
The
Hundred-
Page

Machine
Learning

Book
Andriy Burkov

“All models are wrong, but some are useful.”
— George Box

The book is distributed on the “read first, buy later” principle.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft

3 Fundamental Algorithms

In this chapter, we describe five algorithms which are not just the most known but also
either very effective on their own or are used as building blocks for the most effective learning
algorithms out there.

3.1 Linear Regression

Linear regression is a popular regression learning algorithm that learns a model which is a
linear combination of features of the input example.

3.1.1 Problem Statement

We have a collection of labeled examples {(xi, yi)}Ni=1, where N is the size of the collection,
xi is the D-dimensional feature vector of the example i = 1 . . . N , yi is a real valued target
(yi ∈ R) and every feature x(j)

i , j = 1 . . . D, is also a real number.

We want to build a model fw,b(x) as a linear combination of features of the example x:

fw,b(x) = wx + b, (1)

where w is a D-dimensional vector of parameters, b is a real number and wx is a dot-product.
The notation fw,b means that the model f is parametrized by two values: w and b.

We will use the model to predict the unknown y for a given x like this: y = fw,b(x). Two
models parametrized by two different pairs (w, b) will likely produce two different predictions
when applied to the same example. We want to find the optimal values (w∗, b∗). Obviously,
the optimal values of parameters will define the model that makes more accurate predictions.

You can notice that the form of our linear model in eq. 1 is very similar to the form of the
SVM model. The only difference is the missing sign operator. The two models are indeed
similar. However, the hyperplane in the SVM plays the role of the decision boundary: it’s
used to separate two groups of examples from one another. As such, it has to be as far from
each group as possible. On the other hand, the hyperplane in linear regression is chosen to
be as close to all training examples as possible.

You can see why this latter requirement is important by looking at the below illustration
in fig. 1. It displays the regression line (in light-blue) for the one-dimensional examples
(dark-blue dots). We can use this line to predict the value of the target ynew for a new
unlabeled input example xnew that wasn’t used to build the model. If our examples are
D-dimensional feature vectors, the only difference is that the regression model will be not a
line but a plane (for two-dimensional feature vectors) or a hyperplane for D > 2.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 3

Figure 1: Linear Regression for one-dimensional examples.

Now you see why it’s important to have the requirement that the regression hyperplane lies
as close to the training examples as possible: if the blue line in fig. 1 was far from the blue
dots, the prediction ynew would have fewer chances to be correct.

3.1.2 Solution

To get this latter requirement satisfied, in linear regression the optimization procedure which
we use to find the optimal values for w∗ and b∗ tries to minimize the following objective:

min
w,b

1
N

∑
i=1...N

(fw,b(xi)− yi)2. (2)

The expression (f(xi) − yi)2 is called the loss function. It’s a measure of penalty for
misclassification of example i. This particular choice of the loss function is called squared
error loss. All model-based learning algorithms have a loss function and what we do to
find the best model is we try to minimize the average loss also called empirical risk. The
average loss, or empirical risk, for a model, is the average of all penalties obtained by applying
the model to the training data.

Why is the loss in linear regression a quadratic function? Why couldn’t we just get the
absolute value of the difference between the true target yi and the predicted value f(xi) and
use it as a penalty? We could. And we also could use a cube instead of a square.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 4

Now you probably start realizing how many seemingly arbitrary decisions are made when we
design a machine learning algorithm: we decided to use the linear combination of features
to predict the target. But we could use a square or some other polynomial to combine the
values of features. We could also use some other loss function that makes sense: the absolute
difference between f(xi) and yi makes sense, the cube of the difference too; the binary loss
(1 when f(xi) and yi are different and 0 when they are the same) also makes sense, right?

If we made different decisions about the form of the model, the form of the loss function, and
about the choice of the algorithm that minimizes the average loss to find the best values of
parameters, we would end up inventing a different machine learning algorithm. Sounds easy,
doesn’t it? But do not rush to invent a new learning algorithm. The fact that it’s different
doesn’t mean that it will work better in practice.

People invent new learning algorithms for one of the two main reasons:

1. The new algorithm solves a specific practical problem better than the existing algorithms.
2. The new algorithm has better theoretical guarantees on the quality of the model it

produces.

One practical justification of the choice of the linear form for the model is that it’s simple.
Why use a complex model when you can use a simple one? Another consideration is that
linear models rarely overfit. Overfitting is the property of a model such that the model
predicts very well labels of the examples used during training but frequently makes errors
when applied to examples that weren’t seen by the learning algorithm during training.

Figure 2: Overfitting.

An example of overfitting in regression is shown in fig. 2. The data used to build the red
regression line is the same as in fig. 1. The difference is that this time, this is the polynomial

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 5

regression with a polynomial of degree 10. The regression line predicts almost perfectly the
targets almost all training examples, but will likely make significant errors on new data. We
will talk more about overfitting and how to avoid it Chapter 5.

Now we know why linear regression can be useful: it doesn’t overfit much. But what about
the quadratic loss? Why did we decide that it should be quadratic? In 1705, the French
mathematician Adrien-Marie Legendre, who first published the sum of squares method for
gauging the quality of the model stated that squaring the error before summing is convenient.
Why did he say that? The absolute value is not convenient, because it doesn’t have a
continuous derivative, which makes the function not smooth. Functions that are not smooth
create unnecessary difficulties when employing linear algebra to find closed form solutions
to optimization problems. Closed form solutions to finding an optimum of a function are
simple algebraic expressions and are often preferable to using complex numerical optimization
methods, such as gradient descent.

Intuitively, quadratic penalties are also advantageous because they exaggerate the difference
between the true target and the predicted one according to the value of this difference. We
might also use the powers 3 or 4, but their derivatives are more complex to work with.

Finally, why we care about the derivative of the average loss? Remember from algebra that
if we can calculate the gradient of the function in eq. 2, we can then equal this gradient to
zero1 and find the solution to a system of equations that will give us the optimal values w∗
and b∗. You can spend several minutes and check it yourself.

3.2 Logistic Regression

The first thing to say is that logistic regression is not a regression, but a classification learning
algorithm. The name comes from statistics and is due to the fact that the mathematical
formulation of logistic regression is similar to that of linear regression.

We will explain logistic regression in the case of binary classification. However, it can naturally
be extended to multiclass classification.

3.2.1 Problem Statement

In logistic regression, we still want to model yi as a linear function of xi, however with a
binary yi this is not straightforward. The linear combination of features such as wxi + b is a
function that spans from minus infinity to plus infinity, while yi has only two possible values.

In the absence of computers, forced to do calculations manually, the scientists in the past
wanted to find a linear classification model very much. They figured out that if we define a
negative label as 0 and the positive label as 1, we would just need to find a simple continuous

1To find the minimum or the maximum of a function, we set the gradient to zero because the value of the
gradient at extrema of a function is always zero. In 2D, the gradient at an extremum is a horizontal line.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 6

function whose codomain is (0, 1). In such a case, if the value returned by the model for input
x is closer to 0, then we assign a negative label to x, otherwise, the example will be labeled
as positive. One function that has such a property is the standard logistic function (also
known as the sigmoid function):

f(x) = 1
1 + e−x

,

where e is the base of the natural logarithm (also called Euler’s number or the exp function
in Excel and many programming languages). Its graph is depicted in fig. 3.

Figure 3: Standard logistic function.

By looking at the standard logistic function graph, we can see how well it fits our classification
purpose: if we optimize the values of x and b in an appropriate way, we could interpret the
output of f(x) as the probability of yi being positive. For example, if it’s higher than or
equal to 0.5 we would say that the class of x is positive, otherwise it’s negative. In practice,
the choice of the threshold, 0.5, could be different depending on the problem. We will return
to this discussion in Chapter 5 when we will talk about model performance assessment.

So our logistic regression model will look like this:

fw,b(x) def= 1
1 + e−(wx+b) . (3)

You can see the familiar term wx + b from linear regression. Now, how do we find the best
values w∗ and b∗ for our model? In linear regression, we minimized the empirical risk which

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 7

was defined as the average squared error loss.

3.2.2 Solution

In logistic regression, instead of using a quadratic loss and trying to minimize the empirical
risk, we maximize the likelihood function. The likelihood function in statistics defines how
likely is the observation (an example) according to our model.

For instance, assume that we have a labeled example (xi, yi) in our training data. Assume
also that we have found (guessed) some specific values ŵ and b̂ of our parameters. If we now
apply our model fŵ,b̂ to xi using eq. 3 we will get some value 0 < p < 1 as output. If yi is
the positive class, the likelihood of yi being the positive class, according to our model, is
given by p. Similarly, if yi is the negative class, the likelihood of it being the negative class is
given by 1− p.

The optimization criterion in logistic regression is called maximum likelihood. Instead of
minimizing the average loss, like in linear regression, we now maximize the likelihood of the
training data according to our model:

max
w,b

Lw,b,

where,

Lw,b
def=

∏
i=1...N

fw,b(x)yi(1− fw,b(x))(1−yi), (4)

and fw,b(x)yi(1− fw,b(x))(1−yi) is a fancy mathematical way of saying “fw,b(x) when yi = 1
and (1− fw,b(x)) otherwise”.

You may have noticed that we used the product operator
∏

in the objective function instead
of the sum operator

∑
which was used in linear regression. This is because the likelihood of

observing N labels for N examples is the product of likelihoods of each observation (assuming
that all observations are independent of one another, which is the case). You can draw
a parallel with the multiplication of probabilities of outcomes in a series of independent
experiments in the probability theory.

Because of the exp function used in the model, in practice it’s more convenient to maximize
the log-likelihood instead of likelihood. The log-likelihood is defined like follows:

LogLw,b
def= ln(L(w,b(x)) =

N∑
i=1

yi ln fw,b(x) + (1− yi) ln (1− fw,b(x)).

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 8

The solution of this new optimization problem will be the same as the solution to the original
problem because log is a strictly increasing function. The latter property means that if we
maximize the log of some function we maximize the function itself too.

Contrary to linear regression, there’s no closed form solution to the above optimization
problem. A common numerical optimization procedure used in such cases is gradient
descent. We will talk about it in the next chapter.

3.3 Decision Tree Learning

A decision tree is an acyclic graph that can be used to make decisions. In each branching
node of the graph, a specific feature j of the feature vector is examined. If the value of the
feature is below a specific threshold, then the left branch is followed, otherwise, the right
branch is followed. As the leaf node is reached, the decision is made about the class the
example belongs to.

As the title of the section suggests, a decision tree can be learned from data.

3.3.1 Problem Statement

Like previously, we have a collection of labeled examples; labels belong to the set {0, 1}. We
want to build a decision tree that would allow us to predict the class of an example given a
feature vector.

3.3.2 Solution

There are various formulations of the decision tree learning algorithm. In this book, we
consider just one, called ID3.

The optimization criterion in this case is the average log-likelihood:

1
N

N∑
i=1

yi ln fID3(x) + (1− yi) ln (1− fID3(x)), (5)

where fID3 is a decision tree.

By now, it looks very similar to logistic regression. However, contrary to the logistic regression
learning algorithm which builds a parametric model fw∗,b∗ by finding an optimal solution
to the optimization criterion, the ID3 algorithm optimizes it approximately by greedily
constructing a non-parametric model fID3(x) def= Pr(yi = 1|x).

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 9

S={(x1, y1), (x2, y2), (x3, y3),
(x4, y4), (x5, y5), (x6, y6),
(x7, y7), (x8, y8), (x9, y9),
(x10, y10), (x11, y11), (x12, y12)}

x

Pr(y = 1|x) = (y1+y2+y3+y4+y5
+y6+y7+y8+y9+y10+y11+y12)/12

Pr(y = 1|x)

(a)

x

Pr(y = 1|x) = (y1+y2+y4
+y6+y7+y8+y9)/7

Pr(y = 1|x)

x(3) < 18.3?

S­ = {(x1, y1), (x2, y2),
(x4, y4), (x6, y6), (x7, y7),
(x8, y8), (x9, y9)}

Pr(y = 1|x) =
(y3+y5+y10+y11+y12)/5

Pr(y = 1|x)

S+ = {(x3, y3), (x5, y5), (x10, y10),
(x11, y11), (x12, y12)}

Yes No

(b)

Figure 4: An illustration of a decision tree building algorithm. The set S contains 12 labeled
examples. (a) In the beginning, the decision tree only contains the start node; it makes the
same prediction for any input. (b) The decision tree after the first split; it tests whether
feature 3 is less than 18.3 and, depending on the result, the prediction is made in one of the
two leaf nodes.

The ID3 learning algorithm works like follows. Let S denote a set of labeled examples. In the
beginning, the decision tree only has a start node that contains all examples: S def= {(xi, yi)}Ni=1.
Start with a totally constant model fSID3:

fSID3 = 1
|S|

∑
(x,y)∈S

y, (6)

where |S| denotes the size of S. The prediction given by the above model, fSID3(x), would be
the same for any input x. The corresponding decision tree is shown in fig 4 (a).

Then you search through all features j = 1 . . . D and all thresholds t, and split the set S into
two subsets: S−

def= {(x, y) | (x, y) ∈ S, x(j) < t} and S+ = {(x, y) | (x, y) ∈ S , x(j) ≥ t}. The
two new subsets would go to two new leaf nodes, and we evaluate, for all possible pairs (j, t)
how good the split with pieces S− and S+ is. Finally, we pick the best such values (j, t),
split S into S+ and S−, form two new leaf nodes, and continue recursively on S+ and S− (or
quit if no split produces a model that’s sufficiently better). A decision tree after one split is

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 10

illustrated in fig 4 (b).

Now you should wonder what the words “evaluate how good the split is” mean. In ID3, the
goodness of a split is estimated by using the criterion called entropy. The entropy of a set of
examples S is given by:

H(S) = −fSID3 log fSID3 − (1− fSID3) log(1− fSID3).

When we split a set of examples by a certain attribute j and a threshold t, the entropy of a
split, H(S−,S+), is simply a weighted sum of two entropies:

H(S−,S+) = |S−|
|S|

H(S−) + |S+|
|S|

H(S+). (7)

So, in ID3, at each step, at each leaf node, we find a split that minimizes the entropy given
by eq. 7 or we stop at this leaf node.

The algorithm stops at a leaf node in any of the below situations:

• All examples in the leaf node are classified correctly by the one-piece model (eq. 6).
• We cannot find an attribute to split upon.
• The split reduces the entropy less than some ε (the value for which has to be found

experimentally2).
• The tree reaches some maximum depth d (also has to be found experimentally).

Because in ID3, the decision to split the dataset on each iteration is local (doesn’t depend
on future splits), the algorithm doesn’t guarantee an optimal solution. The model can be
improved by using techniques like backtracking during the search for the optimal decision
tree at the cost of possibly taking longer to build a model.

The entropy-based split criterion intutively makes sense: entropy
reaches its minimum of 0 when all examples in S have the same
label; on the other hand, the entropy is at its maximum of 1 when
exactly one half of examples in S is labeled with 1, making such a
leaf useless for classification. The only remaining question is how
this algorithm approximately maximizes the average log-likelihood
criterion. We leave it for further reading.

3.4 Support Vector Machine

We already considered SVM in the introduction, so this section will only fill a couple of
blanks. There are two important questions that need to be answered:

2We will show how in Chapter 5 when we will talk about hyperparameter tuning.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 11

1. What if there’s noise in the data and no hyperplane can perfectly separate positive
examples from negative ones?

2. What if the data cannot be separated using a plane, but could be separated by a
higher-order polynomial?

0 2 4 6 8 10 12

0

2

4

6

8

10

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 5: Linearly non-separable cases. Left: the presence of noise. Right: inherent
nonlinearity.

You can see both situations depicted in fig 5. In the left case, the data could be separated by
a straight line if not for the noise (outliers or examples with wrong labels). In the right case,
the decision boundary is a circle and not a straight line.

Remember that in SVM, we want to satisfy the following constraints:

a) wxi − b ≥ 1 if yi = +1, and
b) wxi − b ≤ −1 if yi = −1

We also want to minimize w so that the hyperplane was equally distant from the closest
examples of each class. Minimizing w is equivalent to minimizing 1

2 ||w||
2 and the use of

this term makes it possible to perform quadratic programming optimization later on. The
optimization problem for SVM therefore looks like this:

min 1
2 ||w||

2 s.t. yi(xiw + b)− 1 ≥ 0, i = 1 . . . N. (8)

3.4.1 Dealing With Noise

To extend SVM to cases in which the data is not linearly separable, we introduce the hinge
loss function:

max (0, 1− yi(wxi − b)) .

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 12

Hinge loss function is zero if the constraints a) and b) are satisfied, in other words, if wxi
lies on the correct side of the decision boundary. For data on the wrong side of the decision
boundary, the function’s value is proportional to the distance from the decision boundary.

We then wish to minimize,

C‖w‖2 + 1
N

N∑
i=1

max (0, 1− yi(wxi − b)) ,

where the hyperparameter C determines the tradeoff between increasing the size of the
decision boundary and ensuring that each xi lie on the correct side of the decision boundary.
The value of C is usually chosen experimentally, just like ID3’s hyperparameters ε and d.
SVMs that optimize hinge loss are called soft-margin SVMs, while the original formulation is
referred to as a hard-margin SVM.

As you can see, for sufficiently high values of C, the second term in the loss function will
become negligible, so the SVM algorithm will try to find the highest margin by completely
ignoring misclassification. As we decrease the value of C, making classification errors is
becoming more costly, so the SVM algorithm will try to make fewer mistakes by sacrificing
the margin size. As we have already discussed, a larger margin is better for generalization.
Therefore, C regulates the tradeoff between classifying well the training data well (minimizing
empirical risk) and classifying well future examples well (generalization).

3.4.2 Dealing With Inherent Non-Linearity

SVM can be adapted to work with datasets that cannot be separated by a hyperplane in
its original space. However, if we manage to transform the original space into a space of
higher dimensionality, we could hope that the examples will become linearly separable in this
transformed, higher dimensional space. In SVMs, using a function to implicitly transform
the original space into a higher dimensional space during the loss function optimization is
called the kernel trick.

The effect of applying the kernel trick is illustrated in fig. 6. As you can see, it’s possible
to transform a two-dimensional non-linearly-separable data into a linearly-separable three-
dimensional data using a specific mapping φ : x → φ(x), where φ(x) is a vector of higher
dimensionality than x. For the example of 2D data in fig. 6 (left), the mapping φ for
example x = [q, p] that projects this example into a 3D space (right) would look like this
φ([q, p]) = (q2,

√
2qp, p2), where q2 means q squared. You see now that the data becomes

linearly separable in the transformed space.

However, we don’t know a priori which mapping φ would work for our data. If we first
transform all our input examples using some mapping into very high dimensional vectors and
then apply SVM to this data, and we try all possible mapping functions, the computation
could become very inefficient and we would never solve our classification problem.

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 13

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

0 20 40 60 80 100 806040200
20406080

0

20

40

60

80

100

Figure 6: Left: the original non-linearly separable two-dimensional data. Right: the same
data is linearly separable after a transformation into a three-dimensional space.

Fortunately, scientists figured out how to use kernel functions (or, simply, kernels) to
easily work in higher-dimensional spaces while looking for an SVM model without doing this
transformation explicitly. To understand how kernels work, we have to show first how the
optimization algorithm for SVM finds the optimal values for ||w|| and b.

The method traditionally used to solve the optimization problem in eq. 8 is the method of
Lagrange multipliers. Instead of solving the original problem from eq. 8, it is convenient to
solve an equivalent problem formulated like this:

max
α1...αN

N∑
i=1

αi −
1
2

N∑
i=1

N∑
k=1

yiαi(xixk)ykαk subject to
N∑
i=1

αiyi = 0 and αi ≥ 0, i = 1 . . . N,

where αi are Lagrange multipliers. Formulated like this, the optimization problem becomes
a convex quadratic optimization problem, efficiently solvable by quadratic programming
algorithms.

Now, you could have noticed that in the above formulation, there is a term xixk, and this is
the only place where the feature vectors are used. If we want to transform our vector space
into a higher dimensional space, we need to transform xi into φ(xi) and xj into φ(xj) and
then multiply φ(xi) and φ(xj). It would be very costly to do so.

On the other hand, we are only interested in the result of this multiplication, which is a
real number. We don’t care how this number was obtained as long as it’s correct. By using
the kernel trick we can get rid of a costly transformation of original feature vectors into
higher-dimensional vectors and avoid computig the dot-product of them. We replace that by
a simple operation on the original feature vectors that gives the same result. For example,
instead of transforming (q1, p1) into (q2

1 ,
√

2q1p1, p
2
1) and (q2, p2) into (q2

2 ,
√

2q2p2, p
2
2) and

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 14

then computing the dot-product of (q2
1 ,
√

2q1p1, p
2
1) and (q2

2 ,
√

2q2p2, p
2
2) to obtain (q2

1q
2
2 +

2q1q2p1p2+p2
1p

2
2) we could find the dot-product between (q1, p1) and (q2, p2) to get (q1q2+p1p2)

and then square it to get exactly the same result (q2
1q

2
2 + 2q1q2p1p2 + p2

1p
2
2).

This was an example of the kernel trick and we used the quadratic kernel k(xi,xk) = (xixk)2.
Multiple kernel functions exist, the most widely used of which is the RBF kernel:

k(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
,

where ‖x − x′‖2 is the squared Euclidean distance between two feature vectors. The
Euclidean distance is given by the following equation:

d(xi,xk) =
√(

x
(1)
i − x

(1)
k

)2
+
(
x

(2)
i − x

(2)
k

)2
+ · · ·+

(
x

(N)
i − x(N)

k

)2
=

√√√√ D∑
j=1

(
x

(j)
i − x

(j)
k

)2
.

It can be shown that the feature space of the RBF kernel has an infinite number of dimensions.
By varying the hyperparameter σ, the data analyst can choose between getting a smooth or
curvy decision boundary in the original space.

3.5 k-Nearest Neighbors

k-Nearest Neighbors (kNN) is a non-parametric learning algorithm. Contrary to other
learning algorithms that discard the training data after the model is built, kNN keeps all
training examples in memory. Once a new, previously unseen example comes in, the kNN
algorithm finds k most close examples in the D-dimensional space and returns the majority
label (in case of classification) or the average label (in case of regression).

The closeness of two points is given by a distance function. For example, Euclidean distance
seen above is frequently used in practice. Another popular choice of the distance function is
the negative cosine similarity. Cosine similarity, defined like this,

s(xi,xk) = cos(∠(xi,xk)) =
∑D
j=1 x

(j)
i x

(j)
k√∑D

j=1

(
x

(j)
i

)2
√∑D

j=1

(
x

(j)
k

)2
,

is a measure of similarity of the directions of two vectors. If the angle between two vectors
is 0 degrees, then two vectors point to the same direction and cosine similarity is equal to
1. If the vectors are orthogonal, the cosine similarity is 0. For vectors pointing in opposite
directions, the cosine similarity is −1. If we want to use cosine similarity as a distance metric,
we need to multiply it by −1. Other popular distance metrics include Chebychev distance,

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 15

Mahalanobis distance, and Hamming distance. The choice of the distance metric, as well as
the value for k, are the choices the analyst makes before running the algorithm. So these
are hyperparameters. The distance metric could also be learned from data (as opposed to
guessing it). We will talk about that in one of the future chapters.

Now we know how the model building algorithm works and how the prediction is made. A
reasonable question is what is the loss function here? Surprisingly, this question has not been
well studied in the literature, despite the algorithm’s popularity since the earlier 1960s. The
only attempt to analyze the loss function of kNN we aware of was undertaken by Li and
Yang in 20033. Below, we outline their considerations.

For simplicity, we make our derivation under the assumptions of binary classification (y ∈
{0, 1}) with cosine similarity and normalized feature vectors4. Under these assumptions,
kNN does a locally linear classification with the vector of coefficients,

wx =
∑

(x′,y′)∈Rk(x)

y′x′, (9)

where Rk(x) is the set of k nearest neighbors to the input example x. The above equation
says that we take the sum of all nearest neighbor feature vectors to some input vector x
by ignoring those that have label 0. The classification decision is obtained by defining a
threshold on the dot-product wxx which, in the case of normalized feature vectors, is equal
to the cosine similarity between wx and x.

Now, defining the loss function like this:

L = −
∑

(x′,y′)∈Rk(x)

y′x′wx + 1
2 ||w||

2

and setting the first order derivative of the right-hand side to zero yields the formula for the
coefficient vector in eq. 9.

3F. Li and Y. Yang, “A loss function analysis for classification methods in text categorization,” in ICML
2003, pp. 472–479, 2003.

4We discuss normalization later in this book, but for the moment assume that all features of feature
vectors were squeezed into the range [0, 1].

Andriy Burkov The Hundred-Page Machine Learning Book - Draft 16

	Fundamental Algorithms
	Linear Regression
	Problem Statement
	Solution

	Logistic Regression
	Problem Statement
	Solution

	Decision Tree Learning
	Problem Statement
	Solution

	Support Vector Machine
	Dealing With Noise
	Dealing With Inherent Non-Linearity

	k-Nearest Neighbors

