ture stack. By deploying each container image as a vSphere Virtual 
Machine (VM), vSphere Integrated Containers allows these container 
workloads to leverage critical vSphere application security, isolation, 
availability and performance features – VMware HA, vMotion and Distrib-
uted Resource Scheduler. vSphere Integrated Containers provides these 
features while still presenting a Docker API to developers of container 
based applications to consume.

Docker Container Hosts

vSphere Integrated Containers also supports running native Docker 
container hosts on vSphere. It allows developers to self-provision Docker 
container hosts for use as a development sandbox, a build server, or a 
swarm cluster. Now you can treat a Docker host as ephemerally as a con-
tainer.
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Container Runtime

The vSphere Integrated Containers Engine is a container runtime for 
vSphere. It enables the provisioning and management of VMs into 
vSphere clusters using the Docker binary image format. It enables 
vSphere admins to pre-allocate certain amounts of compute, network-
ing and storage and provide that to developers as a self-service portal 
exposing a familiar Docker-compatible API. It allows developers who are 
familiar with Docker to develop in containers and deploy them alongside 
traditional VM-based workloads on vSphere clusters. VMs provisioned 
using vSphere Integrated Containers take advantage of many of the ben-
efits of vSphere including DRS, clustering, vMotion, HA, distributed port 
groups and shared storage.

Using the native constructs of vSphere, IT admins can deliver a produc-
tion-ready container solution to their developers and app teams without 
having to build out a separate, specialized container infrastructure stack.

vSphere Integrated Containers engine brings many of the value 
propositions of containers and container images directly to vSphere infra-
structure. vSphere Integrated Containers engine turns container images 
into objects that look just like containers when viewed from a develop-
er’s perspective and look just like a virtual machine when viewed from 
an operator’s perspective. Since vSphere Integrated Containers expose 
the Docker API, it is easy to integrate with developer tools, scripts and 
processes. And since they behave just like virtual machines, vCenter, NSX, 
vRealize Operations, vSAN, vMotion and other familiar technologies are 
just as relevant and valuable for container workloads.

The VMs created by vSphere Integrated Containers engine have all of the 
characteristics of software containers:

•	 Ephemeral storage layer with optionally attached persistent “vol-
umes”

•	 Custom Linux guest designed to be “just a kernel” needs “images” 
to be functional

•	 Automatically configured to various network topologies

“ContainerVMs” are provisioned into a “Virtual Container Host” which 
represents a clustered pool of resource, a single-tenant container name-
space and an API endpoint. A VCH is not a literal host, rather it is akin to a 
vSphere resource pool in that it transparently provides clustering, sched-
uling, vMotion and HA to containers running in it. A VCH is represented in 
vSphere as a resource pool construct.
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All of the basic capabilities for creating VMs with these characteristics 
along with the ability to configure the necessary networking, compute 
and storage to support them is encapsulated in the “Port Layer” (4.4) ser-
vice. The Port Layer also adds capabilities to listen for events and interact 
with the containers.

The scope of vSphere Integrated Containers engine is limited to being 
an endpoint that runs production container workloads. There is no native 
support for building images directly on the engine. However, vSphere 
Integrated Containers can be used by developers to provision native 
Docker Host VMs to be used for development and build in that manner. 
The fact that a native Docker Host is controlled from the exact same 
client as a VCH makes the experience relatively seamless.

vSphere Integrated Containers is optimized for container uptime and 
availability. Upgrading vSphere Integrated Containers momentarily 
impacts endpoint availability, but not the containers. Modifying per-
tenant compute limits is completely transparent. Upgrading ESXi is also 
transparently handled with vMotion.

Figure 11: A conceptual model of vSphere Integrated Containers.
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If you consider a Venn diagram of “What vSphere Does” in one circle 
and “What Docker Does” in another, the intersection is not insignificant. 
vSphere Integrated Containers takes as much of vSphere as possible and 
layers on whatever Docker capabilities are missing. The following sections 
discuss the key concepts and components that make this possible.

The Virtual Container Host

A Virtual Container Host, or VCH, is the virtual functional equivalent of a 
Linux VM running Docker. From a Docker client point of view, the Virtual 
Container Host looks very similar to a native Docker host. Hence, there 
are differences between a native Docker host and a Virtual Container 
Host (VCH), and between a Linux container and a container VM. Some of 
those differences are intentional design constraints, such as there being 
no such thing as a “privileged” container in vSphere Integrated Contain-
ers. Some are because of a lack of functional completeness, some are 
outside of the existing scope of the product, such as native support for 
docker build.

To use the standard command line tools, simply set DOCKER_HOST to 
point to your virtual Docker host. Commands like docker run, docker 
volume and docker net will work similarly as they do with a standard 
Docker host. However, in the contest of vSphere Integrated Containers, 
the docker run command creates and provisions a container VM. Docker 
network commands allow container workloads to be connected to 
vSphere networks. Docker volume commands allow for the creation and 
lifecycle management of disks on vSphere storage.

A VCH is deployed as a resource pool in a vCenter Server cluster. The 
resource pool provides a useful visual parent-child relationship in the 
vSphere Client so that you can easily identify the containerVMs that are 
provisioned into a VCH. The first VM deployed inside the resource pool 
provides a secure Docker compatible API endpoint and other services for 
the VCH to run.

A VCH is functionally distinct from a traditional container host in the 
following ways:

•	 It naturally encapsulates clustering and scheduling by provisioning 
to vSphere targets

•	 The resource constraints are dynamically configurable with no 
impact to the containers

•	 The containers don’t share a kernel. They could in theory run differ-
ent kernels

•	 There is no local image cache. This is kept on a vSphere datastore
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The VCH includes all containerVMs instantiated via docker run command 
and provides networking, storage, clustering, scheduling, vMotion, host 
evacuation and HA capabilities.

A single ESXi host can have multiple VCHs, each of which with differ-
ent resources and different users. Similarly, a single VCH can expose the 
entire capacity of a vSphere cluster of ESXi hosts. It all depends on your 
own use case and requirements.

The lifecycle of the VCH is managed by a binary called vic-machine, 
which installs, upgrades, deletes and enables debugging for the VCH.

The Virtual Container Host API End-point

There is a 1:1 relationship between a VCH and a VCH API end-point. It is 
built off the same Photon OS Linux kernel as the containerVMs and is 
stateless. It has the following functions:

•	 Run the Core services, Docker personality and image resolution 
services

•	 Provide a secure remote Docker API

•	 Port mapping and routing - When a container port is mapped to a 
host port, the Virtual Container Host is responsible for listening on 
that port and routing traffic to the corresponding container VM

•	 Manage the lifecycle of containerVMs, image store, volume store 
and container state

•	 Provide logging and monitoring of its own services and of its con-
tainers

The VCH VM is completely stateless. The state is either on datastores, in 
VMX guestinfo or in vCenter itself. This makes upgrade a simple process 
of power down, swap ISO, power up, rediscover.

Security of the VCH VM is an important consideration. It is isolated from 
the containers, isolated from the vSphere management network and 
there is no ability to get a remote shell into it without explicit configura-
tion.

The vic-machine Utility

The vic-machine utility is a binary built for Windows, Linux and Mac OSX 
that manages the lifecycle of VCHs. The vic-machine has been designed 
to be used by vSphere admins. It takes pre-existing compute, network, 
storage and a vSphere user as input and creates a VCH as output. It has 
the following additional functions:
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•	 Creates certificates for Docker client TLS authentication

•	 Checks that prerequisites have been met on the cluster (firewall, 
licenses, etc.)

•	 Assists in configuring ESXi host firewalls

•	 Configures a running VCH for debugging

•	 Lists, reconfigure, upgrades/downgrades and deletes VCHs.

The vSphere Integrated Containers machine requires a vSphere admin 
user for the installation, but takes a separate “proxy” user for client opera-
tions. Operations from each VCH can then be audited under the name of 
the proxy user.

The Docker Personality

vSphere Integrated Containers engine supports version 1.25 of the Docker 
API, however not all commands and options are implemented. This is 
because the main target use case for vSphere Integrated Containers 
Engine is to run applications vs. build applications. The Docker client will 
report “not implemented” for anything the engine doesn’t support.

The ContainerVM, OS, and Tether

As already stated, a container VM is a VM with all the characteristics of 
a container. To be clear, the provisioned VM does not contain any OS 
container abstraction. The VM boots from an ISO containing the Photon 
Linux kernel and is configured with container images mounted as a disk. 
Container image layers are represented as a read-only VMDK snapshot 
hierarchy on VMFS. At the top of this hierarchy is a read-write snapshot 
that stores ephemeral state. Container volumes are formatted VMDKs 
attached as disks and indexed on VMFS. Networks are distributed port 
groups attached as vNICs.

When the VM powers on, it boots from the ISO, chroots into the container 
filesystem on the attached disk, sets up any internal state such as envi-
ronment variables and then starts the container process.

Interaction with a running container VM is managed by a “Tether” init 
process that runs as PID 1 inside the container VM. It is responsible for 
intermediating interaction (streaming stderr, tty etc) between the con-
tainer and the client. It also manages the lifecycle of container processes 
and publishes the exit code when it terminates. The tether communicates 
with the vSphere Integrated Containers appliance via a virtual serial port 
concentrator.
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Docker Container Host

vSphere Integrated Containers Engine also supports running native 
Docker container hosts on vSphere. It allows developers to self-provision 
Docker container hosts, and then use native Docker commands to build 
and run applications inside those Docker hosts.

Virtual Container Hosts vs. Docker Container Hosts

The vSphere Integrated Containers Engine enables two methods for 
deploying containers: Virtual Container Hosts and Docker Container Hosts 
(DCH). The following table summarizes the differences between the two 
deployment options:

FUNCTION VIRTUAL CONTAINER 
HOST

DOCKER CONTAINER 
HOST

Docker Client Tools Partial Compatibility 
(optimized for Run 
stage)

Full Compatibility (Opti-
mized for Build stage)

Provisioning Process VI Admin provisions 
the VCH; Developers 
provision containers as 
VMs Speed of Container 
Deployment Around 10 
secs Around 2 secs

VI Admin provisions the 
VCH; Developers provi-
sion Docker Container 
Hosts and containers 
inside the DCH

Runtime Performance Very Fast Fast

Governance Micro segmentation 
between individual con-
tainers as VMs via NSX

Does not provide net-
work security between 
containers

Resource consumption Memory is consumed 
for the lifecycle of the 
container workload

Memory is consumed 
for the lifecycle of the 
DCH

You can look at the Docker Container Host as a container VM that deliv-
ers a particular use case. Instead of instantiating, as a container VM, a 
Docker image that represents an application, you are instantiating, as a 
container VM, a Docker image that represents a Docker host.

Management Portal and Registry

Cloud admins and developers can manage and provision container-based 
applications through the vSphere Integrated Containers management 
portal. Integrated with VMware Identity Access Management, customers 
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are able to provide local and LDAP-based authentication and authori-
zation to their teams and project-level content trust and notary services 
for container images in their private registries. Manual and automated 
container image vulnerability scanning is also included to avoid running 
images with known vulnerabilities in your data centers.

The management portal provides a UI for DevOps teams to provision 
and manage containers, including the ability to obtain statistics and 
information about container instances. Cloud administrators can manage 
container hosts and apply governance to their usage, including capacity 
quotas. Administrators can manage identity sources (local and external), 
users and groups, roles, and other credentials.

The Management portal also provides the following

•	 Rule-based resource management, allowing DevOps administrators 
to set deployment preferences for container placement

•	 Live state updates that provide a live view of the container system

•	 Multi-container template management, that enables logical 
multi-container application deployments

•	 Basic scale in and scale out of number of containers in a multi-con-
tainer app template

•	 Enterprise-class private container registry

The container registry stores and distributes container images. Through 
the Management Portal DevOps administrators can organize image 
repositories in projects, and to set up role-based access control to those 
projects to define which users can access which repositories. The registry 
also provides rule-based replication of images between registries, imple-
ments Docker Content Trust, and provides detailed logging for project 
and user auditing. It extends the Docker Distribution open source project 
by adding the functionalities that an enterprise requires, such as security, 
identity and management. In addition to user authentication and RBAC, 
vSphere Integrated Containers Registry enables other security controls, 
namely:

•	 Content trust: Image signing and verification to content and ver-
sion for ensuring security and auditability when running containers 
in production

•	 Vulnerability scanning: Traditionally, operating systems have 
been managed (specifically, patched on a regular basis) by ops 
personnel with developers providing only the application-level exe-
cutables. However, containers often use base images like Ubuntu 
and CentOS from DockerHub, which contain hundreds of features, 
each of which is susceptible to vulnerabilities. Since container 
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images are essentially opaque to ops personnel, having vulner-
ability scanning helps IT Ops to prevent exploitation of known 
vulnerabilities when deploying these applications to production

Interacting with vSphere

This section explains how vSphere Integrated Containers interacts with 
vSphere.

Control Plane

The VCH VM acts as a proxy between the Docker client and the vSphere 
SDK and all of the control plane operations of a VCH are initiated by the 
vSphere user associated with it. As previously mentioned, the control 
plane is extended into containerVMs via the Tether process. The majority 
of control plane operations are VM creation, reconfiguration and deletion.

Given the multi-tenant nature of vSphere, it should be expected that there 
are multiple VCHs running concurrently in a vSphere cluster and multiple 
Docker clients connected to each VCH. Most control plane operations 
that result in a container state transition are synchronous API calls. The 
VCH API end-point handles blocking and queuing of concurrent Docker 
clients. In terms of vSphere sessions, the VCH appliance keeps a single 
session open and multiple connections are made over that session for 
control plane operations. The vicadmin web UI opens an additional ses-
sion as the user needs to authenticate with it using vSphere credentials.

Compute

Compute is limited at the container level by number of CPUs and 
memory. This can be set from the Docker client. Compute is limited at the 
macro level by memory and CPU limits either on the VCH or a Resource 
Pool it’s deployed into. One difference between vSphere Integrated Con-
tainers and regular Docker is that there’s no such thing as an “unlimited” 
container. A VM necessarily has to have limits. As such, there is a default 
container VM configuration associated with a VCH.

Networking

vSphere Integrated Containers engine uses pre-configured vSphere port 
groups for its networking: either regular port groups, distributed port 
groups or logical switches created by NSX. It is designed to allow differ-
ent types of traffic to be isolated on distinct networks. It is also designed 



An Introduction to Cloud-Native Technology   |    87

to allow vSphere networks to be directly exposed to the Docker client for 
private container traffic. It is the use of distributed port groups that allows 
for containerVMs to be provisioned across multiple hosts and vMotioned.

Networks must be created ahead of VCH creation and are specified 
as input to vic-machine, vSphere networks are exposed as “container 
networks” in Docker. vSphere Integrated Containers does not attempt to 
create or configure networks in vSphere. It is possible to specify different 
networks for the following:

•	 Expose Docker API traffic from Client to VCH

•	 Container traffic bridged to the VCH appliance

•	 Public network for image downloading and uploading

•	 vSphere management traffic

•	 Exposure of vSphere networks directly to containers

Figure 12: Networking in vSphere Integrated Containers. 

All of these networks default to DHCP, but it is possible to specify IP 
ranges and gateways if required. Likewise, the appliance itself can be giv-
en a static IP address or use DHCP.

Networks created via the Docker client currently use IPAM segregation 
rather than full micro-segmentation.
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Note that there is no special in-guest networking integration required for 
vSphere Integrated Containers containers. The container process talks 
through interfaces directly corresponding to vNICs.

Storage

As previously stated, vSphere Integrated Containers uses VMDKs on 
VMFS for all container storage. It supports any VMFS datastore, including 
vSAN, iSCSI, or local datastores. And it provides shared storage between 
containers by using an NFS volume driver.

As input to vSphere Integrated Containers machine, a user can specify 
different datastores for different types of container state. That’s con-
tainer ephemeral state, read-only image state and volume state. It is to 
be expected that different characteristics will be desirable for different 
kinds of state - for example, a customer is likely to want to back up their 
volumes, but not their container state.

When images are pulled from a Docker registry, they are extracted onto 
VMDK snapshots and indexed on a local datastore. Multiple contain-
erVMs can share the same base images because they are immutable and 
mounted read-only.

Other vSphere Features

Here’s a listing of how vSphere Integrated Containers interacts with other 
aspects of vSphere:

•	 vMotion is supported.

•	 Cross Cluster vMotion is unsupported.

•	 Distributed Resource Scheduller (DRS) is supported.

•	 High Availability (HA) is supported.

•	 Fault Tolerance (FT) is unsupported.

•	 VMware vSAN is supported.

•	 Virtual Volumes (VVOL) is unsupported.

•	 Snapshot is unsupported.

•	 Storage DRS: You cannot point to a storage DRS cluster but can 
consume individual datastores within it.
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Benefits of the Container VM Model

A container VM is strongly isolated by design and benefits from vSphere 
enterprise features such as High Availability and vMotion. It is ideally 
suited to long-running containers or services with the following require-
ments:

•	 Strong isolation - a container VM has its own kernel and has no 
access to a shared filesystem or control plane

•	 High throughput - a container VM has its own guest buffer cache 
and can connect directly to a virtual network

•	 High availability - a container VM can be configured so it can run 
independent of the availability of the VCH and can benefit from 
vSphere HA and vMotion

•	 Persistent data - a container VM can persist its data to a volume 
disk that can be backed up completely independent of the VM

This means that it is not possible to deploy a container with access to the 
control plane. It is also impossible to mount parts of the host’s filesystem 
as shared read-write volumes into the container.

vSphere Integrated Containers containers are slower to start and use 
more memory resource than Linux containers. ContainerVMs have to 
be placed, configured and booted. However, in terms of runtime per-
formance, vSphere Integrated Containers containers show improved 
throughput. Improved throughput is due to not having the additional 
layer of OS virtualization in the guest.

Running containers in containerVMs makes a lot of sense for long-run-
ning services. If the service fails, it should have no impact on any other 
services. Examples of a long-running service are a database, web server, 
key-value store etc.

A container VM is less well suited to containers that are transactional and 
have a very short lifespan, such as running a unit test. This is because the 
cost to boot the VM is high relative to the time spent running the test. A 
container VM however is very well suited to longer-running transactional 
workloads, such as builds. This is because vSphere resource is only con-
sumed for the period of execution and is immediately freed up after. This 
can lead to a much more efficient use of virtual infrastructure than slave 
VMs that are up all the time waiting for jobs.

A container VM is also less well suited to containers that need to be 
weakly isolated by design, for example a logging or monitoring container 
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that need access to the other processes in an application. This is also true 
of very small containers that together make up a single service or unit 
of scale. For this purpose, the VM is the ideal isolation domain for the 
service as a whole and the containers can be deployed inside the VM as 
software containers using a regular container engine.

vSphere Integrated Containers is a great way to manage regular container 
hosts, because the container VM abstraction allows you to treat them just 
as ephemerally as containers.

When deploying applications into production, it’s important to consider 
where the isolation boundaries should lie for your particular container, 
service or application. A VM is a natural isolation and failure domain and 
works well as a unit of scale.

Benefits of DCH over a Docker engine deployed in a VM

Deploying infrastructure to support application development is often 
cumbersome, error-prone, and time-consuming. As developers rush to 
build new apps, IT teams waste time with manual configuration, provi-
sioning, and scripting. To improve productivity, they need, at the very 
least, to streamline the way they roll out and manage infrastructure for 
developers to use.

Modern developers need an environment where they can build and test 
their apps using native container technology with minimal involvement 
from IT. Today, they use their laptops or a VM with a Docker engine in it 
as the main tools to build containerized applications. However, trying to 
build an application that goes beyond a simple demo on a laptop or desk-
top can hit performance and memory constraints. And having developers 
requesting a VM with the Docker engine in it from IT is time consuming 
because all the burden of configuration management and network con-
figuration is left to the IT team.

The key solution is providing developers with a secure sandbox so they 
can serve their own development needs by letting them create native 
Docker container hosts on demand on vSphere using the Docker CLI they 
love. By using the Docker container hosts (DCH) feature, developers can 
deploy Docker container hosts within a vSphere resource pool without 
having to file a ticket with IT. The create, run, stop, and delete operations 
are all handled using the native Docker CLI/API.

For example, developers can use DCH to integrate VIC into their CI/CD 
pipeline and use products like Jenkins to build applications on DCH and 
then push them to production using VCH. This allows build and test jobs 
to use vSphere infrastructure as completely ephemeral compute.
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The DCH gives developers the Docker tools they need to build modern 
applications or repackage existing ones and IT teams governance and 
control over the infrastructure. vSphere administrators provision compute, 
networking, and storage resources and provide them to developers as a 
self-service portal that exposes the familiar Docker compatible API.

The DCH provisioned using vSphere Integrated Containers has also a 
much-reduced attack surface because no extra services besides the 
Docker daemon are installed and only access to the remote Docker API is 
provided.

Moreover, the DCH can take advantage of many of the benefits of 
vSphere, including Distributed Resource Scheduler, clustering, VMware 
vSphere vMotion®, VMware vSphere High Availability (HA), distributed 
port groups, and shared storage making it a very robust development 
infrastructure.

Developers and IT teams need not worry about patching, security, isola-
tion, of the Docker hosts. Those functions are completely automated by 
how DCHs are deployed as part of VIC.

The outcome is a win-win situation for both developers and administra-
tors: The vSphere administrator gets visibility into and control over the 
virtual infrastructure, while developers can self-provision Docker con-
tainer hosts and work with them by using a Docker client.

Security and Isolation

Security and isolation are among the biggest differentiators of vSphere 
Integrated Containers. Here is a high-level list of security features:

•	 Docker client authenticates with VCH using a certificate by default

•	 Network isolation is achieved through multiple port groups

•	 vSphere Integrated Containers appliance is locked down by default

•	 VM isolation, every container is fully isolated from the host and 
from other containers

•	 Containers are completely isolated from each other and the ESXi 
hosts

•	 vSphere Integrated Containers supports authentication with a 
secure registry

•	 vSphere Integrated Containers supports strong identity and access 
management (IAM) with LDAP and Active Directory services
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•	 vSphere Integrated Containers enables administrators to control 
access at the project level, ensuring granular security across teams

•	 vSphere credentials persisted in ExtraConfig so they are not visible 
to the appliance guest

•	 Enterprise private container registry: With Harbor, vSphere Inte-
grated Containers offers an enterprise private container registry 
with advanced security features such as identity management, 
LDAP integration, role-based access control, and trusted content, 
all of which help ensure security for container images. With the pri-
vate registry, you can furnish project-level content trust and notary 
services to container images. Vulnerability scanning helps prevent 
vulnerable container images from running in your data center.

Installation and Configuration

You install vSphere Integrated Containers by deploying an OVA appliance. 
The OVA appliance provides access to all of the vSphere Integrated Con-
tainers components.

The installation process involves several steps.

1.	 Download the OVA from VMware web site.

2.	 Deploy the OVA, providing configuration information for vSphere 
Integrated Containers. The OVA deploys an appliance VM that runs 
vSphere Integrated Containers Management Portal and Registry; 
Makes the vSphere Integrated Containers Engine binaries available 
for download; and hosts the vSphere Client plug-in packages for 
vCenter Server.

3.	 Run the scripts to install the vSphere Client plug-ins on vCenter 
Server.

4.	 Run the command line utility, vic-machine, to deploy and manage 
virtual container hosts

Summary

VMware vSphere Integrated Containers is a comprehensive container 
solution built on the industry-leading virtualization platform, VMware 
vSphere. It enables customers to run both modern and traditional work-
loads in production on their existing SDDC infrastructure today with 
enterprise-grade networking, storage, security, performance and visibil-
ity. It offers the quickest and easiest way for vSphere customers to start 
using containers today without additional capital or labor investment.
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VMware Pivotal Container Service
VMware Pivotal Container Service (PKS) provides a production-grade 
Kubernetes-based container solution equipped with advanced net-
working, a private container registry, and full lifecycle management. The 
solution radically simplifies the deployment and operation of Kuberne-
tes clusters so you can run and manage containers at scale on VMware 
vSphere or in public clouds.

With hardened production-grade capabilities, PKS can manage your 
container deployment from the application layer all the way to the 
infrastructure layer. Critical production capabilities include high availabil-
ity, auto-scaling, health-checks and self-healing of underlying VMs, and 
rolling upgrades for Kubernetes clusters. Constant compatibility Google 
Kubernetes Engine (GKE) ensures that developers get the latest stable 
Kubernetes release, features, and tools.

PKS integrates with VMware NSX-T for advanced container networking, 
including micro-segmentation, ingress controller, load balancing, and 
security policy.

An integrated private registry secures container images with vulnerability 
scanning, image signing, and auditing. In addition, with the VMware SDDC 
portfolio, enterprises can also use persistent volumes and integrate with 
operational tooling such as monitoring, logging, and analytics.

PKS exposes Kubernetes in its native form without adding any layers 
of abstraction or proprietary extensions, which lets developers use 
the native Kubernetes CLI that they are most familiar with. PKS can be 
deployed and operationalized by using Pivotal Operations Manager, which 
allows a common operating model to deploy PKS across multiple IaaS 
abstractions like vSphere and Google Cloud Platform.

PKS is certified by the Cloud Native Computing Foundation (CNCF) 
through its Kubernetes Software Conformance Certification program. This 
certification lets you run applications with the confidence that the Kuber-
netes deployment has passed CNCF test suites and is compliant with the 
community’s specification. As more organizations adopt Kubernetes, a 
certified Kubernetes product like PKS ensures portability, interoperability 
and consistency between different environments. 
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KEY BENEFITS OF VMWARE PIVOTAL CONTAINER SERVICE

•	 Eliminate lengthy deployment and management process with on-de-
mand provisioning, scaling, patching and updating of Kubernetes 
clusters through a simple CLI or API.

•	 Access the latest stable Kubernetes release and gain constant compati-
bility with Google Kubernetes Engine (GKE).

•	 Provide high availability for Kubernetes components (master, worker, 
etcd nodes) with rolling upgrades, health-checks, and auto-healing of 
underlying virtual infrastructure

•	 Simplify container networking and increase security with Vmware NSX, 
providing high availability, automated provisioning, micro-segmentation, 
ingress controller, load balancing, and security policy.

•	 Deploy Kubernetes clusters for both stateless and stateful applications.

•	 Secure application deployments with an integrated enterprise container 
registry with vulnerability scanning, image signing, and auditing.

•	 Improve operational efficiency with monitoring, logging, and analytics.

Architecture

PKS builds on Kubernetes, BOSH, VMware NSX-T, and Project Harbor to 
form a highly available, production-grade container service. With built-in 
intelligence and integration, PKS ties all these open source and commer-
cial modules together, delivering a simple-to-use solution with an efficient 
Kubernetes deployment and management experience.

Figure 13: The architecture of VMware Pivotal Container Service. 
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PKS Control Plane

A key component of PKS, the control plane is the self-service interface 
responsible for the on-demand deployment and lifecycle management of 
Kubernetes clusters. It provides an API interface for self-service consump-
tion of Kubernetes clusters. The API submits requests to BOSH, which 
automates the creation, update, and deletion of Kubernetes clusters.

Operations and Automation with BOSH

BOSH is an open source tool for release engineering that simplifies the 
deployment and lifecycle management of large distributed systems. With 
BOSH, developers can easily version, package, and deploy software in a 
consistent and reproducible manner. BOSH supports deployments across 
different IaaS providers, such as VMware vSphere, Google Compute Plat-
form, and Amazon Elastic Compute Cloud (EC2).

The command-line interface and API of BOSH support multiple use cases 
through the lifecycle of Kubernetes. You can deploy multiple Kubernetes 
cluster in minutes. Scaling Kubernetes clusters can also be done with 
CLI or API calls. Patching and updating one or more Kubernetes clusters 
are also made easier by PKS through the same mechanism, making sure 
your clusters always keep pace with the latest security and maintenance 
updates. If the clusters are no longer required, the user can quickly delete 
them.

Container Networking with VMware NSX

VMware NSX-T supplies Kubernetes clusters with advanced container 
networking and security features, such as micro-segmentation, load bal-
ancing, ingress control, and security policies. NSX furnishes the complete 
set of Layer 2 through Layer 7 networking services that is needed for 
pod-level networking in Kubernetes. You can quickly deploy networks 
with micro-segmentation and on-demand network virtualization for con-
tainers and pods.

The integration of NSX with PKS delivers an immediate, far-reaching 
impact on network operations for cloud-native applications:

•	 The native support for NSX-T load balancers provides highly 
reliable, high-performance distribution of traffic to Kubernetes ser-
vices that are exposed externally.
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•	 Policies for micro-segmentation that go beyond the standard secu-
rity policies of Kubernetes.

•	 Network polices that help secure traffic across Kubernetes name-
spaces and within pods in the same namespace.

•	 Operational tools and troubleshooting utilities that can debug 
inter-pod communication.

•	 A unified policy layer for VMs and Kubernetes pods.

In PKS, NSX-T automates container networking in Kubernetes. An app 
running in the Kubernetes cluster can use the virtual network to com-
municate with the outside world. Incoming traffic makes use of the load 
balancer, which NSX automatically provisioned for the Kubernetes cluster.

When a cluster is created on PKS, NSX dynamically creates a secured net-
work for the Kubernetes cluster nodes. NSX-T load balancing services are 
on a highly available, redundant NSX Edge cluster, so if one load balancer 
goes down, traffic automatically falls over to another load balancer. The 
load balancing services are integrated with the Kubernetes Ingress and 
LoadBalancer constructs.

Network Policies and Micro-Segmentation

NSX adds network policies and micro-segmentation to meet the isolation 
requirements of workloads. You can, for example, define micro-segmen-
tation policies based on traffic flow patterns among the namespaces in 
which containerized applications are running. Network policies can also 
segregate pods to securely handle a microservices-based architecture. 
Each Kubernetes namespace can be isolated from other namespaces. If 
you have three namespaces, for example, NSX automatically sets up an 
isolated network for each one. With NSX managing container networking 
interfaces on PKS, network policies specify how traffic can move both 
between and within Kubernetes namespaces. In short, NSX lets you craft 
rules to impose your security requirements on workloads.

NSX can enforce additional types of policies:

•	 Group policies based on IP address

•	 Egress policies

•	 Policies that route traffic to to different virtual machines based on 
the names of VMs.

•	 Policies that specify what traffic can enter and leave the network 
for a containerized application.
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Another powerful result of NSX integration with PKS is an assortment of 
operational tools and troubleshooting utilities:

•	 Traceflow

•	 Port mirroring

•	 Port connection tool

•	 Spoofguard

•	 Syslog

•	 Port counters

•	 IPFIX

Such tools are the mainstay of a modern, virtualized network. And now 
they have been ported to container networking on Kubernetes. Such 
tools fulfill the requirements of production-level networking for con-
tainerized applications so you can, for example, debug communication 
between pods and the microservices components of your containerized 
applications.

A Boon to Operations

In these ways, NSX supplies an industrial-strength, production-grade 
solution for container networking. So what’s the result of all this for oper-
ations?

First off, because NSX automates provisioning for container interfaces, 
it frees developers from having to request networking infrastructure 
from IT, and it frees IT from having to fulfill those requests. The result: 
No more provisioning bottlenecks. The inefficiencies attached to the 
manual process of fulfilling infrastructure requests evaporate in a wave of 
automation. Another result: A boost in developers’ productivity: They no 
longer need to fuss about with submitting tickets to obtain the resources 
they constantly need.

But there’s more. Because NSX provides secure networking for microser-
vices-based applications running on Kubernetes, developers can rapidly, 
frequently, and confidently deploy software without having to write code 
to guard against traditional infrastructure issues.

There are other results as well, all critical outcomes associated with 
moving in the direction of cloud-native applications:

•	 Being able to modernize legacy applications more quickly and 
efficiently.
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•	 Being able to modify existing applications faster, with less effort, 
and with more predictability.

•	 Being able to deploy and redeploy applications with enhanced 
flexibility, agility, predictability, and repeatability.

Secure Image Registry from Project Harbor

Harbor is an open source, enterprise-class registry server from VMware 
that stores and distributes Docker images in a private registry behind 
your firewall. Harbor includes role-based access control, vulnerability 
scanning for container images, policy-based image replication, and notary 
and auditing services.

Integration with LDAP or Microsoft Active Directory ensures the proper 
level of authority and access for container images.

The image notary service establishes content trust by letting publishers 
sign images when they push them and preventing unsigned images from 
being pulled.

With the private registry, users can scan container images for vulnera-
bilities to mitigate the risk of security breaches related to contaminated 
container images.

Persistent Storage

PKS allows customers to deploy Kubernetes clusters for both stateless 
and stateful applications. It supports the vSphere Cloud Provider stor-
age plugin which is part of Kubernetes through Project Hatchway. This 
allows PKS to support Kubernetes storage primitives such as Volumes, 
Persistent Volumes (PV), Persistent Volumes Claims (PVC), Storage Class 
and Stateful Sets on vSphere storage, and also brings in enterprise-grade 
storage features like Storage Policy Based Management(SPBM) with 
vSAN to Kubernetes based applications.

VMware vSphere Cloud Provider: To run stateful, data-intensive contain-
erized applications that include databases, you need a persistent storage 
solution. vSphere Cloud Provider, which is part of Kubernetes through 
Project Hatchway, enables PKS to support Kubernetes the following 
storage primitives on vSphere storage: Volumes, Persistent Volumes (PV), 
Persistent Volumes Claims (PVC), Storage Class, and Stateful Sets. The 
vSphere Cloud Provider also furnishes enterprise storage features like 
storage policy-based management.
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Managing Operations by Integrating with 
Other VMware Solutions

PKS can be integrated with other VMware products to offer a full-stack 
Kubernetes service. Here are some of the VMware products with which 
PKS can integrate:

VMware vRealize® Operations™: With vRealize Operations, IT organiza-
tions can improve performance, avoid business disruption, and become 
more efficient with comprehensive visibility across applications and infra-
structure.

VMware vRealize Log Insight™: Log Insight delivers highly scalable log 
management with actionable dashboards, analytics, and broad third-
party extensibility, giving you deep operational visibility and faster 
troubleshooting.

Wavefront® by VMware: Wavefront efficiently monitors containers at 
scale. Its dashboards give DevOps real-time visibility into the operations 
and performance of containerized workloads and Kubernetes clusters.

High Availability

PKS provides critical production-grade capabilities to ensure maximum 
uptime for workloads running in your Kubernetes clusters. It continuously 
monitors the health of all underlying VM instances, and recreates VMs 
when there are failed or unresponsive nodes. It also manages the rolling 
upgrade process for a fleet of Kubernetes clusters, allowing clusters to be 
upgraded with no downtime for application workloads.

Constant Compatibility with Google 
Kubernetes Engine (GKE)

PKS is developed using mainline Kubernetes and delivers the latest stable 
Kubernetes release to your developers. It ensures constant compatibil-
ity with Kubernetes versions that are supported by GKE, so enterprise 
developers can use the latest features and patches across vSphere and 
GKE. In addition, without adding any proprietary abstraction layer on 
top of Kubernetes, PKS exposes Kubernetes in its native form, letting 
developers or your development tools interact with Kubernetes using the 
native Kubernetes interface, and also making workloads readily portable 
between vSphere and GKE.
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Multi-Tenancy

To isolate workloads and ensure privacy, PKS supports multi-tenancy for 
multiple lines of business within an enterprise. Different users or different 
lines of business are able to use their own Kubernetes clusters. Addition-
ally, with NSX-T micro-segmentation, Kubernetes namespaces can be 
secured for multiple teams using a shared cluster.

Multi-Cloud

PKS supports multi-cloud deployment through BOSH. With PKS, you 
can deploy containerized application with Kubernetes on-premises on 
vSphere, or on public clouds such as Google Cloud Platform.

Summary of PKS Features and Benefits

On-Demand 
Provisioning

Accelerates the deployment of 
Kubernetes clusters.

Eliminates manual steps for deploying Kubernetes 
clusters.

Minimizes mistakes and shortens time-to-value

On-Demand 
Scaling

Scales the cluster capacity easily.

Eliminates manual steps and mistakes.

Optimizes resource utilization

On-Demand 
Patching

Centralizes and speeds up patching and updating of 
multiple Kubernetes clusters.

Keeps Kubernetes cluster up-to-date and secure.

Rolling Upgrades Minimizes workload downtime by rolling upgrading a 
fleet of Kubernetes clusters.

Automatic Health 
Check and 
Self-Healing

Prevents issues with proactive monitoring of the health 
of all nodes.

Ensures desired responsiveness of the application ser-
vices by recreating failed or unresponsive nodes.

Advanced 
Container 
Networking and 
Security

Increases developer and ops productivity by simplify-
ing networking management and enhancing security.

Optimizes native container networking including 
automatic provisioning, micro-segmentation, ingress 
controller, load balancing and security policies.
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Secure Container 
Registry:

Minimizes application breaches with enhanced con-
tainer security.

Simplifies container image management and enhances 
security through image replication, RBAC, AD/LDAP 
integration, notary services, vulnerability scanning, and 
auditing.

Constant 
Compatibility 
with GKS

Enhances developer productivity by letting developers 
access the most up-to-date Kubernetes features and 
tools.

Native Kubernetes 
Support

Exposes Kubernetes in its native form with no propri-
etary extensions.

Increases developer productivity by offering them the 
native Kubernetes CLI and full YMAL support.

CNCF-certified 
Kubernetes 
Distribution

Compliant with the community’s specification.

Ensures portability, interoperability and consistency 
between different environments cross-cloud.

Multi-tenancy Provides individual users with their own Kubernetes 
cluster on isolated network.

Secures workloads between tenants and provides 
privacy.

Persistent Storage Deploys Kubernetes clusters for both stateless and 
stateful applications.

Supports vSphere Cloud Provider storage plugin 
through Project Hatchway.

Multi-cloud Optimizes workload deployment in multi-cloud envi-
ronments by providing a consistent interface to deploy 
and manage Kubernetes on both vSphere and Google 
Cloud Platform.

Integration with 
vRealize 
Operations

Increases operations efficiency by letting IT admin-
istrators effectively monitor and troubleshoot the 
performance of the Kubernetes clusters and its under-
lying infrastructure.

Integration with 
Wavefront by 
VMware

Offers near real-time visibility into the operations and 
performance of containerized applications running in 
the Kubernetes clusters.

Allows developers and DevOps to do Application Per-
formance Monitoring and Management (APM).

Integration with 
vRealize Log 
Insight

Delivers highly scalable log management with action-
able dashboards, analytics, and broad third-party 
extensibility.

Enables deep operational visibility and faster trouble-
shooting.
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Use Cases
This chapter looks at several common use cases for vSphere Integrated 
Containers and VMware Pivotal Container Service.

Self-Service Infrastructure for Agile 
Development
Deploying infrastructure to support application development is often 
cumbersome, error-prone, and time-consuming. As developers rush to 
build new apps, IT teams waste time with manual configuration, provi-
sioning, and scripting. To improve productivity, they need, at the very 
least, to streamline the way they roll out and manage infrastructure.

A key solution is providing developers with a sandbox so they can serve 
their own infrastructure needs by creating Docker container hosts on 
demand. Modern developers need an environment where they can 
build and run their apps using native container technology with minimal 
involvement from IT. Implementing a developer sandbox by using VMware 
vSphere® Integrated Containers™ provides developers with an agile 
self-service container environment for app development.

Developers are increasingly turning to Docker containers because 
containers help them adapt to changes brought about by digital trans-
formation. The architecture of a containerized application complements 
agile practices and DevOps methodologies, such as continuous integra-
tion and continuous delivery.

Supporting Microservices

Developers often turn to container technology to support micro-services. 
A micro-services architecture breaks up the functions of an application 
into a set of small, discrete, decentralized, goal-oriented processes, each 
of which can be independently developed, tested, deployed, replaced, 
and scaled.

However, trying to build an application with micro-services on a laptop 
or desktop can hit performance and memory constraints. Even when an 
application does not use micro-services, a laptop might not have enough 
resources. Whenever developers don’t have enough resources on their 
laptops to run a copy of their production environment, a sandbox enables 
developers to work on their app.
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Providing a Developer Sandbox with vSphere 
Integrated Containers

vSphere Integrated Containers creates an enterprise container infrastruc-
ture within vSphere, enabling both traditional and containerized apps 
to run side by side on a common infrastructure. Developers can initiate 
Docker container hosts within a resource pool so they can spin containers 
up and down on demand without having to file a ticket with IT.

Self-Service Provisioning

Developers can self-provision Docker container hosts. Although this tick-
etless environment gives developers the Docker tools they need to build 
modern applications or repackage existing ones in containers, IT retains 
governance and control over the infrastructure because vSphere Inte-
grated Containers leaves the management of the hosts to the vSphere 
administrator.

vSphere administrators provision compute, networking, and storage 
resources and provide them to tenants as a self-service portal exposing 
a familiar Docker-compatible API. The virtual machines provisioned using 
vSphere Integrated Containers take advantage of many of the benefits 
of vSphere, including Distributed Resource Scheduler, clustering, VMware 
vSphere vMotion®, VMware vSphere High Availability (HA), distributed 
port groups, and shared storage.

Developers and DevOps need not worry about patching, security, isola-
tion, tenancy, availability, clustering, or capacity planning. Those functions 
continue to be business as usual for the vSphere administrator. Instead, 
developers and DevOps receive a container endpoint as a service. The 
outcome is a win-win situation for both developers and administrators: 
The vSphere administrator gets visibility into and control over the virtual 
machines, while developers and DevOps can self-provision Docker con-
tainer hosts and work with them by using a Docker client.

Because of the portability of the Docker image format, a developer using 
vSphere Integrated Containers can establish an endpoint at the end of a 
continuous integration pipeline, consuming images pushed to the private, 
secure registry that comes with vSphere Integrated Containers. There is 
no need to build out a separate, dedicated container infrastructure stack. 
The finished application can be put into production on a virtual container 
host powered by vSphere Integrated Containers.
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Sharing Images with the Private Registry

A developer can also push a container image for an application being 
developed to the vSphere Integrated Containers registry, tag it, and let 
other developers use a Docker client to run the container on a Docker 
container host. At the same time, a vCenter administrator can see each 
Docker container host in the vSphere inventory. The developer or the 
administrator can use the monitoring page in the vSphere Integrated 
Containers management portal to view statistics and logs about contain-
ers. The management portal is integrated with identity management to 
securely provision containers.

Docker Container Hosts on Demand

Developers can exploit the capacity of a VMware® software-defined data 
center to develop and test a containerized application. A laptop might 
be too sluggish to run a containerized application, especially if it is built 
with microservices. With vSphere Integrated Containers, developers can 
quickly provision Docker container hosts and then point their Docker 
client to the host to work with containers. A developer sandbox powered 
by vSphere Integrated Containers lets developers and DevOps serve their 
own requirements by creating Docker container hosts on demand. The 
outcome accelerates the process of developing software and shortens an 
application’s time to market.

Repackaging an Application with VIC

Digital transformation is fundamentally disrupting how software is devel-
oped and deployed. Companies are under pressure to rapidly create 
innovative software that engages their customers and provides new 
services. Improving time to market is paramount. As a result, companies 
are turning to container technology to modernize their data centers and 
streamline software development.

Containers package an application and its dependencies into a distribut-
able image that can run almost anywhere. The packaging and portability 
of containers support modern architectural patterns and make developers 
more efficient.

By provisioning and hosting containers, VMware vSphere Integrated Con-
tainers prepares your data center for the digital era. The solution moves 
you one step closer to a modernized software-defined data center that 
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deploys infrastructure, services, data, and applications on demand. For a 
traditional application, however, a common first step toward moderniza-
tion is repackaging part or all of it in a container.

Challenges Impeding Application 
Repackaging

Most infrastructure platforms are not designed to run traditional and 
modern applications side by side while working with existing hardware 
and software, making it difficult to repackage a traditional application 
with containers.

Beyond the infrastructure, modern applications pose their own chal-
lenges. Modern apps change frequently, are developed in short release 
cycles, and might be built with microservices. In addition, IT teams need 
to connect applications across clouds and devices with security, compli-
ance, and availability.

But you can establish a consistent operational model for infrastructure 
and application delivery that works with both traditional and contain-
erized applications. The model creates a powerful bridge to move from 
traditional software development practices to new, more flexible forms 
geared toward innovation, speed of execution, and easier maintenance.

Repackaging Applications for Efficiency

THE BENEFITS OF REPACKAGING APPS IN A CONTAINER
Advantages of repackaging a traditional app in a container and running it with 
vSphere Integrated Containers:

•	 Ease application maintenance

•	 Minimize disruption to operations and reduce costs by using existing 
VMware infrastructure

•	 Simplify workflows to accelerate development

•	 Fix an application’s vulnerabilities

•	 Impose a consistent environment across development, testing and pro-
duction

•	 Enhance portability

•	 Streamline app deployment by using Docker

•	 Improve the app’s time to market
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It can be costly and time-consuming to re-architect an in-house applica-
tion that is too coupled to its data or other application components. For 
an application with a well-defined architecture that tightly couples data 
with application logic, it makes sense to repackage the application in a 
container without having to modify the application’s design. In addition, 
the learning curve for repackaging an application or part of it, such as the 
web front end, is small.

vSphere Integrated Containers provides an alternate way to instantiate a 
Docker image by letting you use the Docker command-line interface and 
then deploy the container image as a VM instead of as a container on 
top of a Docker host. As a result, you reap the benefits of packaging the 
application as a container without re-architecting it. This approach keeps 
the isolation benefits of VMs.

vSphere Integrated Containers is ideally suited to application repackag-
ing. No new infrastructure or dedicated hardware is required to repackage 
the application, nor do you need to implement new tooling. The repack-
aged containerized application can run alongside other virtual machines 
running other applications, whether traditional or containerized. To sup-
port the repackaged container, vSphere Integrated Containers provides 
high availability at the infrastructure level without developer intervention. 
You can also use such core vSphere features as vSphere High Availability 
and vSphere vMotion.

Containers simplify application maintenance. After you repackage an app 
in a container, maintenance activities such as upgrading, updating, and 
patching become easier. The Docker file, in particular, eases patches and 
upgrades.

Unifying Containerized Applications with 
vSphere

Docker furnishes a platform with which developers can rapidly build 
applications on their laptops and then port them to vSphere Integrated 
Containers. A developer working on a traditional Java application running 
on Apache Tomcat, for example, can containerize the application and 
then, because of its inherent portability, shift it to a virtual container host 
provisioned by a vSphere administrator.

The developer can then push the container image to the vSphere Inte-
grated Containers registry, tag it, and run it in the virtual container host. 
At the same time, an administrator of VMware vCenter® can see the con-
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tainer VM in the vSphere inventory. The developer or the administrator 
can use the monitoring page in the vSphere Integrated Containers portal 
to view statistics and logs. This unification is made possible in part by the 
vSphere Integrated Containers management portal, which is integrated 
with identity management to securely provision containers. The result 
enables application development teams to repackage, test, and deploy 
applications quickly and efficiently.

Replatforming Applications with PKS
Repackaging an application to run in containers and then moving the 
app to a modern platform—that is, replatforming the app—is a critical 
step toward reaping the benefits of container technology. Replatforming 
accelerates software development, eases infrastructure management, and 
automates deployment. After deployment, a replatformed application 
can be orchestrated and scaled on demand with Kubernetes. The power 
of Kubernetes to orchestrate containerized workloads is key to unlocking 
the benefits of replatforming an application.

Benefits of Replatforming

Replatforming an application propels you toward several objectives 
associated with accelerating application development and deployment 
without having to deal with the complexity of re-architecting or refactor-
ing an application:

•	 Workload consolidation, especially if you are increasingly moving in 
the direction of developing cloud-native applications.

•	 Simplified and improved integration with a continuous integration 
and continuous deployment pipeline (CI/CD).

•	 Operational efficiency for managing the application with auto-
mation, security,monitoring, logging, analytics, and lifecycle 
management.

Because replatforming takes place after repackaging an application in 
containers,you also reap the benefits of repackaging:

•	 Portability across development, test, production, and cloud envi-
ronments.

•	 Predictability and reproducibility to eliminate the it-worked-for-me 
refrain.

•	 Simplicity of upgrading, patching, and maintenance.

•	 Velocity for agile development iterations, testing, and deployment.
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•	 Flexibility for developers to code where and when they want with 
the tools they like.

•	 Traceability of immutable container images for improved transpar-
ency,compliance, and reuse.

Replatforming an app also puts you in a position to take advantage of 
changes in ISV-delivered applications—which are increasingly being 
prepackaged with their dependencies in containers for a consistent, prob-
lem-free installation process.

Targeting Workloads for Replatforming 
on PKS

With its flexible, powerful capabilities, VMware PKS is well suited to 
replatforming the following types of workloads:

•	 Applications requiring data persistence, such as MongoDB, 
CouchDB,and Elasticsearch.

•	 Applications managed as a distributed cluster, especially when 
nodes in the cluster must communicate with one another.

•	 Applications that need infrastructure primitives, such as persistent 
storage.

•	 Applications that require multiple ports.PKS delivers services that 
empower developers to manage their container images with the 
built-in registry, to build container and pod templates for Kuberne-
tes, to configure the port bindings that they want, and to manage 
dependencies. As such,PKS is ideal for replatforming modern data 
services such as Elasticsearch, Spark, and other applications requir-
ing a custom stack or access to infrastructure primitives.

Decomposing the Monolith in Stages

After replatforming an application on VMware PKS, you can separate it 
into three components in stages. During the first stage, the database can 
be decoupled from the monolith so that it can be independently scaled. 
During the second stage, the application’s front end, including its user 
interface and command-line interface,can be detached so it can be man-
aged and updated separately. The third stage focuses on security to make 
sure that inter-component communication is secure.
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Section Summary

VMware Pivotal Container Services delivers a highly available, produc-
tion-grade Kubernetes-based container service equipped with container 
networking, security,and lifecycle management. Deployable both on-prem 
in vSphere and in public clouds like Google Cloud Platform, VMware PKS 
is well suited to replatforming applications that will benefit from contain-
erization and orchestration.

Deploying New Cloud-Native Apps 
with PKS
If you are seeking to build new cloud-native applications, PKS furnishes 
a flexible, scalable Kubernetes-based container service that simplifies 
deployment and operations. With PKS, developers can provide container 
images and templates for pods. At the same time, the platform provides 
the flexibility for customization—developers can, for example, set up 
explicit port bindings for containers, co-locate them, and configure routes 
and dependencies. For flexibility in managing and automating containers, 
PKS exposes the Kubernetes API.

DevOps or a platform operations team is likely to play a key role in man-
aging PKS and in providing a system and tools for continuous delivery, 
such as Jenkins, a pipeline automation tool.

Here are the some of the ideal use cases and workloads for PKS:

•	 Running modern data services such as Elasticsearch, Cassandra, 
and Spark.

•	 Running ISV applications packaged in containers.

•	 Running microservices-based apps that require a custom stack.
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Exploiting the Power of 
Containers
This chapter presents detailed scenarios and examples of how to deploy 
and adopt various container technology to exploit the power of containers.

Running a Containerized App with 
Photon OS on Amazon Elastic Cloud 
Compute
This section introduces you to working with a containers in the cloud by 
demonstrating how to use a Linux container host to launch a contain-
erized application. The section describes how to get Photon OS up and 
running on Amazon Web Services Elastic Cloud Compute (EC2), custom-
ize Photon with cloud-init, connect to it with SSH, and run a containerized 
application.

Photon OS is an open source Linux container host optimized for 
cloud-native applications, cloud platforms, and VMware infrastructure. 
Photon OS provides a secure run-time environment for efficiently running 
containers. For an overview of Photon OS, see https://vmware.github.io/
photon/.

Prerequisites

Using Photon OS within AWS EC2 requires the following resources:

•	 AWS account. Working with EC2 requires an Amazon account for 
AWS with valid payment information. Keep in mind that, if you try 
the examples in this document, you will be charged by Amazon. 
See Setting Up with Amazon EC2.

•	 Amazon tools. The following examples also assume that you have 
installed and configured the Amazon AWS CLI and the EC2 CLI and 
AMI tools, including ec2-ami-tools.

See Installing the AWS Command Line Interface, Setting Up the Amazon 
EC2 Command Line Interface Tools on Linux, and Configuring AWS Com-
mand-Line Interface. Also see Setting Up the AMI Tools. This article uses 
an Ubuntu 14.04 workstation to generate the keys and certificates that 
AWS requires.
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Downloading the Photon OS Image for 
Amazon

VMware packages Photon OS as a cloud-ready Amazon machine image 
(AMI) that you can download for free from Bintray.

Download the Photon OS AMI now and save it on your workstation. For 
instructions, see Downloading Photon OS.

Note: The AMI version of Photon is a virtual appliance with the informa-
tion and packages that Amazon needs to launch an instance of Photon 
in the cloud. To build the AMI version, VMware starts with the minimal 
version of Photon OS and adds the sudo and tar packages to it.

Getting Photon OS Up and Running on EC2

To run Photon OS on EC2, you must use cloud-init with an EC2 data 
source. The cloud-init service configures the cloud instance of a Linux 
image. An instance is a virtual server in the Amazon cloud.

The examples in this article show how to generate SSH and RSA keys for 
your Photon instance, upload the Photon OS .ami image to the Amazon 
cloud, and configure it with cloud-init. In many of the examples, you must 
replace information with your own paths, account details, or other infor-
mation from Amazon.

Step 1: Create a Key Pair

The first step is to generate SSH keys on, for instance, an Ubuntu 
workstation:
ssh-keygen -f ~/.ssh/mykeypair

The command generates a public key in the file with a .pub extension 
and a private key in a file with no extension. Keep the private key file and 
remember the name of your key pair; the name is the file name of the two 
files without an extension. You’ll need the name later to connect to the 
Photon instance.

Change the mode bits of the public key pair file to protect its security. In 
the command, include the path to the file if you need to.
chown 600 mykeypair.pub
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Change the mode bits on your private key pair file so that only you can 
view it:
chmod 400 mykeypair

To import your public key pair file (but not your private key pair file), 
connect to the EC2 console at https://console.aws.amazon.com/ec2/ and 
select the region for the key pair. A key pair works in only one region, and 
the instance of Photon that will be uploaded later must be in the same 
region as the key pair. Select key pairs under Network & Security, and 
then import the public key pair file that you generated earlier.

For more information, see Importing Your Own Key Pair to Amazon EC2.

Step 2: Generate a Certificate

When you bundle up an image for EC2, Amazon requires an RSA user 
signing certificate. You create the certificate by using openssl to first 
generate a private RSA key and then to generate the RSA certificate that 
references the private RSA key. Amazon uses the pairing of the private 
key and the user signing certificate for handshake verification.

First, on Ubuntu 14.04 or another workstation that includes openssl, run 
the following command to generate a private key. If you change the name 
of the key, keep in mind that you will need to include the name of the key 
in the next command, which generates the certificate.
openssl genrsa 2048 > myprivatersakey.pem

Remember where you store your private key locally; you’ll need it again 
later.

Second, run the following command to generate the certificate. The 
command prompts you to provide more information, but because you are 
generating a user signing certificate, not a server certificate, you can just 
type Enter for each prompt to leave all the fields blank.
openssl req -new -x509 -nodes -sha256 -days 365 -key mypri-
vatersakey.pem -outform PEM -out certificate.pem

For more information, see the Create a Private Key and the Create the 
User Signing Certificate sections of Setting Up the AMI Tools.

Third, upload to AWS the certificate value from the certificate.pem file 
that you created in the previous command. Go to the Identity and Access 
Management console at https://console.aws.amazon.com/iam/, navigate 
to the name of your user, open the Security Credentials section, click 
Manage Signing Certificates, and then click Upload Signing Certificate. 
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Open certificate.pem in a text editor, copy and paste the contents of the 
file into the Certificate Body field, and then click Upload Signing 
Certificate.

For more information, see the Upload the User Signing Certificate section 
of Setting Up the AMI Tools.

Step 3: Create a Security Group

The next prerequisite is to create a security group and set it to allow SSH, 
HTTP, and HTTPS connections over ports 22, 80, and 443, respectively. 
Connect to the EC2 command-line interface and run the following com-
mands:
aws ec2 create-security-group --group-name photon-sg 
--description “My Photon security group”
{
    “GroupId”: “sg-d027efb4”
}
aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 22 --cidr 0.0.0.0/0

The GroupId is returned by EC2. Write it down; you’ll need it later.

By using 0.0.0.0/0 for SSH ingress on Port 22, you are opening the port 
to all IP addresses–which is not a security best practice but a conve-
nience for the examples in this article. For a production instance or other 
instances that are anything more than temporary machines, you should 
authorize only a specific IP address or range of addresses. See Amazon’s 
document on Authorizing Inbound Traffic for Linux Instances.

Repeat the command to allow incoming traffic on Port 80 and on Port 
443:
aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 80 --cidr 0.0.0.0/0

aws ec2 authorize-security-group-ingress --group-name pho-
ton-sg --protocol tcp --port 443 --cidr 0.0.0.0/0

Check your work:
aws ec2 describe-security-groups --group-names photon-sg
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Step 4: Extract the Tarball

Next, make a directory to store the image, and then extract the Photon 
OS image from its archive by running the following tar command. (You 
might have to change the file name to match the version you have.)
mkdir bundled
tar -zxvf ./photon-ami.tar.gz

Step 5: Bundle the Image

The next step is to run the ec2-bundle-image command to create an 
instance store-backed Linux AMI from the Photon OS image that you 
extracted in the previous step. The result of the ec2-bundle-image com-
mand is a manifest that describes the machine in an XML file.

The command uses the certificate path to your PEM-encoded RSA public 
key certificate file; the path to your PEM-encoded RSA private key file; 
your EC2 user account ID; the correct architecture for Photon OS; the 
path to the Photon OS AMI image extracted from its tar file; and the bun-
dled directory from the previous step.

You must replace the values of the certificate path, the private key, and 
the user account with your own values.
$ ec2-bundle-image --cert certificate.pem --privatekey 
myprivatersakey.pem --user <EC2 account id>  --arch x86_64 
--image photon-ami.raw --destination ./bundled/

Step 6: Put the Bundle in a Bucket

Next, make an S3 bucket, replacing <bucket-name> with the name that 
you want. The command creates the bucket in the region specified in 
your Amazon configuration file, which should be the same region in which 
you are using your key pair file:
$ aws s3 mb s3://<bucket-name>

Now upload the bundle to the Amazon S3 cloud. The following command 
includes the path to the XML file containing the manifest for the Photon 
OS machine created during the previous step, though you might have to 
change the file name to match the version you have. The manifest file is 
typically located in the same directory as the bundle.

The command also includes the name of the Amazon S3 bucket in which 
the bundle is to be stored; your AWS access key ID; and your AWS secret 
access key.
$ ec2-upload-bundle --manifest ./bundled/photon-ami.mani-
fest.xml --bucket <bucket-name> --access-key <Account Access 
Key> --secret-key <Account Secret key>
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Step 7: Register the Image

The final step in creating an AMI before you can launch it is to register it. 
The following command includes a name for the AMI, its architecture, and 
its virtualization type. The virtualization type for Photon OS is hvm.
$ ec2-register <bucket-name>/photon-ami.manifest.xml --name 
photon-ami --architecture x86_64 --virtualization-type hvm

Once registered, you can launch as many new instances as you want.

Step 8: Run an Instance of the Image with Cloud-Init

Now things get a little tricky. In the following command, the user-data-file 
option instructs cloud-init to import the cloud-config data in user-data.
txt.

The command also includes the ID of the AMI, which you can obtain by 
running ec2-describe-images; the instance type of m3.medium, which is a 
general purpose instance type; and the name of key pair, which should be 
replaced with your own–otherwise, you won’t be able to connect to the 
instance.

Before you run the command, change directories to the directory con-
taining the mykeypair file and add the path to the user-data.txt.
$ ec2-run-instances <ami-ID> --instance-type m3.medium -g 
photon-sg --key mykeypair --user-data-file user-data.txt

Here are the contents of the user-data.txt file that cloud-init applies to the 
machine the first time it boots up in the cloud.
#cloud-config
hostname: photon-on-01
groups:
- cloud-admins
- cloud-users
users:
- default
- name: photonadmin
   gecos: photon test admin user
   primary-group: cloud-admins
   groups: cloud-users
   lock-passwd: false
   passwd: vmware
- name: photonuser
   gecos: photon test user
   primary-group: cloud-users
   groups: users
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   passwd: vmware
packages:
- vim

Step 9: Get the IP Address of Your Image

Now run the following command to check on the state of the instance 
that you launched:
$ ec2-describe-instances

Finally, you can obtain the external IP address of the instance by running 
the following query:
$ aws ec2 describe-instances --instance-ids <instance-id> 
--query ‘Reservations[*].Instances[*].PublicIpAddress’ 
--output=text

If need be, check the cloud-init output log file on EC2 at /var/log/cloud-
init-output.log to see how EC2 handled the settings in the cloud-init data 
file.

For more information on using cloud-init user data on EC2, see Running 
Commands on Your Linux Instance at Launch.

Deploy a Containerized Application 
in Photon OS

This section shows you how to connect to the Photon instance by using 
SSH and to launch a web server by running it in Docker.

Step 1: Connect with SSH

Connect to the instance over SSH by specifying the private key (.pem) file 
and the user name for the Photon machine, which is root:
ssh -i ~/.ssh/mykeypair root@<public-ip-address-of-instance>

For complete instructions, see Connecting to Your Linux Instance Using 
SSH.

Step 2: Run Docker

On the minimal version of Photon OS, the docker engine is enabled and 
running by default, which you can see by running the following command:
systemctl status docker
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Step 3: Start the Web Server

Note: Please make sure that the proper security policies have been 
enabled on the Amazon AWS side to enable traffic to port 80 on the VM.

Since Docker is running, you can run an application in a container–for 
example, the Nginx Web Server. This example uses the popular open 
source web server Nginx. The Nginx application has a customized 
VMware package that the Docker engine can download directly from the 
Docker Hub.

To pull Nginx from its Docker Hub and start it, run the following 
command:
docker run -p 80:80 vmwarecna/nginx

The Nginx web server should be bound to the public DNS value for the 
instance of Photon OS–that is, the same address with which you con-
nected over SSH.

Step 4: Test the Web Server

On your local workstation, open a web browser and go to the the public 
address of the Photon OS instance running Docker. The following screen 
should appear, showing that the web server is active:

Figure 14: Nginx 

When you’re done, halt the Docker container by typing Ctrl+c in the SSH 
console where you are connected to EC2.

You can now run other containerized applications from the Docker Hub or 
your own containerized application on Photon OS in the Amazon cloud.
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Launching the Web Server with Cloud-Init

To eliminate the manual effort of running Docker, you can add docker run 
and its arguments to the cloud-init user data file by using runcmd:
#cloud-config
hostname: photon-on-01
groups:
- cloud-admins
- cloud-users
users:
- default
- name: photonadmin
   gecos: photon test admin user
   primary-group: cloud-admins
   groups: cloud-users
   lock-passwd: false
   passwd: vmware
- name: photonuser
   gecos: photon test user
   primary-group: cloud-users
   groups: users
   passwd: vmware
packages:
- vim
runcmd:
- docker run -p 80:80 vmwarecna/nginx

To try this addition, you’ll have to run another instance with this new 
cloud-init data source and then get the instance’s public IP address to 
check that the Nginx web server is running.

Terminating the AMI Instance

Because Amazon charges you while the instance is running, make sure to 
shut it down when you’re done.

First, get the ID of the AMI so you can terminate it:
$ ec2-describe-instances

Finally, terminate the Photon OS instance by running the following com-
mand, replacing the placeholder with the ID that the ec2-describe-images 
command returned. If you ran a second instance of Photon OS with the 
cloud-init file that runs docker, terminate that instance, too.
$ ec2-terminate-instances <instance-id>
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Integrating Lightwave with Photon OS

Lightwave provides security services to Photon OS. You can use Light-
wave to join a Photon OS virtual machine to the Lightwave directory 
service and then authenticate users with Kerberos.

Because the Photon OS repository includes the Lightwave packages, 
installing the packages for either Lightwave client or the server is simple. 
Here’s an example of installing the Lightwave server packages on a virtual 
machine running Photon OS:
tdnf install vmware-lightwave-server
Installing:  
apache-ant  noarch  1.10.1-1.ph2dev  3.66 M  
vmware-dns-client  x86_64  1.2.0-1.ph2dev  614.42 k  
apache-tomcat  noarch  8.5.13-2.ph2dev  8.59 M  
commons-daemon  x86_64  1.0.15-9.ph2dev  79.41 k  
jansson  x86_64  2.10-1.ph2dev  74.52 k  
vmware-sts-client  x86_64  1.2.0-1.ph2dev  41.09 M  
vmware-sts  x86_64  1.2.0-1.ph2dev  67.91 M  
vmware-afd  x86_64  1.2.0-1.ph2dev  763.81 k  
vmware-dns  x86_64  1.2.0-1.ph2dev  344.19 k  
vmware-directory  x86_64  1.2.0-1.ph2dev  4.03 M  
vmware-ca-client  x86_64  1.2.0-1.ph2dev  501.53 k  
vmware-ic-config  x86_64  1.2.0-1.ph2dev  114.89 k  
likewise-open  x86_64  6.2.11-1.ph2dev  11.26 M  
vmware-afd-client  x86_64  1.2.0-1.ph2dev  931.89 k  
vmware-directory-client  x86_64  1.2.0-1.ph2dev  714.02 k  
vmware-ca  x86_64  1.2.0-1.ph2dev  206.27 k  
vmware-lightwave-server  x86_64  1.2.0-1.ph2dev  0.00 b  
Total installed size:  140.78 M  

(In the names of the packages, “afd” stands for authentication framework 
daemon; “ic” stands for infrastructure controller, which is Lightwave’s 
internal name for its domain controller. Several of the packages, such as 
Jansson and Tomcat, are used by Lightwave for Java services or other 
tooling.)

The convenience and expedience of being able to instantly install the 
Lightwave packages from a secure, signed VMware repository become 
even more significant when the cloud-ready image of Photon OS runs on 
Amazon Elastic Cloud Compute or Google Compute Engine. The Amazon 
machine image of Photon OS and the Google Compute Engine version of 
Photon OS are available as free downloads on Bintray.
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Deploying Lightwave on AWS

Lightwave can run on Photon OS on Amazon Elastic Compute Cloud 
to provide identity services to your machines, users, and applications 
running in the Amazon cloud. The process of deploying Lightwave on 
EC2 entails creating a Photon OS instance, setting firewall rules to open 
several ports, setting a hostname for the machine, installing the Light-
wave server components, and promoting a Lightwave domain controller. 
Once deployed, the Lightwave domain controllers appear in the EC2 
Dashboard:

Figure 15: Lightwave domain controllers running on Amazon EC2.

For more information, see Lightwave on GitHub.

Deploying Lightwave on Google

Cloud administrators and DevOps personnel can rapidly deploy Light-
wave on Google Compute Engine by using Photon OS or another Linux 
image, such as Ubuntu. The process goes like this:

•	 Set up firewall rules and open ports for Lightwave DNS, LDAP, STS, 
and the other Lightwave services.

•	 Upload the freely available Photon OS image for GCE.

•	 Create a Photon OS instance, set the hostname for your Lightwave 
instance, and set the instance to use Lightwave for DNS.

•	 Install Lightwave from the Photon OS repository.

•	 Promote the first Lightwave domain controllers and add more of 
them if you want.

For instructions on how to set up Lightwave on GCE, see Lightwave on GitHub.
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After deploying and promoting the Lightwave domain controllers, you can see them in the 

GCE web interface:

Figure 16: Lightwave domain controllers running on Google Cloud Platform.

Using vSphere Integrated Containers to Solve Con-
tainer Networking Problems
The image below shows a high-level view of the networks that vSphere Integrated Contain-
ers (VIC) use and how they connect to your VMware vSphere environment, the Registry and 
Management Portal and to public registries, such as Docker Hub.

Figure 17: vSphere Integrated Containers networking.

As you can see from the picture above, a Virtual Container Host (VCH) not only allows you to 
easily segregate management traffic from data traffic, but also Docker client traffic from in-
tra-container traffic. Moreover, since containers in VIC are deployed as virtual machines (VMs), 
vSphere administrators can make vSphere networks directly available to containers.
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Networking Options

The VIC network overview lightboard details the networking concepts for 
vSphere Integrated Containers, while the recently updated documenta-
tion comes in handy to further explain these options:

•	 Client Network: The Client Network is used by a VCH to expose the 
Docker API service and where developers must point their Docker 
clients to manage and run containers.

•	 Public Network: The Public Network is used by a VCH to pull 
images from registries. The most common use case is to pull 
images from the public Docker hub. You can also create your own 
private, secure local registry by using the VIC Registry (based on 
Project Harbor).

•	 Management Network: The Management Network is used by a VCH 
to securely communicate with vCenter and ESXi hosts.

•	 Bridge Network: The Bridge Network is a private network for con-
tainer communication. External access is granted by exposing ports 
to containers and routing the traffic through the VCH endpoint VM. 
With no extra configuration, VIC provides service discovery while 
a built-in IPAM server provides the containerVMs with private IP 
addresses from the subnet of the bridge network.

•	 Container Network: A Container Network is a user-defined network 
that can be used to connect containerVMs directly to a routable 
network. Container networks allow vSphere administrators to make 
vSphere networks directly available to containers. Container net-
works are specific to VIC and have no equivalent in Docker.

For developers, one of the standout features is the ability for VIC to 
expose containers directly on a network through the use of the container 
network option: vic-machine create –container-network. You can connect 
the containerVMs to any specific distributed port group or NSX logical 
switch, giving them their dedicated connection to the network.

The Benefits of Giving an App a Routable IP 
Address

This feature allows containerized applications to get their own routable IP 
and become first class citizens of your data center, providing the follow-
ing benefits:

•	 No single point of failure: Now every container has its own dedi-
cated network connection, so even if the VCH endpoint VM fails, 
there’s no outage for your applications.
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•	 No network bandwidth sharing: Every container gets its own net-
work interface and all the bandwidth it can provide is available to 
the application. Traffic does not route through the VCH endpoint 
VM via network address translation (NAT), and containers do not 
share the public IP of the VCH.

•	 No NAT conflicts: There’s no need for port mapping anymore. 
Every container gets its own IP address. The container services are 
directly exposed on the network without NAT, so applications that 
once could not run on containers can now run by using VIC.

•	 No Port conflicts: Since every container gets its own IP, you can 
have multiple application containers that require an exclusive port 
running on the same VCH. This provides better utilization of your 
resources.

All of this is possible through the use of the Container Network option.

The Container Network Firewall

But wait, there’s more: To give vSphere administrators even better man-
agement and control over the traffic that flows on container networks, 
VIC includes a container network firewall:

Figure 18: The container network firewall in vSphere Integrated Containers.

The container network firewall provides five distinct trust levels:

1.	 Closed: no traffic can come in or out of the container interface.
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2.	 Open: all traffic is permitted.

3.	 Outbound: only outbound connections are permitted, which works 
well for containers that consume but do not provide services.

4.	 Published: only connections to published ports are permitted. 
When you create a container, you must specify which port will be 
permitted. (Default)

5.	 Peers: only containers on the same peer interface are permitted 
to communicate with each other. To establish peers, you need to 
provide an IP address range to the container network with the 
vic-machine create –container-network-ip-range option when you 
create a VCH.

The container firewall trust level is managed when you create a VCH:
vic-machine create --container-network-firewall “Port-
Group”:[closed | open |outbound | published | peers]

In VIC version 1.2, the default trust level is set to Published. This means 
that you now have to explicitly identify which ports will be exposed with 
the -p option; example:
docker run -d -p 80 --network=external nginx

Running a container by using the -P option (e.g. docker run -d -P nginx) 
will not expose any service declared on the Dockerfile to the network, and 
your application will be unreachable from the outside.

Specifying the exposed port improves security and gives you more 
awareness of your environment and applications.

Now, if you still want to use the -P option (e.g. docker run -d -P nginx), 
you need to change the container network firewall trust level to Open:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:open

Power and Flexibility for Admins

As you can see, as a vSphere administrator, you get a lot of power and 
flexibility in your hands when configuring VCHs for your developers.

You can configure VCHs where no network traffic can come out of them, 
no matter what the developers try to do:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:closed
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Or, you can configure VCHs where all traffic is permitted and you let the 
developer decide at the application level which ports are exposed and 
which are not:
vic-machine create --container-network “PortGroup” --container-net-
work-firewall “PortGroup”:open

Or, you can configure VCHs where only outbound connections are per-
mitted. This works well if you plan to host applications that consume but 
do not provide services:
vic-machine create --container-network “PortGroup”  --con-
tainer-network-firewall “PortGroup”:outbound

You can configure VCHs where only connections to published ports are 
permitted, letting the developers or DevOps control which ports are open 
for applications where you can’t change the Dockerfile. Think of all the 
new COTS applications delivered as Docker images:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:published

You can also configure VCHs where the containers can only communicate 
with each other. This is ideal for a set of microservices that need to talk 
with each other, but not with the external world. For example, a set of 
Spark jobs that compute some data and save the result to disk:
vic-machine create --container-network “PortGroup” --con-
tainer-network-firewall “PortGroup”:peers

You should now have a better understanding of the benefits that the 
different networking options of VMware vSphere Integrated Contain-
ers, together with the Container Network Firewall feature, provide over 
traditional container host implementations, and how they make deploy-
ing containers on VIC even more secure. You should also know how to 
segregate different types of network traffic, make containers routable by 
exposing them directly on a network, and secure network connections by 
using the five distinct trust levels of the container network firewall.

Providing Persistent Storage for Legacy 
Applications
Linux containers have been great for stateless workloads. While stateful 
workloads can also run in containers, a limiting factor has been that most 
methods of providing storage for the state have been confined to the 
host serving the container. And if that host fails, the storage becomes 
inaccessible. Not so with vSphere Integrated Containers. It leverages 
vSphere’s advanced persistence capabilities to allow access to data even 
in the event of a host failure.



126  

Let’s dive into some of the storage concerns with standard container 
solutions and see how they are addressed in vSphere Integrated 
Containers.

Docker image layers

Container images are different from running containers. The images are 
static artifacts that are built and stored in Docker registries for use when 
running a new container. Images are just a set of files that make up the 
file system available to a running container.

Running containers are composed of layers of images applied in a stack. 
The underlying layers remain unaltered. While running, any changes to 
the file system will be persisted to an extra layer called the container layer. 
The container layer is removed when the container is removed.

Here is an example to illustrate what’s going on in image layers. This 
Docker file builds on top of the alpine-3.6 image layer:
FROM alpine:3.6
RUN echo -e “#!/bin/sh\ndate\nsleep 2d\ndate” > /bin/our-ap-
plication
RUN chmod 755 /bin/our-application
CMD [“/bin/our-application”]

Building an image using this Docker file results in an image with several 
layers:
$ docker build -f Dockerfile.example-1 -t demo:0.1 .
Sending build context to Docker daemon  7.168kB
Step 1/4 : FROM alpine:3.6
 --- 76da55c8019d
Step 2/4 : RUN echo -e “#!/bin/sh\ndate\nsleep 2d\ndate” >/
bin/our-application
 --- Running in dfce6e80a2fb
 --- 9295df9995e6
Removing intermediate container dfce6e80a2fb
Step 3/4 : RUN chmod 755 /bin/our-application
 --- Running in cdc0e6d7ba27
 --- 1d5559a943d4
Removing intermediate container cdc0e6d7ba27
Step 4/4 : CMD /bin/our-application
 --- Running in d44e2734bef0
 --- 31af83e49686
Removing intermediate container d44e2734bef0
Successfully built 31af83e49686
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Successfully tagged demo:0.1

The layers can be seen by running the docker history command:
$ docker history demo:0.1
IMAGE               CREATED             CREATED BY                                      
SIZE
31af83e49686        2 minutes ago       /bin/sh -c #(nop)  
CMD [“/bin/our-applicat...   0B
1d5559a943d4        2 minutes ago       /bin/sh -c chmod 755 
/bin/our-application       29B
9295df9995e6        2 minutes ago       /bin/sh -c echo -e 
“#!/bin/sh\ndate\nsleep...   29B
76da55c8019d        4 weeks ago         /bin/sh -c #(nop)  
CMD [“/bin/sh”]              0B
           4 weeks ago         /bin/sh -c #(nop) ADD 
file:4583e12bf5caec4...   3.97MB

The alpine layer is there at the bottom, and our additional commands 
have generated a few more layers that get stacked on top to be the 
image we want. The final image that has all the files we need is referenced 
by the ID 31af83e49686 or by the tag demo:0.1. Each of those layers 
should be stored in a registry, and can be reused by future images.

When we run the container, an additional container layer is created 
that allows modification of the file system by the running system. If no 
changes are made to the file system, this layer remains empty. Let’s run 
the image as a container and modify its file system:
$ docker run -d --name demo --rm  demo:0.1
$ docker exec -it demo sh
/ # ls /
bin    dev    etc    home   lib    media  mnt    proc   root   
run    sbin   srv    sys    tmp    usr    var
/ # date > /demo-state
/ # ls /
bin         dev         home        media       proc        
run         srv         tmp         var
demo-state  etc         lib         mnt         root        
sbin        sys         usr

As long as the container runs, the file demo-state will exist and have the 
same contents. Stopping and starting the container has no effect on the 
container layer, so demo-state will still exist.

If we stop and remove the container, the container layer will be removed 
as well as our hold on the demo-state file. Running a new instance of the 
container will have a new empty container layer.
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For details on the structure of images, see https://docs.docker.com/
engine/userguide/storagedriver/imagesandcontainers/.

There is a distinction here that you should note: The container layer is 
ephemeral storage. It’s around for as long as the container, and is lost 
when the container goes away. This is in contrast to requirements for data 
that needs to remain after the container is removed.

Why Aren’t Containers Persistent?

The lack of persistence in the image layers is by design. By choosing to 
only allow ephemeral storage, we can ensure the application we put into a 
container image is always the application being run. Images are versioned 
so that we can be sure that two systems are running exactly the same 
code. Re-running the same image will always produce the same running 
conditions.

The immutability of the images results in better debugging, smoother 
deployments and the ability to quickly replace running applications that 
appear to be in a bad state.

Let’s flip it around—if container images were able to change, how could 
you be sure running a specific image today and running it tomorrow 
would have the same results? How could you debug an image on my 
laptop and be sure you are seeing the same code that is having a prob-
lem in QA? If an application has persisted state in its local image, how do 
other instances of the application container get access to that data?

How Can You Save Data?

At some point, most of our applications need to leverage some data. How 
do we keep state between runs of an image? There are at least a few 
patterns:

•	 replication

•	 recreate data or replay transactions

•	 file system persistence

Replication

If you can design your application to replicate data to other containers 
and ensure at least one copy is always running, then you’re using this 
pattern.
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An example of this pattern is running a Cassandra database cluster, where 
replication enables the dynamic addition or removal of nodes. If you’re 
running Cassandra in containers and being good about bootstrapping 
and removing nodes, then you could run a stable database cluster with 
normal basic docker run. The persistence is handled by storing data in 
the container layer. As long as enough containers are up, persistence is 
maintained.

Re-create or Replay Data on Loss

If you can design your application to be able to recreate any needed data, 
you’re using this pattern.

An example of this might be a prime number finder tasked with finding a 
set of prime numbers in a broader range of numbers by counting up from 
the low end of the range and testing each number for primality. If the 
primes are stored for future use, but the data is lost for any reason, a new 
instance of the process can scan the same range and would find the same 
numbers that the original process found. In this case, the data is inherent 
to the requirements of the process, so the data can be recreated.

A more efficient variant of this process would store each prime number 
found and the last number tested in apache Kafka. Given a consistent 
initial range and the transaction log, you can quickly get back to a known 
state without retesting each number for primality, and continue process-
ing from there.

Persistent File System

We can leverage an existing persistent file system that lives on the Docker 
host inside the container. This is a pattern most of us are familiar with, 
as it has been the way to handle data persistence since tape drives were 
invented.

Docker has two ways of handing a persistent file system in containers: 
bind mounts and volumes. Both of these expose a file system into the 
container from the running host. They are similar, but the bind mount is a 
bit more limited than using volumes.

Bind Mount

This is simply mounting a host file system file or directory into the con-
tainer. This is not very different from mounting a CD-ROM onto a virtual 
machine (VM). The host path may look like /srv/dir-to-mount, and inside 
the container you may be able to access the directory at /mnt/dir-to-
mount.
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Bind mounting is used all the time in development, but should never be 
used in production. It ties the container to the specific host at runtime, 
and if the host is lost, so is the data. Volumes are the answer for produc-
tion requirements.

Volumes

Volumes are the preferred way to use persistent storage in Docker.

This is slightly different from a simple bind mount. Here, Docker creates 
a directory that is the volume, and mounts it just like a bind mount. In 
contrast to bind mounts, Docker manages the lifecycle of this volume. 
By doing so, it provides the ability to use storage drivers that enable the 
backing storage to exist outside of the host running the container.

vSphere Integrated Containers leverages this to use vSphere storage 
types like vSAN, iSCSI and NFS to back the volume. Doing this means you 
can handle failures of any host running the container, and ensure access 
to the data in the volume can resume when the container is started on a 
different host.

Another example of leveraging the storage drivers of Docker volumes is 
shown in vSphere Docker Volume Service. This driver enables the use of 
vSphere-backed storage when using native Docker hosts, not vSphere 
Integrated Containers.

For deeper coverage on volumes, see Docker’s volume document. Now, 
let’s take a closer look at using volumes to persist data in vSphere Inte-
grated Containers.

vSphere Integrated Containers Volumes

Command line use of volumes in vSphere Integrated Containers is the 
same as standard Docker, with the added benefit of the storage being 
backed by vSphere Storage.

In vSphere Integrated Containers, if you want to use volumes that are pri-
vate to the container, you can use the iSCSI or vSAN storage in vSphere. 
If you have data that should be shared into more than one container, you 
can use an NFS backed datastore from vSphere.

When setting up a container host in vSphere Integrated Containers, you 
specify the datastores that will be available for use by any containers 
running against that host. These are specified using the --volume-store 
argument to vic-machine. These backing volume-stores can be set 
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or updated using vic-machine configure. Volumes added can only be 
removed by removing the container host, but that usually isn’t a problem.

Here is an example showing the command that would create the con-
tainer host and enable it to present volumes with various backing stores:
vic-machine ......
--volume-store vsanDatastore/volumes/my-vch-data:backed-up-
encrypted
--volume-store iSCSI-nvme/volumes/my-vch-logs:default
--volume-store vsphere-nfs-datastore/volumes/my-vch-li-
brary:nfs-datastore
--volume-store ‘nfs://10.118.68.164/mnt/nfs-
vol?uid=0\&amp;gid=0:nfs-direct’

The first volume store is on a vSAN datastore and uses the label backed-
up-encrypted so that a client can type docker volume create –opt 
VolumeStore=backed-up-encrypted myData to create a volume in that 
store. The second uses cheaper storage backed by a FreeNAS server 
mounted using iSCSI, and is used for storing log data. Note that it has the 
label “default,” which means that any volume created without a volume 
store specified is created here. The third and fourth are for two types of 
NFS exports. The first being an NFS datastore presented by vSphere, and 
the other a standard NFS host directly (useful if you want to share data 
between containers).

Note regarding NFS gotcha: NFS mounts in container can be tricky. If you 
notice that you cannot read or write files to an NFS share in container, 
then you have probably hit this gotcha.Note the final volume store above 
has uid and gid arguments. There are two competing concerns. First, 
Docker will generally run as uid and gid 0, or as root. You can change that 
behavior by specifying a USER in the Dockerfile or on the command line. 
See Docker user command for details on how to set it. Second, NFS has 
many ways permissions based on uid and gid are applied to the mounted 
file system. You must ensure that the user of the running container 
matches the uid and gid permissions on the files exported by NFS. Finally, 
note that the syntax for native Docker NFS volumes and VIC NFS vol-
umes is different, so if you are trying to apply this to native Docker, you’ll 
want to start here.

Once you’ve installed the VCH, you’ll notice that there are now empty 
folders created on the respective datastores ready for volume data:
vsanDatastore/volumes/my-vch-data/volumes
iSCSI-nvme/volumes/my-vch-logs/volumes
vsphere-nfs-datastore/volumes/my-vch-library/volumes
nfs://10.118.68.164/mnt/nfs-vol/volumes
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Creating and Using Volumes

Let’s go ahead and create volumes using the Docker client. Note the 
implied use of the default volume store in the second example.
$ docker volume create --opt VolumeStore=backed-up-encrypted 
--opt Capacity=1G demo_data
$ docker volume create --opt Capacity=5G demo_logs
$ docker volume create --opt VolumeStore=nfs-datastore demo_
nfs_datastore
$ docker volume create --opt VolumeStore=nfs-direct demo_
nfs_direct
After volume creation, you’ll see the following files were 
created in the backing datastores:
vsanDatastore/volumes/my-vch-data/volumes/demo_data/demo_
data.vmdk
vsanDatastore/volumes/my-vch-data/volumes/demo_data/Image-
Metadata/DockerMetaData
iSCSI-nvme/volumes/my-vch-logs/volumes/demo_logs/demo_logs.
vmdk
iSCSI-nvme/volumes/my-vch-logs/volumes/demo_logs/ImageMeta-
data/DockerMetaData
vsphere-nfs-datastore/volumes/my-vch-library/volumes/demo_
nfs_datastore/demo_nfs_datastore.vmdk
vsphere-nfs-datastore/volumes/my-vch-library/volumes/demo_
nfs_datastore/ImageMetadata/DockerMetaData
nfs://10.118.68.164/mnt/nfs-vol/volumes/demo_nfs_direct
nfs://10.118.68.164/mnt/nfs-vol/volumes_metadata/demo_nfs_
direct/DockerMetaData

To show the most basic level of persistence, here we run a container 
that drops some data on each of the datastores and check that it exists 
from another container. In production, this could be a database workload 
hosted in a container and operating on the persistent external storage.
$ docker run -it --rm -v demo_data:/data -v demo_logs:/logs -v demo_
nfs_datastore:/library -v demo_nfs_direct:/shared busybox sh

# echo “some data” > /data/some-data ;
# echo “some logs” > /logs/some-logs ;
# echo “some library” > /library/some-lib;
# echo “some shared” > /shared/some-shared ;
# exit
$
$ docker run -it --rm -v demo_data:/data -v demo_logs:/logs 
-v demo_nfs_datastore:/library -v demo_nfs_direct:/shared 
alpine  sh
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# cat /data/some-data /logs/some-logs /library/some-lib /
shared/some-shared
# exit

Right now, only native NFS volumes are allowed to share data between 
more than one container. Here is an example of sharing some storage 
between containers using native NFS.

Open two terminals. In the first run this command to start nginx:
$ docker run --name nginx -v demo_nfs_direct:/usr/share/nginx/html:ro 
-p 80:80 -d nginx

In the same terminal query, the nginx server you just created. Replace 
192.168.100.159 with the ip address of the container running nginx:
$ curl 192.168.100.159
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</html>

In the second terminal, run this command to simultaneously mount the 
shared filesystem and edit a file:
$ docker run -it --rm -v demo_nfs_direct:/shared busybox sh
# echo “hello from $(date)” > /shared/index.html
Now that you’ve overwritten the shared index.html, go back 
to the first terminal and rerun the curl command. You should 
see something like this:
hello from Mon Oct 16 21:33:03 UTC 2017

As a final note, if you have a stateful process that can handle restart, 
VMware HA will enable restarting the container on a new ESXi host if 
the original ESXi host fails. If your process can’t implement a replay or 
replication pattern to recover state on failure, then VMware Fault Toler-
ance enables transparent continuation of processing during an ESXi host 
failure. In this case the container VM continues running on the new ESXi 
host as though there were no failure of the original host. We’ll see if we 
can make a blog entry demonstrating the Fault Tolerance feature.

Here is an example of VMware HA helping a container resume running on 
a new host after failure of the initial ESXi host. This is the picture before 

failure:



134  

Figure 19: VMware HA helping a container resume running on a new host.

And after causing an ESXi host failure, the container is moved to and 
started on a different ESXi host:

Figure 20: The container is moved to and started on a new ESXi host.

So, there you have it: vSphere Integrated Containers can provide resilient 
storage and cope with host failures. It’s not mandatory during develop-
ment, but definitely a boon in the production landscape.

Setting Up a Developer Sandbox
vSphere Integrated Containers (VIC) includes the concept of the native 
Docker Container Host (DCH). It is a built-in Docker image containing 
a full-fledged Docker engine that runs using VIC. DCH is packaged as a 
container and can be instantiated on VIC like any regular container.
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The DCH image is distributed through Docker Hub and, as part of the VIC 
product distribution, in the registry. All the official DCH images main-
tained by VMware are based on Project Photon OS, an open source Linux 
operating system optimized for hosting containers and running cloud-na-
tive applications. The source, Dockerfiles and documentation are available 
at github.com/vmware/vic-product.

DCH is well-suited for development use cases. Here are some examples:

•	 As part of a CI/CD pipeline, VIC can be used to enhance end-to-
end dev-build-push-deploy workflows. VIC with DCH can be used 
as a (self-service) private cloud for CI/CD by enabling the easy 
deployment and tear down of Docker hosts.

•	 VIC and DCH allow you to treat Docker Hosts as ephemeral com-
pute. This has the benefit of eliminating snowflakes (individually 
managed Docker Hosts), which reduces Operating System OpEx 
costs. For example, as part of a CI pipeline, you could instantiate 
ephemeral Docker Hosts that exist only for the purpose of building 
and pushing images, and only for the time it takes to complete that 
task.

•	 An example of how VIC can be used to deploy Jenkins is given 
here.

This section demonstrates how flexible this DCH abstraction is. The sec-
tion walks you through how a developer can leverage VIC 1.2 and DCH to 
easily instantiate a Docker swarm using only well-known native Docker 
commands. The section also shows how easy it is to create a complete 
cluster of ephemeral compute using DCH.

Scripting the Deployment of Swarm Manager 
and Worker Nodes

To illustrate this, look at the following script. This is a simple shell script 
that deploys a Docker swarm manager node and then creates and joins a 
user-defined number of worker nodes to the swarm.
    #!/bin/bash
    ## USER-DEFINED VARIABLES
    # Number of swarm workers desired
    NUM_WORKERS=3
    # name of routable (external) network
    # this needs to be defined on your VCH using the ‘--con-
tainer-network’ option
    # use ‘docker network ls’ to list available external 
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networks
    CONTAINER_NET=routable
    # Docker Container Host (DCH) image to use
    # see https://hub.docker.com/r/vmware/dch-photon/tags/ 
for list of available Docker Engine versions
    DCH_IMAGE=”vmware/dch-photon:17.06”
    ## NO NEED TO MODIFY BEYOND THIS POINT  
    # pull the image
    docker pull $DCH_IMAGE

    # create a docker volume for the master image cache
    docker volume create --opt Capacity=10GB --name regis-
trycache
    # create and run the master instance
    docker run -d -v registrycache:/var/lib/docker \
    --net $CONTAINER_NET \
    -name manager1 -hostname=manager1 \
    $DCH_IMAGE
    # get the master IP
    SWARM_MASTER=$(docker inspect -f ‘{{range .NetworkSet-
tings.Networks}}{{.IPAddress}}{{end}}’ manager1)
    # create the new swarm on the master
    docker -H $SWARM_MASTER swarm init
    # get the join token
    SWARM_TOKEN=$(docker -H $SWARM_MASTER swarm join-token 
-q worker)
    sleep 10

    # run $NUM_WORKERS workers and use $SWARM_TOKEN to join 
the swarm
    for i in $(seq “${NUM_WORKERS}”); do

    # create docker volumes for each worker to be used as 
image cache
    docker volume create  --opt Capacity=10GB --name work-
er-vol${i}
    # run new worker container
    docker run -d -v worker-vol${i}:/var/lib/docker \
    --net $CONTAINER_NET \
    --name worker${i} --hostname=worker${i}  \
    $DCH_IMAGE
    # wait for daemon to start
    sleep 10

    # join worker to the swarm
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    for w in $(docker inspect -f ‘{{range .NetworkSettings.
Networks}}{{.IPAddress}}{{end}}’ worker${i}); do
    docker -H $w:2375 swarm join --token ${SWARM_TOKEN} 
${SWARM_MASTER}:2377
    done

    done

    # display swarm cluster information
    printf “\nLocal Swarm Cluster\
n=========================\n”

    docker -H $SWARM_MASTER node ls

    printf “=========================\nMaster available at 
DOCKER_HOST=$SWARM_MASTER:2375\n\n”

Let’s break this down to better understand what this script does.

User-defined Variables
    ## USER-DEFINED VARIABLES
    # Number of swarm workers desired
    NUM_WORKERS=3
    # name of routable (external) network
    # this needs to be defined on your VCH using the ‘--con-
tainer-network’ option
    # use ‘docker network ls’ to list available external 
networks
    CONTAINER_NET=routable
    # Docker Container Host (DCH) image to use
    # see https://hub.docker.com/r/vmware/dch-photon/tags/ 
for list of available Docker Engine versions
    DCH_IMAGE=”vmware/dch-photon:17.06”

As a user of the script, this is the only section you need to modify.
NUM_WORKERS – this is the number of worker nodes that will be added 
to the swarm, in addition to the manager node.
CONTAINER_NET – this is the network to be used by our Docker 
Container Hosts. Here we leverage the ability of vSphere Integrated Con-
tainers to connect containers directly to vSphere Port Groups rather than 
through the Container Host. This will allow for easier interaction with our 
swarm.
DCH_IMAGE – here you can specify a different version of the Docker 
engine by modifying the tag (e.g. ‘vmware/dch-photon:1.13’). You can see 
the list of available tags/versions here.
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The script will use these parameters to pull the images, instantiate the 
swarm manager, initiate the swarm and instantiate and join the user-de-
fined number of worker nodes.

Creating the master, initiating the swarm and 
getting the join token
    # create a docker volume for the master image cache
    docker volume create --opt Capacity=10GB --name regis-
trycache
    # create and run the master instance
    docker run -d -v registrycache:/var/lib/docker \
    --net $CONTAINER_NET \
    --name manager1 --hostname=manager1 \
    $DCH_IMAGE
    # get the master IP
    SWARM_MASTER=$(docker inspect -f ‘{{range .NetworkSet-
tings.Networks}}{{.IPAddress}}{{end}}’ manager1)
    # create the new swarm on the master
    docker -H $SWARM_MASTER swarm init

This is where we begin to see the DCH magic in action. Specifically, look 
at the following command:
docker run -d -v registrycache:/var/lib/docker \
--net $CONTAINER_NET \
--name manager1 --hostname=manager1 \
$DCH_IMAGE

This starts up a full-fledged docker engine (running version 17.06) instan-
tiated as a container VM, using only a simple docker run command. As 
you can see, DCH makes it very easy for developers to start up docker 
engines on-demand, thus creating new self-service possibilities.

Once the manager is created, we initialize the swarm (docker -H 
$SWARM_MASTER swarm init), and then we grab the join token (docker 
-H $SWARM_MASTER swarm join-token -q worker) that will allow us to 
join the worker nodes to the swarm in the next step.

Creating the workers and adding them to the 
swarm
    # run $NUM_WORKERS workers and use $SWARM_TOKEN to join 
the swarm
    for i in $(seq “${NUM_WORKERS}”); do
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    # create docker volumes for each worker to be used as 
image cache
    docker volume create  --opt Capacity=10GB --name work-
er-vol${i}
    # run new worker container
    docker run -d -v worker-vol${i}:/var/lib/docker \
    --net $CONTAINER_NET \
    --name worker${i} --hostname=worker${i}  \
    $DCH_IMAGE
    # wait for daemon to start
    sleep 10

    # join worker to the swarm
    for w in $(docker inspect -f ‘{{range .NetworkSettings.
Networks}}{{.IPAddress}}{{end}}’ worker${i}); do
    docker -H $w:2375 swarm join &ndash&ndashtoken ${SWARM_
TOKEN} ${SWARM_MASTER}:2377
    done

    done

This simple `for’ loop repeats NUM_WORKERS times. For each iteration, it:

•	 creates a volume to be used as the image cache for the worker

•	 instantiates a worker using the vmware/dch-photon:17.06 image

•	 joins the worker to the swarm using the join token (SWARM_
TOKEN) we fetched in the previous step

Once again, because we are using DCH with VIC, we see that it requires 
only a very simple docker run command to create and run our Docker 
Hosts that will be used as the swarm worker nodes.

Running The Script And Result

Before running the script, you need to point your Docker client to a 
VIC Virtual Container Host endpoint. This is done by setting DOCKER_
HOST=<endpoint-ip>:<port>. This script requires a Virtual Container Host 
endpoint—a requirement to run the DCH image, which enables all of the 
above automation. You can find this information in the vSphere Client 
portlet:
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Figure 21: The vSphere Client.

You can use the following commands (replace with your own endpoint IP 
address and make sure the script is in the current directory):
export DOCKER_HOST=192.168.100.144:2375
./dch-swarm.sh

Upon completion, the script prints information about the newly created 
swarm:

Figure 20: Information about a newly created Swarm cluster.
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We can also see our newly created containerVMs hosting the swarm 
manager and the swarm workers in vSphere Client:

Figure 22: Container VMs holding the swarm manager and workers.

Finally, we can test the swarm by running the Docker Example Voting 
App. We deploy the app against our swarm by using the docker stack 
deploy command:

Figure 23: Running the docker stack deploy command. 

We can see above that all of the required services were started. Testing 
the application in the browser, we can see it is indeed running and func-
tional:
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Figure 24: The example app is running.

Conclusion

You should now have a better understanding of how the newly intro-
duced VIC DCH feature helps address developer use cases. We have 
shown how easy it is to automate the deployment of Docker hosts using 
DCH. VIC provides end-users and developers with a Docker dial tone and 
a very flexible consumption model on top of vSphere, while DCH enables 
a new level of self-service.

If you’re interested in getting more hands-on knowledge around VIC, 
check out our tutorials on GitHub: https://github.com/vmware/vic-prod-
uct/tree/master/tutorials

Deploying Jenkins by Using VIC
Containers have fundamentally changed how we consume software. 
They’ve changed how we develop and package software. Containers have 
also changed how we interact with infrastructure.

It has never been easier to deploy a service, an application, a database or 
a cluster than with today’s container technologies. Consider the following:

•	 The immutability and portability of container images means that 
workloads deploy predictably in multiple locations and scale up 
and down with ease.

•	 The increasing sophistication of container registries incorporate 
security capabilities and access control that simply weren’t avail-
able previously.
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•	 The way that containers force developers to think about how state 
is managed, in terms of persistence, scope and integrity is leading 
to more flexible application architectures.

VMware vSphere Integrated Containers has brought all of these benefits 
directly to VMware vSphere by giving you the ability to manage and con-
sume vSphere infrastructure using an prescribed container consumption 
model.

What’s even better about vSphere Integrated Containers is that it goes 
where many containers fear to tread. Take a large database for example. 
Many people would tell you not to run a database in a container. Why? 
Because you need data integrity, strong runtime isolation, and good 
network throughput. With a regular Linux container, that would mean 
deploying a dedicated Linux host, securing and patching it, configur-
ing it with a volume plugin that works with a storage LUN of some kind, 
ensuring that no other containers run in that host, and making sure to 
configure the container with host networking. vSphere Integrated Con-
tainers requires no such configuration. It will deploy a MySQL or MSSQL 
container image out-of-the-box direct to vSphere as a strongly isolated 
virtual machine that has encrypted, replicated persistent storage on 
VMware vSAN, with its own vNIC and connected directly to an NSX logi-
cal switch.

Deploying workloads to vSphere has never been so easy. Jenkins is a 
great example of a long-running stateful application that plays to vSphere 
Integrated Containers’s strengths.

This section discusses the best practices around deploying Jenkins by 
using vSphere Integrated Containers. The section covers how to maintain 
the persistent state of Jenkins, how to configure security around image 
management and access control, how to ensure that it has the resources 
it needs, and how vSphere High Availability (HA) can make the master 
node highly available.

Few would argue with the contention that containers make software 
provisioning easier. As such, with vSphere Integrated Containers, it’s never 
been easier to provision software to vSphere. This is just as true of Jen-
kins as any other application. However, with power comes responsibility 
and if we want to deploy Jenkins, there’s a few critical factors we need to 
consider:

•	 What are the software artifacts in the Jenkins image we want to 
deploy?

•	 Do we trust the provenance of those artifacts?

•	 Do those software artifacts contain known vulnerabilities?
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•	 What data needs to be persisted and what data should be ephem-
eral?

•	 What resource limits should we put around the container?

•	 Do we want the container to be highly available and if so, how?

Security of Software Artifacts

Deploying an image from a public registry without knowing its contents 
or provenance is risky. To help you address these security concerns, 
vSphere Integrated Containers comes with its own registry.

As a cloud admin, you can choose to build your own container images 
using your own Dockerfiles, or you can start from a public image and 
further modify it to your needs. As you’ll see from DockerHub, you can 
choose from a Debian base or an Alpine base. The Alpine base is half 
the download size and has less than half the packages, so that makes it 
attractive, although there may be compliance considerations involved in 
the decision.

As an example, let’s start by running the following commands to pull the 
jenkins/jenkins:lts-alpine image from DockerHub, push it to a registry, and 
scan it for vulnerabilities.
docker pull jenkins/jenkins:lts-alpine
docker tag jenkins/jenkins:lts-alpine vicregistry.myfirm.com/
myproject/jenkins:lts-alpine
docker push vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine

Figure 25: The vulnerabilities of an image.
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At the time these commands were run, vSphere Integrated Containers 
registry identified that the zlib package contains two high-level vulner-
abilities. (Your results might be different when you run the command.) 
It provides a link to the CVE database, which describes the issue. It also 
shows that there are updated versions of zlib in which the issue is fixed, 
so we can use that information to create a Dockerfile that defines a new 
image with updated packages.
cat Dockerfile
FROM jenkins/jenkins:lts-alpine
USER root
RUN apk update && apk upgrade
USER jenkins

docker build -t vicregistry.myfirm.com/myproject/jen-
kins:lts-alpine-upgrade .

docker push vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine-upgrade

Once the image is pushed, the vSphere Integrated Containers registry 
shows that it is 100 percent green—no vulnerabilities.

Figure 26: A pushed image with no vulnerabilities..

As a cloud admin, you can choose to limit the vulnerability level images 
can be deployed with. You can also restrict the images deployed to an 
endpoint to only ones that have been signed by a service such as Notary.
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Figure 27: Security thresholds for images.

Data Persistence

The Jenkins container is configured in such a way that all of the persistent 
state is stored in one location: /var/jenkins_home. This means that you 
can safely start, stop or even upgrade the Jenkins master container and 
it will always come back up with all of the previous data, assuming you 
specified a named volume.

This data includes job definitions, credentials, logs, plugins—important 
data that should not only be persistent but should also have high integ-
rity. This is not data you want to have to recreate. vSphere Integrated 
Containers makes it easy to store persistent data with these character-
istics by mapping a container volume to a persistent disk on a vSphere 
datastore. The volume can then benefit from the security capabilities of 
the datastore, such as encryption, and replication on a vSphere vSAN.

Resource Limits and HA

vSphere Integrated Containers makes it easy to specify how much 
resource a container should consume when deployed by allowing for the 
specification of vCPUs and a memory limit.
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A vSphere Integrated Containers container has exclusive access to its 
own guest buffer cache, so there’s no resource competition from other 
containers.

If the vSphere cluster has HA enabled, then if an ESXi host goes down, 
the endpoint VM and the containers will be automatically restarted on 
other hosts.
 

Deploying Jenkins and Access Control

Now that we’ve thought about all of the implications, we can go ahead 
and deploy Jenkins. This can be done either with the vSphere Integrated 
Containers Management UI or by using an ordinary Docker command-line 
client.

Figure 28: Provisioning a container.

Regardless of how it’s done, it should only be possible to authenticate 
with the vSphere Integrated Containers endpoint with the appropriate 
credentials. As a cloud admin, the Management UI gives you control over 
who has access to those credentials, thereby limiting who has access 
to certain deployment endpoints and ensuring that credentials are not 
leaked.

In addition, vSphere Integrated Containers integrates with the vSphere 
Platform Services Controller, which means that identities in the vSphere 
Integrated Containers Management UI can be vSphere identities, but with 
additional roles and responsibilities.

The Docker command-line that could be used to deploy Jenkins might 
look like this:
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docker volume create –opt VolumeStore=encryped –opt Capaci-
ty=5G my-named-volume

docker run -d –name jenkins-master –cpuset-cpus 2 -m 4g 
-p 8888:8080 -e TINI_SUBREAPER= -v my-named-volume:/var/
jenkins_home vicregistry.myfirm.com/myproject/jenkins:lts-al-
pine-upgrade

docker logs jenkins-master

Note that a named volume on the desired datastore should be created 
first and then mapped to the appropriate mount point. Setting the 
environment variable TINI_SUBREAPER to null ensures that the Tini init 
process functions correctly, given that it won’t run as PID 1 in a vSphere 
Integrated Containers container. When you start Jenkins, you need an 
initial admin password that’s generated to the logs, so the docker logs 
command will show you that password.

If you deploy the same container via the Management UI, you can create 
a template that persists the configuration so that you can re-use it for 
future deployments. Viewing the container once it’s deployed allows you 
to see statistics and logs for the container.

Once Jenkins is up and running, you can access it at http://vch-end-
point-address:8888. It will ask for the password from the logs and then 
ask you to create an Admin user. You can go ahead and take the default 
plugins and once they’ve finished installing, you should see the Jenkins 
dashboard ready for configuration.

Optimizing Cloud-Native Apps with 
PCF and Developer-Ready 
Infrastructure from VMware
Developer-ready infrastructure lays the foundation for agile application 
development. A data center modernized with secure, software-driven 
compute, storage, and networking can rapidly fulfill the needs of 
developers seeking to build and deploy modern applications. When 
developer-ready infrastructure reduces manual IT infrastructure processes 
and provides the operational tooling required to run containerized work-
loads at scale, developers can focus their energy on delivering robust 
cloud-native applications architected with microservices.

By scaling to meet demand and maintaining high availability for appli-
cations, Pivotal Cloud Foundry addresses the needs of modern agile 
development techniques and application architectures. But if the under-
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lying infrastructure is unable to match the platform’s resource demands, 
performance can be impaired. Developer-ready infrastructure from 
VMware supplies three key services that dynamically optimize resources 
for Pivotal Cloud Foundry:

•	 Scalability

•	 Availability

•	 Security

This section explains how developer-ready infrastructure from VMware 
helps Pivotal Cloud Foundry run in a demanding production environ-
ment. In particular, it examines how developer-ready infrastructure from 
VMware works with Pivotal Cloud Foundry to address issues of scale, 
availability, and security.

THE BENEFITS OF DEVELOPER-READY INFRASTRUCTURE
Developer-ready infrastructure helps modernize application development, yield-
ing benefits that ultimately bolster your competitive advantage

•	 Provide a consistent, cloud-independent networking and security layer

•	 Eliminate bottlenecks that hinder the provisioning of IT resources for 
developers

•	 Reduce manual infrastructure processes

•	 Improve developer agility and productivity

•	 Shorten software’s time to market

How Pivotal Cloud Foundry Works

Pivotal Cloud Foundry (PCF) is a logical collection of services that 
provide a platform upon which developers can run applications and 
microservices in a stable, consistent, and fault-tolerant manner. With 
native support for Java, Node, Golang, .Net, and many others, the 
platform supports applications written in multiple languages. PCF auto-
matically detects your applications’ required runtime when applications 
are published to it, giving a developers a range of options for writing 
code with the language of their choice.

Applications are usually published on PCF through a continuous integra-
tion and continuous development pipeline. Using a CI/DI pipeline helps 
developers quickly build, test, and deploy an application in a reliable, 
repeatable, and automated way. With the PCF CI/CD model, developers 



150  

first check their source code into a source repository like Git. A pipe-
line automation engine, such as Jenkins, then triggers the commit of 
the updated source code to Git. The result is an application artifact. For 
example, a pipeline would produce a JAR or WAR file as an artifact for 
a Java application. The pipeline then pushes the artifacts to PCF to be 
instantiated as containers.

When an application is pushed to PCF, the artifact is staged, creating 
an image that can be run as a container in PCF’s container execution 
environment called Diego. In the staging process, PCF first identifies the 
artifact type in order to match the appropriate “buildpack” to use in stag-
ing the application image. A buildpack is a library of application runtime 
components. For example, the Java buildpack includes components such 
as the Spring Boot framework and the TC server runtime to run the Java 
application. In this way, containers streamline the process of developing 
and staging an application.

THE BENEFITS OF MICROSERVICES INCREASE MODULARITY

•	 Make app easier to develop and test

•	 Parallelize development: A team can develop and deploy a service inde-
pendently of other teams working on other services

•	 Support continuous code refactoring to heighten the benefits of micros-
ervices over time

•	 Drive a model of continuous integration and delivery

•	 Improve scalability

•	 Simplify component upgrades
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Running Application Instances

The staging process composes an application image by combining a 
read-only root file system with the buildpack and the application artifacts. 
This image, packaged as a tgz, is called a ‘droplet.’ PCF can then use its 
Diego execution environment to run the droplet images as application 
instances (AIs). Diego schedules the running of all application instances 
and maintains their availability across the platform, which reduces the 
workload of IT teams.
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Figure 29: The application pipeline and PCF.

Running an App by Using a Docker Image

PCF is also capable of running an application from a Docker image. 
Docker images are uploaded to PCF pre-composed, so the push process 
doesn’t stage in the same way as a Java application, but the end result is 
the same: an application instance managed by PCF and Diego.
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 Figure 30: PCF with a Docker pipeline.
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THE BENEFITS OF CONTAINERS FOR DEVELOPERS
Developers like working with containers because they make life easier, develop-
ment more engaging, and work more productive.

•	 Portability: Containers let developers choose how and where to deploy 
an app.

•	 Speed: Containers expedite workflows like testing and speed up itera-
tions.

•	 CI/DI Pipeline: Containers support continuous integration and deploy-
ment.

•	 Flexibility: Developers can code on their laptops when and where they 
want with the tools they like.

Reliable Service at Scale

In addition to running containers, PCF offers application routing ser-
vices, making it possible to bind multiple routes and domain URLs to any 
application. PCF also ensures that application instances maintain a mini-
mum level of availability, offering protection from failures in the physical 
infrastructure hosting PCF, as well as easily scaling application instances 
dynamically to meet changes in demand.

PCF does this by scheduling multiple AIs per application and running 
them in multiple PCF availability zones. These zones, typically created 
in sets of three, maintain an application’s uptime if a fault occurs in the 
infrastructure backing a zone.
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Figure 31: PCF application instances and availability zones.
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Delivering IaaS with VMware Solutions

Today, the infrastructure underlying Pivotal Cloud Foundry is typically 
delivered through an Infrastructure as a Service (IaaS) solution like 
VMware vSphere® and VMware vCenter®.

PCF interacts with the IaaS through BOSH, an open source tool for man-
aging the lifecycle of distributed systems. Pivotal Cloud Foundry deploys 
BOSH as a virtual machine called the Ops Manager Director. BOSH 
creates VM instances and assigns one or more jobs to each VM instance. 
BOSH jobs provide a VM instance with desired service release com-
ponents of PCF; for example, a job called diego_cell contains all of the 
release components required to stage and start containers in PCF. BOSH 
will then ensure availability of all PCF services by deploying VM instances 
across availability zones and ensuring jobs are assigned to them across 
availability zones as well.

BOSH communicates with the IaaS through a cloud provider interface, 
or CPI, to create, update, and remove VM instances. BOSH also uses an 
agent communication path with the guest operating system of the VM 
instance to automatically push configured jobs and collect service health. 
If health is determined to not be in a desired state, BOSH can resurrect or 
rebuild the instance and re-apply its jobs. This process ensures that PCF 
services remain available even during faults in a given availability zone.
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Describing Deployments with Manifests

Configuration and interaction with BOSH is a potentially cumbersome 
process that sometimes requires wrangling large YAML text files known 
as manifests. Manifests describe how BOSH should deploy and scale PCF 
and PCF services on a given IaaS.

Pivotal provides a tool called Operations Manager, which also communi-
cates with the IaaS through the CPI to create and manage BOSH itself. 
Operations Manager offers an API as well as a graphical interface for a 
platform operator to configure how PCF is deployed. Additionally it pro-
vides the platform operator a tool to scale, apply updates, and patch PCF. 
This architecture improves the maintainability of the platform.

Self-Service Access for Rapid Application Development

Operations Manager allows a platform operator to deploy and manage 
application services as part of their PCF deployment. PCF services can 
provide developers policy driven, self-service access to components their 
applications require through a “marketplace.” These services, such as 
MySQL, RabbitMQ, and Redis, are instantiated by Pivotal Ops Manager 
and BOSH across the availability zones.

PCF can also allow policy-driven access to services external to those it 
manages, including mainframe data and other vendor-external informa-
tion and services. This is enabled by the PCF service broker layer, which 
allows the platform to bind services and credentials to any application.

Scalability

While there are many ways in which Pivotal Cloud Foundry is designed to 
scale, one of the most important is in scaling application instances. These 
run on VM instances in PCF called Diego Cells.

Diego Cell-instance VMs are pre-created by BOSH for application 
instances (AIs) to run on, and so when application instances start to 
scale horizontally or become larger, they may require more Diego Cell VM 
instances. It’s essential that the IaaS hosting Pivotal Cloud Foundry can 
also scale its resources to allow BOSH to quickly add additional PCF VM 
instances and associated jobs.



An Introduction to Cloud-Native Technology   |    155

Supporting Multiple PCF Deployments on vSphere 
Infrastructure

In a developer-ready infrastructure, that construct to scale resources is 
the vSphere cluster. Defined within each cluster are one or more resource 
pools, each of which is typically aligned with a PCF availability zone. One 
or more availability zones align to a deployment of PCF. Aligning availabil-
ity zones to resource pools allows for multiple deployments of PCF across 
a common infrastructure. For example, three vSphere clusters, each with 
two resource pools, can support two PCF foundations in a highly avail-
able architecture of 3 x PCF availability zones. Resource pools can also 
allow the platform operator to enable resource reservations and limits 
when sharing multiple PCF deployments on common clusters. As a result, 
vSphere can dynamically add or expand resources, hosts, and storage 
without affecting PCF or its applications.
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Figure 33: PCF and vSphere for scalability..

DYNAMICALLY SCALING RESOURCES FOR APPLICATIONS WITH VSPHERE

•	 Create multiple deployments of Pivotal Cloud Foundry across common 
infrastructure

•	 Quickly and dynamically scale resources to add virtual machines and run 
more application instances

•	 Reserve resources and set consumption limits

•	 Add storage without affecting running applications
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Availability

Another key area in which vSphere supports Pivotal Cloud Foundry is 
availability. PCF interacts with the IaaS through BOSH, which can detect 
VM instance health and make sure that VM instances and their jobs stay 
running. One way it does this it by automatic repairs and rebuilds to all 
PCF VM instances when they are found to be unhealthy or unresponsive.

vSphere HA adds a complementary service here, helping reduce down-
time in case of a physical failure or in case of undesired VM guest faults. 
The two technologies need to be scheduled appropriately so that they 
don’t step over each other, but each works with the other to ensure that 
PCF instances and their jobs are always available.

Availability Zones and Load Balancing

PCF also achieves availability through its availability zone constructs. As 
noted earlier, application instances are distributed across Diego Cell VM 
instances in multiple PCF availability zones. Another core PCF job called 
a “router” is also required to route requests to the application instances. 
Router jobs, also known as “GoRouters,” run in VM instances that will load 
balance application requests to AIs running on Diego Cell VM instances, 
across availability zones. This means router instances must also be highly 
available and deployed across availability zones to allow requests to reach 
their desired applications.

Other issues can affect availability. These issues can exist within both 
PCF and the infrastructure hosting it. Platform operators must implement 
effective monitoring of both PCF and the infrastructure hosting it. This is 
critical to maintaining availability and scale.

Tracking Performance Indicators and Events with vRealize 
Operations

Monitoring of key performance indicators (KPIs) and events is accom-
plished via a PCF service called the “firehose.” The firehose endpoint will 
stream events and metrics for all PCF components, BOSH VM instances, 
the jobs running on those instances, and all application instances (AIs). 
This is essential because while BOSH makes deployment simple, PCF 
itself is a complex distributed system that requires careful day-two 
operations and management. Tapping into the firehose stream, VMware 
vRealize® Operations™, a component of the VMware vRealize® Suite, can 
help solve this platform operations problem.

vRealize Operations and VMware vRealize® Log Insight™ ingest PCF KPIs 
and events as well as IaaS metrics and events from vCenter. Data, such as 
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application instance growth patterns and the speeds at which infrastruc-
ture resources are being consumed by developer tenants, allows vRealize 
Operations to track if and when the underlying infrastructure capac-
ity will be exceeded. vRealize Operations also visualizes the complete 
deployment of PCF in a set of dashboards detailing PCF key performance 
indicators, and can alert you when there are unhealthy KPIs. vRealize 
allows an operator to track and act upon significant log events that 
may indicate PCF service and application failures. vRealize Operations 
and vRealize Log Insight provide a comprehensive and unified view of 
long-term trending availability and help maximize Pivotal Cloud Foundry 
deployment uptimes.

THE BENEFITS OF MONITORING PIVOTAL CLOUD FOUNDRY WITH VREALIZE 
OPERATIONS
Using vRealize Operations with vSphere adds critical monitoring that helps 
Pivotal Cloud Foundry maintain high availability:

•	 Detailed view of Pivotal Cloud Foundry key performance indicators

•	 Proactive identification and remediation of emerging performance, 
capacity, and configuration issues

•	 Comprehensive visibility across applications and infrastructure in a single 
console

•	 Automated capacity optimization and planning

•	 Unified view of availability for maximizing deployment uptime
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Figure 34: PCF and vSphere for availability.



158  

Security

Lastly, Pivotal Cloud Foundry needs to run applications in a secure and 
auditable fashion, which can be a major challenge in a distributed envi-
ronment where hundreds or thousands of applications can be running on 
a single PCF deployment.

The key here is to secure control of network access points and also be 
able to audit and report on all access as it occurs, both of which are 
enabled by vRealize in conjunction with the VMware NSX network virtual-
ization and security platform.

PCF requires that an external load balancing service take in requests and 
forward them to the GoRouters, which then route requests to the applica-
tion instances or AIs. The NSX Edge provides the load balancing services 
that PCF requires as well as offering network address translation (NAT) 
services and SSL cryptographic protocols for securing application traffic.

Providing Repeatability, Auditability, and Network Controls

NSX provides the key networking characteristics of a developer-ready 
infrastructure: repeatability, auditability, and software-defined network 
controls. NSX is repeatable in that all required network and security poli-
cies are driven by the API and automated. PCF and BOSH are capable of 
dynamically creating all required security principals within NSX to secure 
the platform. Network controls are also software defined and allow the 
platform operator to provide policy-driven, auditable controls but still 
allow developers self-service and agile consumption of PCF networking 
services.

Another aspect of the security services for a developer-ready infrastruc-
ture is provided by vRealize Log Insight. It ingests log information and 
events from applications, providing information not only about whether 
applications are being shut down, but also about who is shutting them 
down, and what is happening to the applications themselves—allowing an 
audit trail of the application’s lifecycle and events.
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Figure 35: PCF and vSphere for security.

A Productive, Symbiotic Relationship

vSphere, NSX, vRealize Operations, and vRealize Log Insight work 
seamlessly with Pivotal Cloud Foundry to address issues of scalability, 
availability, and security. This ideal developer-ready infrastructure helps 
Pivotal Cloud Foundry run optimally in production.

The result puts infrastructure teams and application development teams 
in a productive, symbiotic relationship that returns immediate value for 
the business. IT teams get secure, software-driven compute, storage, 
and networking that is optimized for running, managing, and monitoring 
workloads at scale with minimal manual processes. Development teams 
receive common, shared tools that help them rapidly build cloud-native 
applications with agile processes and modern architectures.

Case Study: Optimizing Critical 
Banking Workloads
The financial services industry is constantly innovating to interact with 
their customers in new ways. At the same time, the IT environment must 
maintain a high level of economic efficiency, security, and robustness. 
The need for increased agility poses a challenge to the banking industry 
because it is subject to strict regulatory compliance.
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Building on the proven foundation in server virtualization, VMware is 
enabling new consumption models, building on open technology like 
containers, while allowing customers to maintain a common platform and 
consistent operational model.

A leading financial group in Asia that serves more than four million 
customers with over 280 branches in 18 markets is, like so many other 
businesses, adapting to change. “The experience of telcos, transport, and 
retailing shows that we’re changing the way we communicate, the way we 
commute, and the way we consume. So why would banking be immune 
or be safeguarded from any of this?” the CEO of this financial group said.

Recognizing that change is required in order for this financial institution 
to maintain and expand their leadership in the industry, the company’s 
CIO gave the infrastructure team three goals:

1.	 Build a robust platform: Strengthen the technology and 
infrastructure platform to build world-class infrastructure

2.	 Be nimble: Develop solutions to support strategic priorities

3.	 Go explore: Nurture technology innovation to enhance customer 
experience

The team started by modernizing their data centers. Building on the 
existing vSphere foundation and following VMware Validated Design™ for 
vSphere metro-stretched clusters, they built new robust infrastructure to 
host their 4,000 legacy applications as well as applications being re-plat-
formed from Solaris, AIX, and mainframe.

By design, for disaster avoidance, these clusters require resources avail-
able at all times in both primary and secondary data centers. This results 
in clusters being 30 to 40 percent utilized. The challenge was how to 
optimize cluster resource utilization across both of their data centers.

As part of their daily operations, this financial institution runs a lot of 
batch processing for applications such as grid computing and risk calcu-
lations. These applications typically required dedicated infrastructure that 
was maintained continuously but used sporadically, creating additional 
wasted resources.

As a result, the financial institution is striving to optimize resource utili-
zation in existing infrastructure and reduce its infrastructure footprint for 
batch applications.
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VMWARE FOOTPRINT

•	 Server virtualization technology

•	 vSphere Integrated Containers

•	 VMware Technical Account Manager Services

The Solution

SOLUTION

Re-platforming applications from legacy Unix to Linux, packaged in con-
tainers, and leveraging VMware vSphere® Integrated Containers™ to increase 
agility in scheduling batch jobs for business applications and improve 
resource utilization across clusters and data centers.

They started by looking for small applications that could be distributed 
and scaled horizontally. Guided by their VMware Technical Account 
Manager (TAM), they participated in the vSphere Integrated Containers 
Early Access Program. vSphere Integrated Containers has an opinionated 
provisioning model promoting strong isolation by provisioning containers 
as virtual machines (called container VMs). This financial institution found 
that, by containerizing the batch processing applications and running 
them with vSphere Integrated Containers, they were able to bring up 
capacity on-demand for any batch job, using the overhead capacity in 
their metro clusters. They used three criteria to identify candidates:

•	 Applications that do not readily support NAT’ing and require a 
unique routable IP address (with vSphere Integrated Contain-
ers, this can be achieved without the need for a network overlay 
because container images are instantiated as VMs, connected 
directly to vSphere Port Groups)

•	 Applications that need to be horizontally scaled up or down on 
demand (container VMs have access to vSphere cluster resources 
based on resource pool allocation allowing for dynamic resource 
allocation and resource balancing with vSphere Distributed 
Resource Scheduler™)

•	 Applications that require data persistence (vSphere Integrated 
Containers facilitates this by leveraging underlying vSphere 
storage)

This allowed this financial institution to change the VMware consumption 
model in ground-breaking manner. The consumption is now based on 
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dynamic quota assigned from the unused metro cluster capacity that can 
be provisioned directly via the Docker API. To quote the application team: 
“Get what you need when you need it. Then discard.”

Business Results and Benefits

BUSINESS BENEFITS

•	 Accelerated application deployment from weeks to seconds.

•	 Reduced CapEx by eliminating legacy infrastructure necessary to run 
batch jobs.

•	 Reduced OpEx associated with operating systems maintenance and 
day-2 operations.

This financial institution is now running two business-critical applica-
tions through vSphere Integrated Containers and planning to expand 
to other similar batch type workloads. The ability to spin up the neces-
sary applications on-demand in a predictable way allows the IT team to 
rapidly respond to the needs of the internal lines of business. In fact, they 
measured that deployment time for these batch applications servers 
went down from weeks to around 60 seconds. By leveraging the existing 
vSphere infrastructure and the well-recognized isolation boundary pro-
vided by the vSphere Virtual Machine, they were able to increase agility 
while maintaining the required level of governance and compliance.

On top of business agility, they were also able to bring savings to their 
infrastructure costs. They can now distribute the applications and have 
them share the same compute resources though the use of their batch 
scheduler. Where batch jobs used to have dedicated pools of resources, 
the load is now spread across the same pool of resources and scheduled 
on demand.

•	 Batch workloads are now running in vSphere alongside legacy 
workloads, and using all of the available capacity (50% overhead 
from metro clustering).

•	 vSphere Distributed Resource Scheduler (DRS) provides elastic 
resource management allowing them to schedule the excess metro 
cluster capacity in an efficient manner.

•	 Since vSphere Integrated Containers included in their vSphere 
licensing, it allows them to deploy this solution to all of their clus-
ters without incurring additional licensing costs.
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•	 Batch applications no longer incur overhead when not in use 
(before re-platforming, they would require dedicated infrastruc-
ture)

The solution also had a positive impact on their operational costs. The 
immutable and ephemeral quality of the Container VMs means that they 
were able to drastically reduce the operating systems maintenance and 
other day-2 operations costs. Because the container VMs are short-lived, 
it also allowed them to eliminate some of the security costs associated 
with agents licensing.

APPLICATIONS VIRTUALIZED

•	 Various business-critical batch applications required for risk calculations 
(hsVaR) And grid computing.

•	 Build Slaves for Jenkins software development process automation.

Looking Ahead

As the next step, this financial institution is planning to migrate the rest of 
the batch applications that are already targeted to move to this platform. 
More teams at the company are also experimenting with vSphere Inte-
grated Containers. One application team is now using vSphere Integrated 
Containers to provision ephemeral Jenkins build slaves to optimize their 
continuous integration pipeline. Other applications being investigated 
include:

•	 Big data analytics: Spark compute with an object store as backend, 
spinning up Spark container VMs.

•	 Security scanning: Fortify port scanning requires resources on 
demand, which would fit well in the current model.
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Conclusion
This book has introduced you to the world of cloud-native technology 
and practices. By explaining the business value of container technology, 
by exploring the use cases for containers and Kubernetes, and by demon-
strating how to deploy cloud-native applications, this book primes you to 
begin adopting emerging technology to propel your organization into the 
digital era.

Indeed, the cloud-native elements covered in this book— such as contain-
ers, Kubernetes, microservices, container platforms, DevOps, and the CI/
CD pipeline—converge into a powerful recipe for digital transformation: 
You can optimize the use of your computing resources and your software 
development practices to extend your enterprise’s adaptability, produc-
tivity, innovation, competitive advantage, and global reach.

Glossary
This glossary presents definitions for terminology in the cloud-native 
space. The definitions are not intended to be axiomatic, dictionary-style 
definitions but rather plain-language descriptions of what a term means 
and an explanation of why the technology associated with it matters. For 
some of the terms, meaning varies by usage, situation, perspective, or 
context.

A
ACID: ACID stands for Atomicity, Consistency, Isolation, and Durability—
properties of database transactions that, taken together, guarantee the 
validity of data in the face of power failures or system errors.

Active Directory: Microsoft Active Directory (AD) is a directory service 
that authenticates users and controls access to personal computers, 
servers, storage systems, applications, and other resources. An Active 
Directory domain controller combines a Kerberos key distribution center 
(KDC) with an LDAP server to provide authentication and authorization. 
To authenticate the identity of users, AD uses the highly secure Kerberos 
protocol or the legacy NT LAN Manager (NTLM). To authorize access to 
resources, AD typically uses a Privilege Attribute Certificate (PAC), which 
is a data structure in a Kerberos ticket that contains group memberships, 
security identifiers, and other information about a user’s profile. See 
LDAP.
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AKS: Azure Container Service (AKS) is Microsoft’s managed Kubernetes 
service that runs in Azure.

API server: In Kubernetes, the API server provides a frontend that han-
dles REST requests and processes data for API “objects,” such as pods, 
services, and replication controllers.

Azure Container Registry. ACR is a private image registry from Microsoft 
that includes geo-replication.

B
build: With Docker, it is the process of building Docker images by using a 
Dockerfile. In the context of the CI/CD pipeline, the build process gener-
ates an artifact, such as a set of binary files that contain an application.

BOSH: An open source system that unifies release engineering, deploy-
ment, and lifecycle management for large distributed systems. BOSH 
performs monitoring, failure recovery, and software updates with 
zero-to-minimal downtime. Just as Kubernetes maintains the desire state 
of a containerized application, BOSH maintains the desired state of the 
underlying infrastructure, including Kubernetes itself, on which the appli-
cation runs.

C
Cassandra: A NoSQL database, Apache Cassandra manages structured 
data distributed across commodity hardware. Common use cases include 
recommendation and personalization engines, product catalogs, play lists, 
fraud detection, and message analysis.

cloud computing: Cloud computing is an umbrella term for elastic, on-de-
mand, shared computing resources and services—such as computational 
power, storage capacity, database usage, analytics, and software appli-
cations—delivered as a service over the Internet, typically with metered 
pricing. The organizations that provide cloud computing are frequently 
referred to as cloud providers. See also the definitions of the three 
cloud-computing service models: IaaS, PaaS, and SaaS. For a formal defi-
nition and taxonomy of cloud computing, see the The NIST Definition of 
Cloud Computing, NIST Special Publication 800-145, at https://csrc.nist.
gov/publications/detail/sp/800-145/final.

Cloud Foundry Container Runtime. Formerly called Kubo, for Kubernetes 
on BOSH, CFCR is an open source project for deploying and managing 
Kubernetes by using BOSH. For more information on CFCR, see Cloud-
Foundry.org. See also: BOSH.
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cloud Infrastructure encompasses the servers, virtual machines, storage 
systems, networking, and other components required for cloud com-
puting and infrastructure as a service. Cloud infrastructure provides the 
building blocks, or primitives, for creating hybrid and private clouds that 
deliver cloud computing services.

cloud-native applications: Generally speaking, cloud-native applications 
are apps that are developed and optimized to run in a cloud as dis-
tributed applications. More specifically, according to the Cloud Native 
Computing Foundation, cloud-native applications, which are also gen-
erally referred to as “modern” applications, are marked by the following 
characteristics:

•	 Containerized for reproducibility, transparency, and resource isolation.

•	 Orchestrated to optimize resource utilization.

•	 Segmented into microservices to ease modification, maintenance, 
and scalability.

Different organizations, however, have different definitions. Dell EMC, for 
example, defines cloud-native application as a highly scalable next-gener-
ation distributed application architecture that uses open standards and is 
dynamic in nature.

Cloud-native applications are typically developed and deployed on a 
containers as a service platform (CaaS) or a platform as a service (PaaS). 
Which see. See also: 12-factor app.

Cloud Spanner: A globally distributed, strongly consistent database 
service that combines the benefits of a relational database structure with 
non-relational horizontal scale.

cluster: Three or more interconnected virtual machines or physical 
computers that, in effect, form a single system. A computer in a cluster 
is referred to as a node. An application running on a cluster is typically a 
distributed application because it runs on multiple nodes. By inherently 
providing high availability, fault tolerance, and scalability, clusters are a 
key part of cloud computing.

CNCF: Cloud Native Computing Foundation. An open source project 
hosted by the Linux Foundation, the CNCF hosts Kubernetes and other 
key open source projects, including Prometheus, OpenTracing, Fluentd, 
and linkerd. VMware is a member of the Linux Foundation and the Cloud 
Native Computing Foundation.
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CNI: Container Network Interface. It is a open source project hosted by 
the CNCF to provide a specification and libraries for configuring network 
interfaces in Linux containers.

Concourse: Concourse is a system for continuous integration and contin-
uous delivery that works with Pivotal Cloud Foundry and other platforms 
to help enterprise development teams release software early and often. 
Note that in the context of Concourse, the D in CI/CD stands for deliv-
ery, not deployment. Concourse automates the testing and packaging of 
frequent code commits. See CI/CD.

CoreDNS: An open source project, CoreDNS can integrate with Kuber-
netes, etcd, Prometheus, and other software to provide DNS and service 
discovery with plugins. CoreDNS is hosted by the CNCF.

container: A portable, executable format, known as an image, for pack-
aging an application with all its dependencies and instructions on how 
to run it. When the container image is executed, it runs as a process on a 
computer or virtual machine with its own isolated, self-described applica-
tion, file system, and networking. A container is more formally known as 
an application container. The use of containers is increasing because they 
provide a portable, flexible, and predictable way of packaging, distrib-
uting, modifying, testing, and running applications. Containers speed up 
software development and deployment.

containerize: To package an application in a container.

containerized application: An application that has been packaged to run 
in one or more containers.

containers as a service: A container-as-a service platform helps devel-
opers build, deploy, and manage containerized applications, typically by 
using Kubernetes or another orchestration framework, such as Mesos or 
Docker Swarm.

container host: A Linux operating system optimized for running contain-
ers. Examples include CoreOS and Project Photon OS by VMware.

container registry: See registry.

controllers: In Kubernetes, controllers are processes started by the Kuber-
netes Controller Manager to perform the routine tasks associated with 
managing a cluster.

CI/CD: Refers to either the continuous integration and continuous deliv-
ery pipeline or the continuous integration and continuous deployment 
pipeline. Context often, but not always, disambiguates the abbreviation. 
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See continuous integration, continuous deliver, and continuous deploy-
ment.

continuous integration constantly combines source code from different 
developers or teams into an app and then tests it.

continuous delivery readies an application or part of an application for 
production by packaging and validating it.

continuous deployment automatically deploys an application or part of 
an application into production.

converged infrastructure: Technology that brings together the dispa-
rate infrastructure elements powering IT, including servers, data storage 
devices, networking functions, virtualization, management software, 
orchestration, and applications. See hyper-converged infrastructure.

D
day one: Refers to deployment.

day two: Refers to post-deployment operations.

desired state: A key benefit of Kubernetes is that it automatically main-
tains the desired state—the state that an administrator or platform 
operator specifies an application should be in.

DevOps: Delivering software in an expedient, reliable, sustainable way 
requires collaboration between IT teams and developers. DevOps takes 
place when developers and IT come together to focus on operations in 
the name of streamlining and automating development and deployment. 
DevOps is a key practice driving the development and deployment of 
cloud-native applications.

developer-ready infrastructure: VMware vSphere, VMware NSX, VMware 
vSAN, and VMware vRealize Operations lays the foundation for a soft-
ware-defined data center (SDDC). Running VMware Pivotal Container 
Service or Pivotal Cloud Foundry on top of a VMware SDDC, for example, 
produces developer-ready infrastructure—agile, self-service infrastructure 
that is ready to use to build and run cloud-native applications.

digital transformation: Optimizing the use of your computing resources, 
organizational processes, and software development practices to extend 
your enterprise’s adaptability, productivity, innovation, competitive advan-
tage, and global reach. At a high level, digital transformation often entails 
the adoption of new technologies, including cloud computing, mobile 
devices, social media, and big data analytics. At a lower level, cloud-native 
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technologies and practices—such as containers, Kubernetes, microser-
vices, container platforms, DevOps, and the CI/CD pipeline—converge 
into a powerful recipe for digital transformation.

Docker is a widely used container format. Docker defines a standard 
format for packaging and porting software, much like ISO containers 
define a standard for shipping freight. As a runtime instance of a Docker 
image, a container consists of three parts:

•	 A Docker image

•	 An environment in which the image is executed

•	 A set of instructions for running the image

Docker Swarm is the name of a standalone native clustering tool for 
Docker. Docker Swarm combines several Docker hosts and exposes them 
as a single virtual Docker host. It serves the standard Docker API, so any 
tool that already works with Docker can transparently scale up to multiple 
hosts.

E
elastic: A resource or service that can dynamically expand or contract to 
meet fluctuations in demand.

ELK stack: Elasticsearch, Logstash, and Kibana combine to form the 
ELK stack. Taken together, these three open source projects provide a 
platform to collect, search, analyze, and visualize data. Elasticsearch is 
a distributed search and analytics engine that lets data engineers query 
unstructured, structured, and time-series data. Logstash lets you collect 
unstructured data, enrich it, and route it to another application, such as 
Elasticsearch. Kibana is a visualization engine to display data in dash-
boards as graphics and maps.

etcd: A distributed key-value store that Kubernetes uses to store data 
about its state and configuration.

F
fault tolerance: Fault tolerance is the property that lets a system continue 
to function properly in the event of component failure.

Fluentd: A data collector for unified logging. Fluentd, which works with 
cloud-native applications, is hosted by the CNCF.
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G
GCP open service broker: It lets apps access Google cloud APIs from 
anywhere.

Gemfire: Pivotal Gemfire is a distributed data management platform that 
compresses operational data and holds it in memory to provide real-time, 
consistent, and scalable access to data-intensive NoSQL applications.

Google Cloud Platform: GCP.

Google Kubernetes Engine: It is a managed environment to deploy and 
scale containerized applications that are orchestrated by Kubernetes.

Greenplum Database: An ACID-compliant transactional database that 
employs a shared-nothing, massively parallel processing architecture, 
Pivotal Greenplum complies with SQL standards. It interoperates with 
industry-standard business intelligence and ETL tools as well as Hadoop. 
With a library of analytics functions and a framework for building custom 
functions, Greenplum addresses data warehousing use cases for big data.

GRPC: A project of the CNCF, GRPC is a open-source universal remote 
procedure call (RPC) framework for distributed systems. You can use it to 
define a service by using Protocol Buffers, a binary serialization language. 
GRPC also lets you automatically generate client and server stubs for a 
service in various languages.

H
Hadoop: Hadoop comprises the Hadoop Distributed File System (HDFS) 
and MapReduce. HDFS is a scalable storage system built for Hadoop and 
big data. MapReduce is a processing framework for data-intensive com-
putational analysis of files stored in a Hadoop Distributed File System. 
Apache Hadoop is the free, open-source version of Hadoop that is 
managed by the Apache Software Foundation. The open-source version 
provides the foundation for several commercial distributions, including 
Hortonworks, IBM Open Platform, and Cloudera. There are also Hadoop 
platforms as a service. Microsoft offers HDInsight as part of its public 
cloud, Azure. Amazon Elastic MapReduce, or EMR, delivers Hadoop as a 
web service through AWS.

Harbor: An open source project from VMware formally known as Project 
Harbor, it is a secure registry that hosts repositories of container images.

Helm Chart: A package of Kubernetes resources that are pre-configured, 
customized, and reproducible; you can then manage a chart with the 
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Helm tool. The charts help improve the portability of Kubernetes appli-
cations. A single chart can contain an entire web application, including 
databases, caches, HTTP servers, and other resources.

horizontal pod autoscaler: In Kubernetes, a horizontal pod autoscaler is a 
controller that adds resources to handle an increase in demand when the 
requests to a service exceed the threshold set by the administrator.

hybrid cloud: Any modernized infrastructure that involves two or more 
delivery models, such as private cloud and public cloud resources.

hyper-converged infrastructure integrates the same key types of IT 
components that converged infrastructure does, but in a scalable rack or 
appliance that simplifies management, improves performance, and adds 
elastic scalability. See converged infrastructure.

I
image: With Docker, an image is the basis of a container. An image 
specifies changes to the root file system and the corresponding execu-
tion parameters that are to be used in the container runtime. An image 
typically contains a union of layered files systems stacked on top of each 
other. An image does not have state and it never changes.

infrastructure as a service (IaaS): Infrastructure-as-a-service (IaaS) 
provides on-demand access to underlying IT infrastructure, including 
resources for storage, networking, and compute. With IaaS, a user can 
provision IT services when they need them to deploy and run arbitrary 
software. Users typically pay only for the resources they consume. The 
user, however, does not manage or control the underlying cloud infra-
structure. See cloud computing.

ingress: In Kubernetes, ingress refers to an API object that controls exter-
nal access to the services in a Kubernetes clusters, such as HTTP and 
HTTPS. Ingress can perform load balancing.

J
Jaeger: A distributed tracing system released as open source software by 
Uber Technologies, Jaeger can monitor microservice-based architectures. 
Use cases include distributed transaction monitoring, root cause analysis, 
service dependency analysis, and performance optimization. Jaeger is 
hosted by the CNCF.

JSON: JavaScript Object Notation is a minimalist data-interchange format 
commonly used to annotate data, such as API output.
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K
K8s: An abbreviation of sorts for Kubernetes.

KaaS: Kubernetes as a service.

Kafka: Apache Kafka partitions data streams and spreads them over 
a distributed cluster of machines to coordinate the ingestion of vast 
amounts of data for analysis. More formally, Kafka is a distributed pub-
lish-subscribe messaging system. A key use of Kafka is to help Spark or 
a similar application process streams of data. In such a use case, Kafka 
aggregates the data stream—for example, log files from different serv-
ers—into “topics” and presents them to Spark Streaming, which analyzes 
the data in real time.

kops: This term stands for Kubernetes Operations, a command-line tool to 
help you install, maintain, and upgrade Kubernetes clusters.

Kubernetes: An orchestration system that automates the deployment 
and management of containerized applications. As an application and its 
services run in containers on a distributed cluster of virtual or physical 
machines, Kubernetes orchestrates all the moving pieces to optimize the 
use of computing resources, to maintain the desired state, and to scale on 
demand. Kubernetes is also referred to as an orchestration framework or 
an orchestration engine. See desired state and orchestration.

kubectl: A command-line interface that you install on your computer and 
use to run commands that control and manage Kubernetes clusters.

kubelet: The agent that runs on each node in a Kubernetes cluster to 
manage pods. A PodSpec specifies how kubelet is to work. A PodSpec 
is a YAML or JSON object that describes a pod. The kubelet takes a set 
of PodSpecs that are provided through various mechanisms (primarily 
through the API server) and ensures that the containers described in 
those PodSpecs are running and healthy.

Kubo: See Cloud Foundry Container Runtime.

L
LDAP: Lightweight Directory Access Protocol. It is a standard protocol for 
storing and accessing directory service information, especially usernames 
and passwords. Applications can connect to an LDAP server to verify 
users and groups.

Lightwave: An open source security platform from VMware, Project 
Lightwave secures cloud platforms by providing a directory service, 
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Active Directory interoperability, Kerberos authentication, and certificate 
services. Lightwave empowers IT security managers to impose the proven 
security policies and best practices of on-premises computing systems on 
their cloud computing environment. More specifically, Lightwave includes 
the following services:

•	 Directory services and identity management with LDAP and Active 
Directory interoperability

•	 Authentication services with Kerberos, SRP, WS-Trust (SOAP), 
SAML WebSSO (browser-based SSO), OAuth/OpenID Connect 
(REST APIs), and other protocols

•	 Certificate services with a certificate authority and a certificate 
store

linkerd: A service mesh that adds service discovery, routing, failure han-
dling, and visibility to cloud-native applications. linkerd is hosted by the 
CNCF.

M
Memcached: As a system that caches data in the distributed memory of 
a cluster of computers, Memcached accelerates the performance of web 
applications by holding the results of recent database calls in random-ac-
cess memory (RAM).

microservices: A “modern” architectural pattern for building an appli-
cation. A microservices architecture breaks up the functions of an 
application into a set of small, discrete, decentralized, goal-oriented pro-
cesses, each of which can be independently developed, tested, deployed, 
replaced, and scaled. See cloud-native application.

micro-segmentation: With VMware NSX, micro-segmentation policies 
can specify granular traffic flow patterns among, for instance, the Kuber-
netes namespaces in which containerized applications are running. With 
micro-segmentation, you can craft rules that impose security require-
ments on workloads and isolate resources at the level of microservices.

Minikube: A tool that lets you run a single-node Kubernetes cluster inside 
a virtual machine or locally on a personal computer.

MongoDB: A distributed NoSQL document database, MongoDB stores 
data with a flexible, schema-free data model that can adapt to change. 
MongoDB includes secondary indexes, geospatial search, and text search. 
Common use cases include serving data to mobile applications and per-
forming real-time analytics.
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MySQL: It is an open source relational database management system 
(RDMS) that is commonly used in various types of applications, especially 
web apps. It is also widely embedded in the solutions distributed by inde-
pendent software vendors (ISV) and original equipment manufacturers 
(OEM). In the name, SQL stands for Structured Query Language.

N
namespace: In the context of a Linux computer, a namespace is a feature 
of the kernel that isolates and virtualizes system resources. Processes that 
are restricted to a namespace can interact only with other resources and 
processes in the same namespace.

In Docker, namespaces isolate system resources like networking and 
storage.

In Kubernetes, when many virtual clusters are backed by the same under-
lying physical cluster, the virtual clusters are called namespaces.

NIST: The National Institute of Standards and Technology, which is part of 
the U.S. Department of Commerce. NIST publishes standards, guidelines, 
and requirements for information security.

NodePort: In Kubernetes, a NodePort presents a service, such as a web 
server, on a port on the nodes in a Kubernetes cluster for external access.

NoSQL: A NoSQL database stores data that is structured in a way other 
than the tabular relationships of traditional relational databases. NoSQL is 
also known as non-SQL, non-relational, and not-only SQL. NoSQL data-
bases are commonly used for big data and real-time data processing. 
Popular examples of NoSQL databases include MongoDB, Cassandra, and 
Pivotal Gemfire.

NSX: VMware NSX is a product that provides software-defined network 
virtualization.

O
OCI stands for Open Container Initiative, an organization dedicated to 
setting industry-wide container standards. OCI was formed under the 
auspices of the Linux Foundation for the express purpose of creating 
open industry standards around container formats and runtime. The OCI 
contains two specifications: the Runtime Specification (runtime-spec) 
and the Image Specification (image-spec). VMware is a member of OCI. 
See https://www.opencontainers.org/.
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OpenTracing: A vendor-neutral standard for distributed tracing. It is 
hosted by the CNCF.

opinionated platform: See prescriptive platform.

orchestration: Because it can automatically deploy, manage, and scale a 
containerized application, Kubernetes is often referred to as an orches-
tration framework or an orchestration engine. It orchestrates resource 
utilization, failure handling, availability, configuration, desired state, and 
scalability.

P
PaaS: See platform as a service.

PAS: Pivotal Application Service. Formerly known as Elastic Runtime, PAS 
runs Java, .NET, and Node apps on Pivotal Cloud Foundry.

PCF: Pivotal Cloud Foundry, a private platform as a service for developing 
and deploying cloud-native applications.

PKS: Pivotal Container Service, a Kubernetes-based container service.

Photon OS: An open source project from VMware, Project Photon OS is a 
Linux operating system optimized for running containers.

platforms: The overarching business objective of using a container 
platform is to accelerate the development and deployment of scalable, 
enterprise-grade software that is easy to modify, extend, operate, and 
maintain. Three types of platforms provide varying degrees of support for 
container technology:

•	 A platform for running individual container instances. A platform 
for running container instances helps developers build and test 
a containerized application. It does not, however, orchestrate the 
containerized application with Kubernetes, nor does it provide a 
service broker so that developers can integrate tools, databases, 
and services with an app. An example of a container instance plat-
form is VMware vSphere Integrated Containers.

•	 Containers as a service.

•	 Platform as a service.

platform as a service: platform-as-a-service (PaaS) is a cloud-based 
environment for developing, testing, and running applications using pro-
gramming languages, libraries, services, and tools supported or offered 
by the platform’s provider. A platform as a service is sometimes referred 
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to simply as an application platform. In this context, an application 
platform helps developers not only write code but also integrate tools 
and services, such as a database, with their application as, for instance, 
microservices. An example of a private platform as a service that is also 
referred to as an application platform is Pivotal Cloud Foundry. See con-
tainers as a service, infrastructure as a service, and cloud computing.

platform developer: An engineer who customizes a Kubernetes platform 
(or another modern platform) to fit the needs of their project or organi-
zation.

platform operator: An engineer who manages a platform like Kubernetes.

pod: On Kubernetes, a pod is the smallest deployable unit in which one 
or more containers can be managed—in other words, you run a container 
image in a pod. A set of pods typically wraps a container, its storage 
resources, IP address, and other options up into an instance of an applica-
tion that will run on Kubernetes. Docker is usually the container runtime 
used in a pod. A Kubernetes administrator or application developer 
specifies a pod by using a YAML file. Pods are commonly managed by a 
deployment, which see.

PostgreSQL: Also known as Postgres, it is an extensible object-relational 
database management system that securely stores data for large Inter-
net-facing applications or data warehouses. Postgres is ACID-compliant; 
see ACID.

prescriptive platform: In the context of application platforms, a pre-
scriptive platform hides the platform’s complexity from developers by 
prescribing that developers use the system’s formats, pipeline, and meth-
ods for building and running applications. For example, a prescriptive 
container platform might prescribe a scheduler, a runtime engine, inte-
gration with the underlying infrastructure, continuous delivery, and other 
aspects of the platform. A prescriptive platform is also referred to as an 
“opinionated” platform.

private cloud: A fully virtualized data center that includes two key 
capabilities that increase agility and are different from a virtualized data 
center: self-service and automation.

Prometheus: A open source monitoring system for Kubernetes. Pro-
metheus is hosted by the CNCF.

pull: Downloading a container image from a registry into a local cache so 
that you can launch containers based on the image.
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Q
quality of service: It is often abbreviated QoS.

R
RabbitMQ: An open source message broker, RabbitMQ implements the 
Advanced Method Queuing Protocol to give applications a common inter-
mediate platform through which they can connect and exchange data.

RBAC: role-based access control. On Kubernetes, RBAC is a module that 
authorizes access to resources by role. RBAC empowers administrators to 
dynamically configure access policies through the Kubernetes API.

Redis: A key-value database, Redis can store a dataset in a networked, 
in-memory cache. Because keys in Redis can contain strings, hashes, lists, 
sets, sorted sets, bitmaps, and hyperlogs, Redis is often referred to as a 
data structure server. Data scientists, for instance, can perform operations 
on these data types to do things like compute set intersection, union and 
difference, and ranking.

registry: A hosted service that contains repositories of container images. 
Harbor, an open source project from VMware, is an example of a registry.

replica set: In Kubernetes, a replica set is a controller that manages the 
lifecycle of pods. See controllers.

repository: In the context of containers, a repository is a set of container 
images. The repository can be shared with other users through a registry 
server, and the images in the “repo” can be tagged with labels.

refactoring: Re-architecting an application or modifying its code to 
improve it. An application might, for example, be refactored by decom-
posing it into microservices.

repackaging: Placing a traditional application in a container format.

replatforming: Moving an application to another, more efficient platform. 
If the application being migrated is a traditional application and if the new 
platform uses containers, replatforming also involves repackaging.

rkt: Pronounced like rocket, rkt is a standards-based container engine 
from CoreOS.

runC: The code module that launches containers. It is part of containerd 
and managed by OCI, which stands for Open Container Initiative. See OCI.
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S
scheduler: A module of a system or a software component that sched-
ules and runs the deployment of containers, jobs, tasks, or another type 
of workload. Most public cloud services, such as Microsoft Azure, include 
a scheduler that lets you create jobs in the cloud. The jobs can, in turn, 
invoke services or tasks, such as backing up data or cleaning up logs.

service: The definition of service varies by context. In Kubernetes, it is an 
API object that describes how to access applications, such as a set of 
pods, by using methods like ports or load-balancers.

A service may also be a microservice within the context of some larger 
application. An HTTP server, for example, is a service.

service discovery: The automatic detection of services in a given context.

software-defined data center (SDDC): A data center in which infrastruc-
ture is virtualized and delivered as a service. The infrastructure of an 
SDDC includes virtualized networking and software-defined data storage 
and management. An SDDC supports applications in a way that is more 
flexible, agile, efficient, and cost-effective than traditional approaches. In 
a SDDC, all the components of infrastructure—compute, networking, stor-
age, security, and availability—are abstracted and delivered as automated, 
policy-driven software. An SDDC radically reduces manual processes, 
speeds up IT service delivery, reduces costs, and improves ROI.

software as a service (SaaS): An application running on a cloud infra-
structure that is used over a network, typically the Internet, instead of 
being downloaded and installed on local machines. The consumer of the 
service does not manage or control the underlying cloud infrastructure or 
the application’s capabilities. Also known as a web app.

Spanner: See Cloud Spanner.

Spark: Apache Spark is an engine for large-scale data processing that can 
be used interactively from the Python shell. Spark combines streaming, 
SQL, and complex analytics by powering a stack of tools that can coexist 
in the same application. Spark can access diverse data sources, including 
not only the Hadoop File System (HDFS) but also Cassandra and Mon-
goDB. Data scientists like Spark because they get access to Python’s 
powerful numeric processing libraries.

spec: In Kubernetes, spec stands for specification. The specification is a 
description of a desired state, including the configuration supplied by a 
user.
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Spring Cloud Data Flow: A toolkit for building data integration and real-
time data processing pipelines. The Spring Cloud Data Flow server uses 
Spring Cloud Deployer to integrate pipelines with Pivotal Cloud Foundry, 
Mesos, or Kubernetes. Spring Cloud Data Flow helps engineers develop 
analytics pipelines by providing a distributed system that unifies inges-
tion, real-time analytics, batch processing, and data export.

StatefulSet: In Kubernetes, a StatefulSet manages the deployment and 
scaling of a set of pods according to your desired state. A stateful set 
can, for example, manage persistent storage and other resources for 
stateful pods.

swarm: With Docker, a swarm is a cluster of one or more Docker Engines 
running in swarm mode. Docker Swarm, however, is not the same thing as 
the swarm mode features in Docker Engine. See Docker Swarm.

T
tag: With Docker, a tag is a label that a user applies to a Docker image to 
distinguish it from other images in a repository.

the cloud: Computing resources available over the Internet. See cloud 
computing.

traditional application: A traditional application is monolithic in design 
with an n-tier application architecture that generally consists of database, 
application, and web servers. These components are usually tightly cou-
pled with the infrastructure and dependent on it for high availability.

U
UID: It can stand for user identifier, user ID, or unique identifier, depending 
on the context or the system. With Kubernetes, for example, a UID is a 
string that uniquely identifies an object.

V
Vagrant: HashiCorp’s Vagrant turns a machine’s configuration into a dis-
tributable template to produce a predictable development environment 
for applications.

W
workload: A workload is the computational or transactional burden of 
a set of computing, networking, and storage tasks associated with an 
application. Similar apps with the same technology and tools can have 
radically different workloads under different circumstances or during 
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different times. Workloads can often be measured by CPU or memory 
consumption, network traffic, requests, database queries, transactions, 
and so forth. In very basic, broad terms, an application is a thing that 
processes something; a workload is the processing that’s being done; and 
a use case is the reason that you do it. In the context of cloud computing 
and Kubernetes clusters, a workload can be seen as the amount of work 
that an instance of an app or part of an app performs during a certain 
time period.

X
XML: Extensible Markup Language. It is a flexible but verbose format for 
structuring and exchanging data. XML is often used in legacy applica-
tions, Java applications, and web applications for a variety of purposes, 
such as structuring configuration files or exchanging data. Although XML 
is sometimes used in cloud-native applications, JSON or YAML (which 
see) are the preferred data formats.

Y
YARN: A sub-project of Apache Hadoop, YARN separates resource man-
agement from computational processing to expand interactional patterns 
beyond MapReduce for data stored in HDFS. YARN allocates resources 
for Hadoop applications such as MapReduce and Storm as they perform 
computations. YARN, in effect, stands at the center of a Hadoop environ-
ment by providing a data operating system and pluggable architecture 
for other applications.

YAML: A human-readable data serialization standard commonly used in 
configuration files to structure information and commands. In Kubernetes, 
specification files are written in YAML.

volume: With Docker, a volume (or data volume) is a designated direc-
tory within one or more containers that bypasses the Union File System. 
Volumes are designed to persist data independent of the container’s life 
cycle.

Z
ZooKeeper: Apache ZooKeeper coordinates distributed applications mas-
querading as animals. It provides a registry for their names. It configures 
and synchronizes them. It keeps them from running amok.
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Numbers
12-factor app: A methodology for developing a software-as-a-service 
(SaaS) application—that is, a web app—and typically deploying it on a 
platform as a service or a containers as a service.
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