
Learning Tools Interoperability® (LTI®):
A Best Practice Guide

by

Stephen P Vickers
Simon Booth

for
ceLTIc:developers Project

celtic-project.org

August 2014

e: stephen@spvsoftwareproducts.com

http://celtic-project.org/
mailto:stephen@spvsoftwareproducts.com

2 Introduction | LTI: A Best Practice Guide

Contents
1 Introduction .. 4

1.1 Terminology .. 4

1.2 LTI Releases ... 4

2 Issues for Developers .. 5

2.1 Anatomy of a launch request .. 5

2.2 Launch parameters ... 5

2.3 Security ... 6

2.4 Receiving a launch request ... 6

2.5 Identity values ... 8

2.5.1 Contexts .. 8

2.5.2 Resource links ... 8

2.5.3 Users ... 8

2.5.4 Matching IDs with pre-provisioned data .. 10

2.5.5 LTI and SSO .. 10

2.6 Roles .. 11

2.7 CSS ... 12

2.8 Override interface ... 13

2.9 Branding .. 13

2.10 Course archive/restore/copy .. 13

2.11 Class libraries .. 14

2.12 Browser issues .. 15

2.12.1 Third-party cookies ... 15

2.12.2 Internet Explorer zones ... 15

2.12.3 Support for frames/iframes .. 16

3 Issues for System Administrators.. 16

3.1 Tool requirements... 16

3.2 Configuring tools (XML) .. 17

3.3 Verifying connections ... 17

3.4 Course archive/restore/copy .. 18

3.5 Mapping VLE/LTI roles .. 18

4 Issues for Teachers/Students .. 18

4.1 Number of links per course ... 18

4.2 Pre-populating enrolments and groups .. 19

LTI: A Best Practice Guide | Introduction 3

4.3 Managing outcomes ... 19

4.4 Re-using content ... 19

4.5 Sharing content ... 20

4.6 Mapping VLE/LTI roles .. 20

4.7 “Dummy” users ... 20

5 Issues for Service Providers .. 21

5.1 Service level agreements .. 21

5.2 Upgrades ... 21

5.3 Backups ... 21

References .. 22

Case studies

Case Study 1 – WebPA launch requests ... 7
Case Study 2 – User scope in WordPress .. 9
Case Study 3 – Custom parameters supported by WebPA ... 13
Case Study 4 – Testing mode .. 18

Learning Tools Interoperability and LTI are registered trademarks of IMS Global Learning Consortium,
Inc. in the United States and/or other countries.

4 Introduction | LTI: A Best Practice Guide

1 Introduction
The Learning Tools Interoperability (LTI) specification was first released by the IMS Global Learning
Consortium as Basic LTI in May 2010 [IMS-A] (and is now referred to as LTI 1.0). Since that time it
has become well adopted as a simple but effective mechanism for integrating third party content
and products with virtual learning environments (VLEs). For example, it is now part of the core
product for all major VLEs, including Moodle, Blackboard Learn 9, Desire2Learn and Canvas from
Instructure.

The purpose of this document is to provide you with a detailed exploration of how LTI works and the
issues which arise so as to give you guidance on good practice, if not, best practice. The document
contains sections relating to all the main parties involved in delivering learning experiences to
students:

 developers;
 VLE administrators;
 teachers;
 service providers.

Please provide feedback based on your own experiences to help improve the quality of the
recommendations included here.

1.1 Terminology
We start with a bit of terminology to help make the descriptions which follow more precise. The LTI
specification uses the following terms:

 tool consumer - typically this refers to the VLE; it is the system which users are logged into
and from which they will be redirected to the external applications being integrated with it;

 tool provider - this is the web-based learning application or content delivery system which is
being integrated with the tool consumer;

 consumer key - this string value is generated by the tool provider to allow them to uniquely
identify the source of requests being received;

 shared secret - the communications between the tool provider and the tool consumer are
secured using a signature generated using the OAuth 1.0 protocol [OAuth-A] with the shared
secret (which should be known only to the tool provider and the tool consumer);

 context - tool consumers are typically organised into courses, with users being enrolled into
each course for which they are permitted to access; thus, in this case, the course is the
context from which users launch into tool providers;

 resource link - this is the actual link provided within a context which users follow to access
the tool provider; there may be multiple resource links to each tool provider within the same
context and across the whole tool consumer but each resource link is uniquely identified.

1.2 LTI Releases
This document provides guidance for both the tool consumer and the tool provider components of
an LTI 1 connection. At the time of writing, the following versions of LTI 1 have been released:

LTI: A Best Practice Guide | Issues for Developers 5

Version Release date
1 May 2010
1.1 March 2012
1.1.1 June 2012
1.2 Public draft
2.0 January 2014

LTI version 2 provides a more extensible framework for implementing learning application/content
integrations, but this document will focus essentially on LTI 1 because this is what is currently in use
and widely available. At the time of writing LTI 1.2 is in public draft and extends LTI 1 with some of
the features of LTI 2.0 (e.g. a tool consumer profile enabling discoverable services) thereby offering a
stepping stone for systems looking to move from LTI 1 to LTI 2. [IMS-A]

2 Issues for Developers
This section discusses issues relevant to those seeking to write an LTI tool provider application.

2.1 Anatomy of a launch request
The essence of LTI is the launch request. This is the mechanism used by a tool consumer to redirect
a user to a tool provider. The fundamentals of this process are:

 redirection is via the user's browser using an HTTP POST request;
 data is passed using POST data parameters with prescribed names;
 parameters may include data about the context and resource link from which the launch

request originates, the user making the request, and the role of the user within the context;
 the connection is secured by a timestamp, a nonce value and an OAuth signature.

A tool consumer will typically implement a launch by returning an HTML page to the user’s browser
consisting of a form containing all the launch parameters as hidden input elements. The form would
be submitted automatically by a JavaScript function run when the page is loaded or, if JavaScript is
not enabled, by the user clicking a submit button. In most cases, however, JavaScript is a
requirement for the tool consumer and so the launch process should be invisible and seamless to
the user.

2.2 Launch parameters
The names of supported parameters can be found in the LTI specification. [IMS-B, Sections 3, 4.2 and
6] The only required parameters are:

 lti_message_type
 lti_version
 resource_link_id

plus the following OAuth parameters:

 oauth_consumer_key
 oauth_signature_method
 oauth_timestamp

6 Issues for Developers | LTI: A Best Practice Guide

 oauth_nonce
 oauth_version
 oauth_signature
 oauth_callback

So, as you can see, a launch request can be extremely minimal and need not include any data about
the context, user or role. When a tool consumer or tool provider has been certified by IMS, some of
the parameters recommended by the specification will also be present. These additional demands
for certification are designed to enhance interoperability, whilst still allowing flexibility in the
specification.

2.3 Security
Launch requests are secured by the tool consumer to allow the tool provider to verify their
authenticity. The launch parameters include:

 oauth_consumer_key – the unique identifier for the tool consumer;
 oauth_timestamp – the current Unix epoch time from the tool consumer server;
 oauth_nonce – a unique value for the request;
 oauth_signature – a hash of the data included in the message generated using a shared

secret.

The consumer key is generated by the tool provider who should ensure that all the keys issued are
unique and are used only for a single tool consumer system. For example, separate keys should be
issued for development, test and production environments. The unique keys may be generated in
any manner; for example, based on the client’s domain name, or a random GUID.

The timestamp should be checked to ensure it is current (within a small margin of error from the
system time on the tool provider server). Any request received which re-uses a nonce value (from
the same tool consumer) within the permitted timestamp range should be rejected. The signature
should be re-generated by the tool provider using the shared secret and compared with the value
received. The shared secret should be a random string of a reasonable length to prevent it from
being easily guessed or recreated. It should be shared with the tool consumer in a secure manner so
as to maintain its privacy between the two parties.

These mechanisms ensure that the data in requests has not been changed in transit from the tool
consumer to the tool provider (which would otherwise be easy to do since the data is passed via the
user’s browser) and that the request is current and has not been received before. Refer to the
OAuth documentation for more details. [OAuth-A] In addition it is recommended that tool providers
deliver their services through connections using https to provide additional security of the data
being transmitted (which is not encrypted in the request).

2.4 Receiving a launch request
The endpoint URL provided to tool consumers for LTI launches will need to be a script which is
capable of processing the request. A typical script would perform the following actions:

LTI: A Best Practice Guide | Issues for Developers 7

1. Ensure all the required LTI parameters are present and have appropriate values: the
lti_message_type and lti_version should have their prescribed values, and the
resource_link_id and oauth_consumer_key parameters should not be empty.

2. Check that the request comes from a known tool consumer: look up the consumer key to
make sure a shared secret is recorded for it.

3. Verify the authenticity of the request: check the timestamp and nonce values, and generate
the OAuth signature from the HTTP request and check that it matches the signature value
received.

4. Ensure that any parameters which your system depends upon are present in the request:
remember that most of the LTI launch parameters are not required by the specification and
so whilst the launch request may be valid it may not provide sufficient data for your needs
but, wherever possible, such dependencies should be avoided (see below).

If you reach this point it means that you have a valid
launch request from a known customer with all the data
you require. Hence it is now safe to process the request
and provide access to the user. This may involve the
following actions:

1. Check if this is the first request from the resource
link; if so, create any work area, space or other
objects required for activity to take place for
launches from this link; if not, update the existing
objects with any values which have changed (e.g.
the name or description).

2. Check if this is the first request from the user; if
so, create any user account needed to enable
them to access your system; if not, update any
existing account with any details which have
changed (e.g. name or email address).

3. Ensure the user has the appropriate permissions
for accessing the resource link space; for an
existing user this may mean changing their
privileges if their role has changed.

4. Establish a login session for the user.
5. Redirect the user to an appropriate “home” page; this may depend upon the resource being

accessed and the user’s role.

The precise nature of these actions will depend upon the type of system which is being accessed.
Access to content, for example, may not require the creation of user accounts, but may only involve
associating the resource link ID with a content item by a user with an appropriate role (such as an
instructor). On the other hand, an application like WebPA® [WebPA] would provision a new
assessment and user as part of the launch request.

Case Study 1 – WebPA launch
requests

Required parameters:
resource_link_id, user_id, roles

Default parameter values generated
for: context_title,
resource_link_title,
lis_person_name_given,
lis_person_name_family

Launch process:

 create new module (or
update existing) based on
resource_link_id

 create new user account (or
update existing) based on
user_id

 ensure user account has a
type of either “Student” or
“Tutor” depending upon the
role(s) passed

8 Issues for Developers | LTI: A Best Practice Guide

2.5 Identity values
One of the most important tasks in developing an LTI integration is that of selecting appropriate
values by which each element can be identified within the tool provider application. The elements
which may require a unique identity are:

 contexts;
 resource links; and
 users.

In all cases, the unique ID for an element should be combined with the consumer key to ensure it is
unique across a tool provider application which may be connected to more than one tool consumer.

2.5.1 Contexts
In many cases the context from which a launch originated is of no interest to a tool provider – the
fact that two resource links are located in the same context does not mean that a user has
permissions to access both of these resources, the tool consumer may have additional access rules
in place which limit who can see specific links (for example, using the conditional access functionality
in Moodle to control whether an activity or resource can be accessed by individual users). Hence a
launch request should not be used to imply anything about a user’s access to any other resource
links, even within the same context. However, there may be occasions when the context is of
interest; for example, when gathering statistics for teachers. The context is uniquely identified by
the context_id parameter which has a status of “recommended” in the LTI specification.

2.5.2 Resource links
The resource_link_id parameter should be present on every launch and provides a unique ID for
the specific link within the tool consumer which was followed by the user. This value may be used to
associate the launch request with a resource/activity within the tool provider, either by using the
same ID or by implementing a one-to-one mapping between the tool consumer and tool provider
IDs.

2.5.3 Users
The user ID value can be as simple as that for a resource link, but this does depend upon how a tool
provider enforces the authorisation of users to access resources. An LTI launch request merely
indicates to a tool provider that the specified user has the ability to access the specified resource link
(with the specified role(s), if any). It makes no statement about the user’s authority to access any
other resources which may exist for the same tool consumer or context. Thus, when adding LTI
support to an application which allows a user to navigate between different resource instances,
there is a danger that this may allow an LTI user to use this navigation to access a resource other
than the one associated with the link they launched from. To mitigate against this risk it may be
appropriate to create user accounts with a different scope level:

a) Consumer: combine the consumer key with the user_id parameter;
b) Context: combine the consumer key with the context_id and user_id parameters;
c) Resource link: combine the consumer key with the resource_link_id and user_id

parameters.

LTI: A Best Practice Guide | Issues for Developers 9

The Consumer choice guarantees to provide you with a unique ID for each user within the tool
provider system. However, its use does mean that the tool provider will use the same user ID for
launches from all the resource links added in the tool consumers. Thus, there is a possibility that
users following one resource link, may be able to access content linked from another resource link,
thereby bypassing the authorisation process provided by the tool consumer through an LTI launch
request. For example, a student may have been unenrolled from a course in the VLE and, therefore,
no longer have access to the resource links in that course. If launching from another course allows
them to access the end points of these resource links, then the tool provider has effectively provided
a back door for users to access resources which they should have been disconnected from. Some
solutions to this problem may be available to you. For example, if you control the code for the tool
provider application, you can prevent users from switching to a different resource after a launch
(this is how the LTI connector for WebPA works). Alternatively, if the tool consumer supports the
unofficial memberships service [IMS-C], the list of users for each resource link can be updated on a
regular basis (e.g. nightly) so any impact will only be short-lived.

The Context choice is similar to the Consumer choice (see above) except that it implements an ID
value which is unique within a context (e.g. a course). If all resource links within a context are
always available to all users enrolled in that context, then there is no issue about providing a back
door method for accessing resources. However, if access to some resource links might be restricted
to a subset of the enrolled users (e.g. via a conditional release mechanism) then this choice could
also provide a way for users to bypass the authorisation implemented by the tool consumer (for
which similar solutions as discussed above could be implemented).

The Resource link option for creating user ID values is the closest fit to the expectations of the LTI
specification. A downside of implementing this choice is
that it means that a separate user account will be created
in the tool provider for every combination of user_id
and resource_link_id parameters (and for each
consumer key). Thus, if a course has 5 links to the tool
provider, a user following each of these links will have 5
separate user accounts created in the tool provider. But
if you do not have control over the tool provider code
then this is a sure way of preventing a user from
bypassing the authorisation implemented by the tool
consumer - each user will, by definition, only have access
to a single resource; accessing other resources must be
achieved via a separate user account (accessed by
launching from a different resource link in the tool
consumer).

So there are choices for how to implement a unique user ID when developing a tool provider LTI
integration and that choice will depend largely on the navigation features of the application and an
evaluation of the risks associated with users gaining access to other resources from a launch.
[ceLTIc-A] But, of course, the choice can be left to the system administrator so that it can be
selected to match the needs of a particular tool consumer, as was the case with the LTI connector
written for WordPress. [SPVSP-A]

A case could be made for each of the
different user scopes in WordPress, so
rather than selecting one at random,
the administrator is given four choices
when configuring a new tool
consumer. The selected option is
used as a prefix to the generated
consumer key:

 WP1 – resource
 WP2 – context
 WP3 – consumer
 WP4 – global

Case Study 2 – User scope in
WordPress

10 Issues for Developers | LTI: A Best Practice Guide

2.5.4 Matching IDs with pre-provisioned data
There are times when a tool provider may already be populated with data related to a tool
consumer; for example, course and/or user data. In these situations, there may also be a desire to
relate this data with the values received on LTI launch requests. The problem here is that the
context_id and user_id parameters are deliberately intended to be opaque by the LTI
specification and are often represented by values such as database keys from the VLE. It is,
therefore, unlikely that such values would match with any pre-provisioned data which has more
likely originated from a different system, such as a student information/record system (SIS). The
best suggestions to offer here are:

a) check whether the tool consumer has any choices over what values are used to populate the
context_id and user_id parameters passed on each launch (in case an alternative choice
can be matched with existing data);

b) if supported by the tool consumer, the values of the lis_course_section_sourcedid
and lis_person_sourcedid parameters may provide better matches;

c) LTI 1.2+ includes a custom parameter substitution variable for a user’s login ID
(User.username) as a way of helping to alleviate this situation; the course ID could be
entered as a fixed custom parameter value for each launch link created. [IMS-D, Appendix
C.1]

There may be a temptation to try matching users on names or email addresses, but this is fraught
with problems. The values are not guaranteed to be unique or fixed within the tool consumer, and
they may even be editable by the user themselves and so cannot be trusted to be valid. For a user
ID, there is an option of prompting the user when they first connect to enter their pre-provisioned
credentials so that they can be associated with their LTI identity in the future. Of course, if the
matching of user IDs is designed to permit users to access the tool provider via their tool consumer
or by logging in directly, then there is the same authorisation issue as described above when opting
to use only the user_id parameter as the unique ID: users may be given access to resources which
they can no longer access via the tool consumer.

2.5.5 LTI and SSO
This issue follows on from the wish to match LTI parameter values with pre-provisioned data. In this
case the problem is more specific: is there some way in which a user launching via LTI can be
associated with an SSO user account? The use case here is to allow a user to log into both the tool
consumer and the tool provider using the same identity provider and be able to access the same
resources (notwithstanding that the authorisation issue discussed above remains). A solution for
this has been proposed by IMS [IMS-E], though no known implementation currently exists. Its
elegance lies in its simplicity. On the assumption that both parties have trust relationships with the
same identity provider, the LTI launch is extended to include two additional parameters: the type of
SSO used to authenticate the user (e.g. CAS, CoSign, Shibboleth) and the URL of the identity
provider. After validating the launch, the tool provider redirects the user to a script protected by the
same identity provider. Since the user has already been authenticated, they will fall through this
redirection and the tool provider now has access to their SSO identity (e.g. through the
REMOTE_USER environment variable). The SSO identity can be recorded against the user’s LTI
identity so that when the user next logs in directly their LTI identity can be looked up and access
given to any resources associated with this account.

LTI: A Best Practice Guide | Issues for Developers 11

2.6 Roles
When the roles parameter is included in the launch it specifies one or more roles the user has in
respect of the resource link. The roles may be taken from the standard vocabularies listed in the LTI
specification [IMS-B, Appendix A]; they may also include vendor-specific roles, though these should
always be in the form of a full URI.

The most common roles a tool provider can expect to receive are:

 Instructor;
 TeachingAssistant;
 Learner.

Some tool consumers may also support roles of:

 ContentDeveloper;
 Administrator.

A tool provider has the tricky task of mapping the different roles which may be passed by different
tool consumers onto its own set of supported roles. Some tool providers may not distinguish
between different roles, in which case this area is a non-issue. Where roles are essentially divided
between teachers and students, then the Learner role fits well with the latter, whilst the others
could be accepted as the former. When a tool provider supports a wider range of roles there can be
issues if a similar range is not mirrored in the tool consumer. For example, whilst a VLE may have
separate roles for content developers (course builders) and instructors, they may also allow these
roles to be held by the same user and, therefore, a tool provider must be able to deliver the
functionality relating to both roles in a unified interface. Wherever, possible it makes sense for roles
to be dichotomous, especially as different tool consumers may support different roles, so reliance on
a specific role is not advised. Most tool consumer implementations of LTI hard-code the mapping
between the internal role and the LTI role so the VLE administrator or teacher has little control over
the roles which are passed. Only the open source PowerLink for WebCT [SPVSP-B] and the open
source building block for Blackboard Learn 9 [SPVSP-C] are known to offer some flexibility in this
respect and allow the mapping to be specified on a tool-by-tool basis, thereby allowing them to
match the association deemed appropriate to the institution’s needs; for example, giving teaching
assistants a role in the tool provider which fits with the way in which this role is being used in the
VLE. Without such mapping being generally available within tool consumers, any tool provider
offering a rich set of roles is well advised to implement a mapping option which can be configured
for each tool consumer, either by the tool provider administrator or perhaps by a user having an LTI
role of system administrator.

If a user has multiple roles, it is important to check that none of these conflict; that is, when received
individually might lead to a different role being assigned to the user. If they do, then a deliberate
choice should be made as to which role is to be assigned (assuming that only one role per user is
permitted). For example, if a user has both a role of Learner and Instructor (which has been seen in
a real launch request from a tool consumer), then the lowest level of privilege is given (Learner).
However, this is an arbitrary choice, and the user could equally be given the highest level of
privilege. Since the tool consumer is a trusted source of data, there is no clear basis on which to

12 Issues for Developers | LTI: A Best Practice Guide

make either choice where the roles received are inconsistent with those supported within the tool
provider.

One final issue to be aware of is that roles may be passed from different vocabularies; for example
system, institution and context. Most launch requests are made from within a CourseSection and
hence most roles received are expected to come from the context vocabulary. However, there are
instances where launch requests can be made from outside a CourseSection [ceLTIc-B] [ceLTIc-C] and
so an appropriate response to these requests should be implemented. Similarly, a user launching
from within a CourseSection, may have a relevant role from a different vocabulary; the most relevant
example being a system administrator. A tool provider may offer an interface to the system
administrator from the tool consumer, but it may not be the case that such a user is able to perform
a launch request or, if they can, that their role will be passed. In fact there are several possible
administrator roles which could conceivable be relevant here; for example:

 urn:lti:sysrole:ims/lis/SysAdmin
 urn:lti:sysrole:ims/lis/SysSupport
 urn:lti:sysrole:ims/lis/Administrator
 urn:lti:instrole:ims/lis/Administrator
 urn:lti:role:ims/lis/Administrator
 urn:lti:role:ims/lis/Administrator/Support
 urn:lti:role:ims/lis/Administrator/SystemAdministrator

The key here is probably to check for any or all of these so that whichever a tool consumer might
send is recognised.

There is scope in this area for tool consumers to be more explicit about the LTI roles they support
and the mapping used from their internal roles. This would allow tool providers to make more
informed choices as to how to respond to roles received in each tool consumer launch.

2.7 CSS
The release of LTI 1.1 introduced a new launch parameter named
launch_presentation_css_url. This allows a tool consumer to pass the URL of a local CSS file.
It does not, as yet, appear to have been widely implemented. There is also potential confusion as to
whether it should be a URL to the CSS file for the tool consumer, or a URL to a tool-specific CSS file to
apply when the tool provider is launched from that tool consumer. A CSS file is most useful if it
overrides style names used by the tool provider to customise the appearance of the application and
make it better fit within the local environment. A CSS file consisting of the styles adopted by the tool
consumer would be problematic for a tool provider to apply in a simple and meaningful way.
However, the LTI connector for WebPA and the open source building block for Blackboard Learn 9
are the only known implementations which support a tool-specific CSS URL. [SPVSP-D]

LTI: A Best Practice Guide | Issues for Developers 13

2.8 Override interface
As well as using CSS to change the behaviour of a tool provider,
other parameters may also be used to help tailor an interface
to fit specific tool consumers. The following parameters about
the tool consumer may be provided on a launch:

 tool_consumer_instance_guid
 tool_consumer_instance_name
 tool_consumer_instance_description
 tool_consumer_instance_url
 tool_consumer_instance_contact_email
 tool_consumer_info_product_family_code
 tool_consumer_info_version

The last two were added in LTI 1.1 and provide the most convenient mechanism for identifying the
type of tool consumer from which a launch request has originated. For example, if the value of the
tool_consumer_info_product_family_code parameter is “Blackboard Learn” or “learn”
then the launch has come from Blackboard Learn 9, using either the core functionality or the open
source building block, respectively. This would allow a tool provider to offer a different experience
for Learn 9 users, which may be especially relevant when being opened within a frame or iframe.

It is also possible, though perhaps less likely, to customise the tool provider experience for a specific
tool consumer (rather than a family, or brand, of tool consumers). The
tool_consumer_instance_guid parameter should provide a unique ID for a tool consumer and
can be used for this purpose, if required.

2.9 Branding
By using LTI a tool provider can easily offer a multi-tenanted service from a single instance of the
application. However, though the use of custom launch parameters, it can be possible to provide
some branding of this service for individual tool consumers. For example, these may be to provide
an alternative logo, title, contact email address, URL for help, etc. They may also be used as an
alternative means of passing values which are not consistently supported by all tool consumers; for
example, the LTI connector for WebPA accepts a tool-specific CSS file URL in a custom parameter
named css. [SPVSP-D]

2.10 Course archive/restore/copy
LTI 1 does not provide a standard mechanism for a tool provider to distinguish between a launch
request coming from a brand new resource link and one coming from a link which has been
generated by making a copy of an existing one. In some cases this may not be important, but some
tool providers may wish to offer teachers the option to also duplicate the content from the existing
link. One workaround to this situation is to include a custom parameter in the launch request with a
value which can be matched against the resource_link_id parameter on launch; if the value
matches against a different resource_link_id then this would suggest that the launch comes
from a copy. Such a solution involves some action on the part of the teacher, unless the resource
link is created using the Content-item message process [IMS-F] in which case the tool provider could

 logo
 logo_width
 logo_height
 name
 css
 email_help
 email_noreply
 return_menu_text

Case Study 3 – Custom
parameters supported by

WebPA

14 Issues for Developers | LTI: A Best Practice Guide

automatically add the custom parameter required to record its local reference to the
resource/content.

An alternative solution being discussed with the IMS community is to recommend an additional
parameter to launch requests which provides a history of the resource link as a list of any previous
resource link IDs from which it has been copied. This parameter may have a name of
ext_copy_of_resource_link_id; each ID would be separated by a comma with the most recent
copy first. But, at the time of writing, this is just a topic for discussion with no known
implementations.

2.11 Class libraries
Most of the verification of the authenticity of a launch request can be handled by an OAuth library
which is available for most programming languages.[OAuth-B] For example, a method to verify a
request in Java can be as simple as the following (using the BLTI Sandwich sample code [BLTIS]):

public static boolean isValid(String key, String secret) {
try {
SimpleOAuthValidator simpleoauthvalidator = new

SimpleOAuthValidator();
OAuthConsumer oauthconsumer = new OAuthConsumer("about:blank",

key, secret, null);
simpleoauthvalidator.validateMessage(bltimessage.getOAuthMessage(),

new OAuthAccessor(oauthconsumer));
} catch (Exception exception) {
return false;

}
return true;

}

However, this is just part of the processing of a launch request; other standard tasks include:

 verifying that the request complies with the LTI specification;
 ensure all the parameters required for the tool provider application are included;
 assemble the user, context and resource link data supplied in useful objects; this might

include generating default values for missing parameters and assembling values based on
how they were sent (such as the user’s name which might be passed as separate given and
family names, or as a full name, or as both);

 redirecting a user when an error arises with the launch.

Rather than writing your own library to handle this process, why not consider using one which is
already available? For example, the ceLTIc project has produced LTI Tool Provider class libraries for
PHP [SPVSP-E] and Java [SPVSP-F]. Using and contributing to such open source libraries has the
following additional benefits:

 keeps application code separate from the details of the LTI specification;
 simplified validation of launch parameters;
 simpler to support any changes in the LTI specification;
 should help to ensure that applications will pass IMS certification tests;
 support included for LTI services (including unofficial extensions with automatic use of

whichever service is supported by the tool consumer where alternatives are available);

LTI: A Best Practice Guide | Issues for Developers 15

In addition, a class library may provide additional functionality to support typical workflows involved
in building tool providers. For example, the ceLTIc class libraries include functionality for:

 enabling resource links to be automatically mapped onto a single ID so that users can
collaborate in a single space (these resource links may be from the same tool consumer or
from different ones);

 allowing consumer keys to be easily enabled or disabled;
 setting start and end times for the validity of a consumer key.

The last of these additions has been used by the ceLTIc project to automate the process of
generating credentials (consumer key and shared secrets) on demand for trial/demonstration
purposes which automatically expire. [ceLTIc-D]

2.12 Browser issues
LTI is susceptible to all the issues surrounding web-based applications; this section raises some of
those most likely to be encountered when using LTI, most relate to using frames or iframes.

2.12.1 Third-party cookies
It is highly likely that the tool consumer and tool provider will be served from different domains and
this can be problematic when they are mixed on the same page using a frame or an iframe. This is
because tool providers will typically use sessions to remember the state of a user’s interaction and
this session is identified via a cookie in the HTTP request headers. However, different browsers have
different rules and default settings for allowing cookies from different domains (third party cookies)
within the same page. If a browser has been set to reject third party cookies, then the session
cookie for a tool provider opened in a frame or iframe will not be saved and so the login will fail.
Internet Explorer (IE) implements a slightly more complicated solution. By default, for domains in
the Internet Zone, IE “blocks third-party cookies that save information that can be used to contact
you without your explicit consent”. It determines whether a cookie contains personally identifiable
information by consulting a policy written using the Platform for Privacy Preferences Project (P3P)
protocol. Where appropriate, adding the P3P policy files to the tool provider server and including a
P3P header in HTTP response headers can help alleviate this issue. [ceLTIc-E]

Of course, to completely avoid the problem, ensure that a tool provider is opened in a new window
(or tab)! Although it is also quite possible for a tool provider to reside on the same server as the tool
consumer, again avoiding any cross-domain issues. [ceLTIc-F]

2.12.2 Internet Explorer zones
Internet Explorer (IE) divides the world into Internet, Local Intranet, Trusted Zones, and Restricted
Sites. For the majority of users using their own machines most (or all) of the pages they access via IE
will be in the Internet zone. However, issues can arise when the contents of a frame (or iframe) are
delivered from a server which is in a different zone from the page itself. When this occurs, for
example, with WebPA, attempts to download XML reports fail because IE receives the response from
WebPA but re-sends the request but without the session cookie header and so it is declined by the
WebPA server. This issue only arises when the two servers are in different IE zones.

16 Issues for System Administrators | LTI: A Best Practice Guide

2.12.3 Support for frames/iframes
There is no requirement in LTI for a tool provider to deliver its content within a frame (or iframe). It
may, for example, not make sense given the nature of the application and its UI. The recommended
launch_presentation_document_target launch parameter should identify where the content
requested is to be displayed. A launch request could be rejected (with an appropriate message) if an
attempt is made to open the tool provider in a frame; this should be simple for the teacher (or
system administrator) to resolve by merely altering the launch settings to select the “new window”
option. Alternatively, a tool provider might choose to override the choice by using JavaScript to
detect that a launch is occurring within a frame and force the page to be displayed within a new
window (or tab). In this case an appropriate message should be displayed within the frame or, if a
return URL has been supplied, the frame could be redirected to this URL with a message informing
the user that the content should be available in a separate window. Which solution to choose is
fairly arbitrary, though the former could be preferred on the basis that it does not usurp the request
made by the tool consumer.

Of course, if the parameter is not provided on launch then a JavaScript solution is the only option
and it could be seen as being more acceptable to force the display into a new window since the tool
consumer failed to note a preference!

3 Issues for System Administrators
This section discusses issues relevant to system administrators for tool consumers seeking to make
LTI tool providers available to their users.

3.1 Tool requirements
The addition of an LTI-based tool to a VLE should involve the same type of due diligence process as
for any other learning application. This includes:

 checking that its functionality meets needs and is compatible with existing infrastructure;
 agreeing the SLA, licence agreement and any licence fee;
 ensuring it complies with policies such as data privacy.

In order to properly assess the last of these, a system administrator needs to know what data is
being passed between the VLE (tool consumer) and the tool. The LTI specification has no required
parameters involving personal data, but does support the sharing of user IDs, names, email
addresses and roles, as well as data about the link and course from which the launch originated. The
tool consumer should have options to turn on and off the passing of such data, but it may not be
easy to determine which parameters are required for the successful use of the tool provider, or
when the inclusion of a particular parameter may provide enhanced functionality to users. It would
be very helpful if the documentation provided by tool providers included the following to assist
system administrators in knowing how to configure the link and understand the consequences of
their use:

 which launch parameters not required by the LTI specification are required for a successful
launch;

 which launch parameters are not required, but their presence gives enhanced functionality
to users;

LTI: A Best Practice Guide | Issues for System Administrators 17

 which LTI roles are supported and what privileges are given to users with each role (this is
particularly important if the TeachingAssistant role is supported as it is the one which is
most likely to vary in level of privilege given to it by different institutions).

If such information is not readily available, then the best approach would be to start by turning off
all the available options for passing context/resource/user data and only turn them on if a launch
request fails or to improve the user experience.

3.2 Configuring tools (XML)
The LTI specification does provide a mechanism for defining a connection to a tool provider using
XML and some tool consumer implementations provide this option within their UI (e.g. the open
source LTI building block for Blackboard Learn 9 and Canvas by Instructure). This XML can be used to
specify:

 title;
 description;
 launch URL (including an optional URL for secure connections);
 custom parameters;
 URL for an icon (including an optional URL for secure connections);
 details about the vendor: code, name description, URL, contact email address.

In addition to these details extension sections may be defined for settings specific to individual
platforms. For example, an extensions section with a platform name of “learn” is used by the open
source LTI building block to enable all the configuration settings to be specified in the XML (e.g.
which parameters should be passed, which value to use for a context ID, etc.). [ceLTIc-G] It can,
therefore, make it very convenient for customers to be supplied with an XML description of tool
providers (or a URL to such an XML file) and can reduce problems with transcription errors.
However, not all tool consumers adopt the format provided in the LTI specification; for example,
Canvas expects XML with a root node named cartridge_basiclti_link rather than
basic_lti_link. In addition the XML used by Canvas fails to validate because elements are not in
the correct order, a new element (options) is introduced, and a required element (vendor) is
omitted. Hence it is not possible, at present, for a single version of an XML description of a tool
provider to be defined for use with any tool consumer. So be prepared to request a specific
variation for your own needs or edit the XML provided.

3.3 Verifying connections
After configuring a new LTI tool, it is good practice to verify that it works. There is no mechanism in
the specification for assisting with this; it is normally a matter of adding the tool to a course and
trying a launch. Some tool consumer implementations may provide a launch option from the tool
configuration page to make this easier. The main purpose of the test at this point is to verify the
URL, key and secret used to configure the tool; if any of these items is entered incorrectly any
attempt to launch the tool should fail. (Note that LTI 2 should overcome this issue as the
configuration of tools is undertaken as a negotiation between the tool provider and tool consumer
servers, without the risk of human error in entering launch parameters.) However, a failed launch
request may also occur if:

18 Issues for Teachers/Students | LTI: A Best Practice Guide

 the tool provider has not yet set up the details on their system;
 the consumer key has not been enabled by the tool provider;
 the consumer key is only valid for a specific time

period and the current time is not within that
period;

 the launch request does not include sufficient
data to support the requirements of the tool
provider;

 the length of a parameter exceeds the tool
provider’s acceptable limit.

Hopefully, the tool provider returns a detailed reason for
any errors which arise as a log entry for the tool
consumer, or has an option to display such messages as part of a “testing mode”.

3.4 Course archive/restore/copy
When a course containing a link to an LTI tool is copied, for example, the link in the new course will
have a different value for the resource_link_id parameter when launched. This means that a
tool provider will see this as a launch from a new link but without appreciating that it originated
from an existing link so that, for example, an option to duplicate the content from the original link
could be offered. Tool providers may have a mechanism in place for trying to handle this situation,
but system administrators should be aware the any archive/restore or copy actions which take place
on the tool consumer system, are not automatically replicated by tool providers and so some
manual intervention may be required. This is an important aspect to test when investigating new
tool providers.

3.5 Mapping VLE/LTI roles
LTI uses the LIS [IMS-G] vocabulary for user roles. These are likely to be different from those
available within a course so a tool consumer will implement some form of mapping from course
roles to LTI roles. This mapping need not be on a one-to-one basis, though typically it is. The
mapping may be a static implementation applied to all LTI launches for all tool providers, or it may
be configurable for each tool provider or even each resource link. The key for a system
administrator is to ensure that, as far as they are able, users are given an LTI role appropriate to the
tool provider and their course role. If the mapping is static and cannot be altered, then a review of
the tool provider to ensure that users are given sufficient privileges within the tool provider and not
given privileges which are not appropriate to their course role.

4 Issues for Teachers/Students
This section discusses issues relevant to teachers and students seeking to use LTI tool providers as
part of their on-line courses.

4.1 Number of links per course
Typically a link to a tool provider is added to a content area of a course within a tool consumer in a
similar way to adding any other form of content. There is no reason for teachers and students to
know that a link is actually connecting them to externally-served content; it should form just another

Case Study 4 – Testing mode

Any tool providers built using
the PHP or Java LTI Tool
Provider class libraries support
a custom parameter of
“debug=true” which causes
more detailed error messages
to be returned on failed launch
requests.

LTI: A Best Practice Guide | Issues for Teachers/Students 19

part of a seamless on-line course environment. Whilst the behaviour of following each link is
dependent upon the implementation by the tool provider, the normal expectation is that they would
act as unique connections to separate resources/activities. Thus, for example, if the tool provider is
a quizzing application, adding a new link should add a new quiz to the course. The consumer key
and resource link ID passed when a link is launched allow the tool provider to keep each link
separate from others added to the same course, in other courses in the same tool consumer, and
from those added to any other tool consumer around the globe.

4.2 Pre-populating enrolments and groups
Since the details about the user can be securely passed when they click the link, the tool provider is
able to create/update any user accounts required at its end at the time of the launch request. Thus,
there is no need for the external system to be pre-provisioned with users; they can be added “on-
the-fly”. LTI does not, however, provide a mechanism for sharing group memberships defined
within the tool consumer. The closest solution is an extension to the unofficial memberships service
which includes group information; this has been used for WebPA which, as a peer assessment tool,
requires a teacher to have details of all the students so that assessments can be created and each
student assigned to a group. [ceLTIc-H]

4.3 Managing outcomes
Many tool providers involve assessable activities and use the Outcomes service to return a grade to
the column in the tool consumer’s gradebook associated with the link added to a course. Only grade
values between 0 and 1 (inclusive) can be passed, but most gradebooks would display this value as a
percentage. In some cases teachers (or administrators) have the option to specify the number of
points possible so that the grade can be displayed as a score. For example, with a points possible of
60, when a grade of 0.7 is returned it would be displayed to users as 42.

Grades may be returned from a tool provider as a result of an action by the student, or by the
teacher, or as part of an automated (possibly regular) process. Once a student has launched a link
their cell in the associated gradebook column falls under the control of the tool provider and can be
updated at its discretion.

Whilst the LTI specification requires that a grade be transmitted as a value between 0 and 1, it need
not represent a score. Some tool providers may associate the values with other meanings. For
example, 0 may represent that a student has started an activity with 1 representing completion. The
sample Ratings application uses the grade to represent the proportion of the items available which
have been rated by the student. [ceLTIc-I]

4.4 Re-using content
Each launch link added to a course is identified by a unique ID. A tool provider will typically use this
ID to associate the link with an activity/resource/work space. If a link in a course is copied the copy
will have a different ID and hence the association made by the tool provider will be lost. However,
some tool providers encapsulate the association within the launch URL (which would, therefore, be
unique for each link) or as a custom parameter, in which cases the connection need not be lost by
being copied.

20 Issues for Teachers/Students | LTI: A Best Practice Guide

4.5 Sharing content
With each link having a unique ID, a tool provider will normally treat them as entirely separate
connections. However, there are situations where It could be beneficial for more than one link to be
associated with the same activity; for example:

 in order to allow multiple entry points from within a course;
 when an activity involves students from different courses or different tool consumers, even

different institutions.

There is nothing specifically within the LTI specification to enable such scenarios, but tool providers
may provide a mechanism for doing so, such as a custom parameter. Such functionality has been
incorporated into the open source PHP and Java class libraries which will automatically allow
additional links to appear to the tool provider as if they have been launched from a primary link.
[ceLTIc-J] Check the documentation for the tool provider to see if this functionality is available, as is
the case for the LTI connectors for WordPress [SPVSP-A] and WebPA [SPVSP-D].

4.6 Mapping VLE/LTI roles
Most tool consumers allow users to be given a variety of roles within a course, such as:

 course administrator;
 course builder;
 instructor;
 teaching assistant;
 learner;
 guest.

A tool provider may not support such a rich set of roles or, if it does, may not have the same view of
the importance of the roles. In particular, a teaching assistant role can vary widely between
institutions in terms of the level of responsibility and access they are given to courses. Some tool
consumers provide a mechanism for mapping course roles onto LTI roles but, otherwise, the tool
provider may allow some control over roles and permissions via a configuration page available to
instructors (or administrators). However, in many cases only roles of instructor and learner are
supported so there may be issues as to whether course builders, teaching assistants and guests are
given the desired level of access.

4.7 “Dummy” users
Many VLEs offer users the ability to view the system as if they had a different role; commonly this is
used to allow a teacher to preview their course as a student would see it. If the teacher takes a test
in this mode, the VLE may be clever enough to also exclude their marks when generating class
statistics. At least in some implementations, this is achieved by generating a new user account
which is used during this time.

So what does this mean for LTI connections added to a course. Well, the first thing is that there are
no known implementations which actually inform the tool provider that the user who has performed
the launch is not a real account. This means that tool providers cannot distinguish their activity from
that of real users, hence this may distort the class numbers and statistics. It may also be the case
that the user_id parameter is not changed, but merely the user’s role will have changed from

LTI: A Best Practice Guide | Issues for Service Providers 21

Instructor to Learner, for example. A tool provider always needs to be vigilant for users changing
roles, but in cases like this the change is merely temporary and short-lived. There are, however,
some VLEs which do use a different ID for these “dummy” user accounts, however, in the case of
Blackboard Learn 9, their recommended practice is for a new account to be created every time the
teacher selected the student preview mode. In this case, the number of “dummy” user accounts
received by a tool provider could be quite large.

As a teacher, you should be aware that your preview account will not be recognised as such by a tool
provider. If this has a side effect on class statistics or licence fees, then it may be advisable to avoid
launching LTI connections when using this feature.

5 Issues for Service Providers
This section discusses issues relevant to hosting providers seeking to deliver a service using a tool
provider application.

5.1 Service level agreements
One of the benefits of LTI is that is enables applications to be shared across multiple tool consumers.
These may belong to the same institution, or be servicing institutions from across the globe. A
consequence of this is that, as the service provider, it makes it difficult to predict service levels when
the load from other customers can impact the quality of service being delivered. It may take
experience of the application and infrastructure which can quickly adapt to changing loads to ensure
that customers are satisfied.

5.2 Upgrades
Whilst running a single instance of an application for multiple customers has efficiency gains in terms
of maintenance and support, it would normally also mean that every customer must use the same
version. Moreover, any move to a new version will be at the same time for all users. Whilst it might
be technically possible to build an application such that a single server could continue to run
multiple versions, with each customer upgrading independently, the cost of doing so may outweigh
the savings of using a multi-tenanted environment and no examples of such an approach are known.
In fact, products like Canvas show that institutions are willing to accept cloud-based solutions and
have the upgrade cycle dictated to them by the supplier.

5.3 Backups
Since a single instance of the application may be supporting multiple customers, a backup of the
application (source code and database) will not easily enable an individual customer to have their
state restored to a particular point in time. Nor is it straightforward to provide a customer with a
backup to access separately; for example, for performing analytics or when moving to a different
service provider. In this case, tool providers should consider implementing import and export
functionality for individual tool consumers; this could even be made available to anyone launching
with the System Administrator role.

22 Issues for Service Providers | LTI: A Best Practice Guide

References
[BLTIS] George Kroner, BLTI Sandwich, http://projects.oscelot.org/gf/project/blti-sandwich/

[ceLTIc-A] ceLTIc Project, WordPress and user scope, March 2013, http://www.celtic-
project.org/Project_blog/2013/03/WordPress_and_user_scope

[ceLTIc-B] ceLTIc Project, Extending LTI functionality in Learn 9, September 2012,
http://www.celtic-project.org/Project_blog/2012/09/Extending_LTI_functionality_in

[ceLTIc-C] ceLTIc Project, WebPA dashboard, September 2012, http://www.celtic-
project.org/Project_blog/2012/09/WebPA_dashboard

[ceLTIc-D] ceLTIc Project, Evaluating apps: the quick way with LTI, April 2013,
http://www.celtic-
project.org/Project_blog/2013/04/Evaluating_apps_the_quick_way

[ceLTIc-E] ceLTIc Project, A Learning Experience – P3P and Cookie Blocking, November 2012,
http://www.celtic-
project.org/Project_blog/2012/11/A_Learning_Experience_P3P_and

[ceLTIc-F] ceLTIc Project, Parasitic tool providers, January 2013, http://www.celtic-
project.org/Project_blog/2013/01/Parasitic_tool_providers

[ceLTIc-G] ceLTIc Project, Using an XML tool descriptor, January 2013, http://www.celtic-
project.org/Project_blog/2013/01/Using_an_XML_tool_descriptor

[ceLTIc-H] ceLTIc Project, Synchronising group data, December 2012, http://www.celtic-
project.org/Project_blog/2012/12/Synchronising_group_data

[ceLTIc-I] ceLTIc Project, Rating with Outcomes, June 2013, http://www.celtic-
project.org/Project_blog/2013/06/Ratings_with_Outcomes

[ceLTIc-J] ceLTIc Project, Using LTI to enable collaboration, November 2011,
http://www.celtic-project.org/Project_blog/2011/11/Using_LTI_to_enable

[IMS-A] IMS Global Learning Consortium, Learning Tools Interoperability,
http://www.imsglobal.org/lti/

[IMS-B] IMS Global Learning Consortium, Learning Tools Interoperability Implementation
Guide, Final Version 1.1.1, http://www.imsglobal.org/LTI/v1p1p1/ltiIMGv1p1p1.html

[IMS-C] IMS Global Learning Consortium, Context memberships service,
http://developers.imsglobal.org/ext_membership.html

[IMS-D] IMS Global Learning Consortium, Learning Tools Interoperability Implementation
Guide, Public Draft Version 1.2,
http://www.imsglobal.org/lti/ltiv1p2pd/ltiIMGv1p2pd.html

http://projects.oscelot.org/gf/project/blti-sandwich/
http://www.celtic-project.org/Project_blog/2013/03/WordPress_and_user_scope
http://www.celtic-project.org/Project_blog/2013/03/WordPress_and_user_scope
http://www.celtic-project.org/Project_blog/2012/09/Extending_LTI_functionality_in/
http://www.celtic-project.org/Project_blog/2012/09/WebPA_dashboard/
http://www.celtic-project.org/Project_blog/2012/09/WebPA_dashboard/
http://www.celtic-project.org/Project_blog/2013/04/Evaluating_apps_the_quick_way
http://www.celtic-project.org/Project_blog/2013/04/Evaluating_apps_the_quick_way
http://www.celtic-project.org/Project_blog/2012/11/A_Learning_Experience_P3P_and
http://www.celtic-project.org/Project_blog/2012/11/A_Learning_Experience_P3P_and
http://www.celtic-project.org/Project_blog/2013/01/Parasitic_tool_providers
http://www.celtic-project.org/Project_blog/2013/01/Parasitic_tool_providers
http://www.celtic-project.org/Project_blog/2013/01/Using_an_XML_tool_descriptor
http://www.celtic-project.org/Project_blog/2013/01/Using_an_XML_tool_descriptor
http://www.celtic-project.org/Project_blog/2012/12/Synchronising_group_data
http://www.celtic-project.org/Project_blog/2012/12/Synchronising_group_data
http://www.celtic-project.org/Project_blog/2013/06/Ratings_with_Outcomes
http://www.celtic-project.org/Project_blog/2013/06/Ratings_with_Outcomes
http://www.celtic-project.org/Project_blog/2011/11/Using_LTI_to_enable
http://www.imsglobal.org/lti/
http://www.imsglobal.org/LTI/v1p1p1/ltiIMGv1p1p1.html
http://developers.imsglobal.org/ext_membership.html
http://www.imsglobal.org/lti/ltiv1p2pd/ltiIMGv1p2pd.html

LTI: A Best Practice Guide | Issues for Service Providers 23

[IMS-E] Charles Severance and Stephen P Vickers, IMS Global Learning Consortium, LTI,
SAML, and Federated ID – Oh My!, http://developers.imsglobal.org/LI2012-lti-
saml.pdf

[IMS-F] IMS Global Learning Consortium, Content-Item Message,
http://www.imsglobal.org/lti/ltiv1p2pd/ltiCIMv1p0pd.html

[IMS-G] IMS Global Learning Consortium, Learning Information Services,
http://www.imsglobal.org/lis/

[OAuth-A] IETF, OAuth 1.0 Protocol, http://tools.ietf.org/html/rfc5849

[OAuth-B] OAuth, Code, http://oauth.net/code/

[SPVSP-A] SPV Software Products, LTI Connector for WordPress,
http://www.spvsoftwareproducts.com/php/wordpress-lti/

[SPVSP-B] SPV Software Products, BasicLTI PowerLink,
http://www.spvsoftwareproducts.com/powerlinks/basiclti/

[SPVSP-C] SPV Software Products, BasicLTI Building Block,
http://www.spvsoftwareproducts.com/bb/basiclti/

[SPVSP-D] SPV Software Products, LTI Connector for WebPA 2,
http://www.spvsoftwareproducts.com/php/webpa-lti/

[SPVSP-E] SPV Software Products, PHP LTI Tool Provider class,
http://www.spvsoftwareproducts.com/php/lti_tool_provider/

[SPVSP-F] SPV Software Products, Java LTI Tool Provider package,
http://www.spvsoftwareproducts.com/java/lti_tool_provider/

[WebPA] Centre for Engineering and Design Education, Loughborough University, WebPA (on-
line peer assessment tool), http://webpaproject.lboro.ac.uk/

http://developers.imsglobal.org/LI2012-lti-saml.pdf
http://developers.imsglobal.org/LI2012-lti-saml.pdf
http://www.imsglobal.org/lti/ltiv1p2pd/ltiCIMv1p0pd.html
http://www.imsglobal.org/lis/
http://tools.ietf.org/html/rfc5849
http://oauth.net/code/
http://www.spvsoftwareproducts.com/php/wordpress-lti/
http://www.spvsoftwareproducts.com/powerlinks/basiclti/
http://www.spvsoftwareproducts.com/bb/basiclti/
http://www.spvsoftwareproducts.com/php/webpa-lti/
http://www.spvsoftwareproducts.com/php/lti_tool_provider/
http://www.spvsoftwareproducts.com/java/lti_tool_provider/
http://webpaproject.lboro.ac.uk/

	Contents
	1 Introduction
	1.1 Terminology
	1.2 LTI Releases

	2 Issues for Developers
	2.1 Anatomy of a launch request
	2.2 Launch parameters
	2.3 Security
	2.4 Receiving a launch request
	2.5 Identity values
	2.5.1 Contexts
	2.5.2 Resource links
	2.5.3 Users
	2.5.4 Matching IDs with pre-provisioned data
	2.5.5 LTI and SSO

	2.6 Roles
	2.7 CSS
	2.8 Override interface
	2.9 Branding
	2.10 Course archive/restore/copy
	2.11 Class libraries
	2.12 Browser issues
	2.12.1 Third-party cookies
	2.12.2 Internet Explorer zones
	2.12.3 Support for frames/iframes

	3 Issues for System Administrators
	3.1 Tool requirements
	3.2 Configuring tools (XML)
	3.3 Verifying connections
	3.4 Course archive/restore/copy
	3.5 Mapping VLE/LTI roles

	4 Issues for Teachers/Students
	4.1 Number of links per course
	4.2 Pre-populating enrolments and groups
	4.3 Managing outcomes
	4.4 Re-using content
	4.5 Sharing content
	4.6 Mapping VLE/LTI roles
	4.7 “Dummy” users

	5 Issues for Service Providers
	5.1 Service level agreements
	5.2 Upgrades
	5.3 Backups

	References

