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PREFACE

For most teachers, mathematical modeling represents a new way of “doing” mathematics that makes the ad-
dition of modeling activities into instruction seem daunting.  This is especially true since modeling, when
done properly, requires significant time and effort.  In turn, some may be reluctant to include modeling ac-
tivities into classroom time.  It is essential to keep in mind that modeling is one of the eight Standards for
Mathematical Practice given in the Common Core State Standards for Mathematics (CCSSM) for all grades and
is a required conceptual category in high school.  Because of this, modeling cannot be set aside or employed
only when spare time arises.  Class time that previously may have been spent using more traditional teaching
methods should be converted to time spent on modeling.  The integrated nature of mathematical modeling,
and in turn the number of curricular standards covered when working through a modeling activity, make
modeling activities a very efficient use of class time.

The Teachers College Mathematical Modeling Handbook is intended to support the implementation of the
CCSSM in the high school mathematical modeling conceptual category.  The CCSSM document provides a brief
description of mathematical modeling accompanied by 22 star symbols (*) designating modeling standards
and standard clusters. The CCSSM approach is to interpret modeling not as a collection of isolated topics but
in relation to other standards.

The goal of this Handbook is to aid teachers in executing the CCSSM approach by helping students to develop
a mathematical disposition, that is, to encourage recognition of mathematical opportunities in everyday events.
The Handbook provides modules and guides for 26 topics together with references to specific CCSSM model-
ing standards for which the topics may be appropriate.  It should be noted that only those standards that have
been marked specifically as modeling standards are listed within the modules, however many more standards
not marked specifically for modeling are covered.

The Handbook begins with an introductory essay by Henry O. Pollak entitled “What is Mathematical Model-
ing?” Pollak joined the Teachers College faculty in 1987 where he has continued his involvement in modeling
and its teaching, emanating from his three decades of work at Bell Laboratories. Pollak has contributed to
other COMAP projects and publications including Mathematics: Modeling Our World (2000) and “Henry’s
Notes” in the newsletter Consortium.

Each module is presented in the same format for ease of use. Each contains four sections: (1) Teacher’s Guide
– Getting Started, (2) student pages (comprising the student activities), (3) Teacher’s Guide – Possible Solu-
tions, and (4) Teacher’s Guide – Extending the Model.

The first section of each module, “Teacher’s Guide – Getting Started”, is for teachers only. It contains informa-
tion similar to that in a typical lesson plan: it is meant to give an overview of the module including motivation,
the amount of time necessary, what materials and prerequisite knowledge are required, and a general outline
describing the student activities in “Worksheet 1” (the first day’s activities) and “Worksheet 2” (the second
day’s activities). At the end of this section, the CCSSM modeling standards the module is intended to cover are
listed.

The next section of each module consists of the worksheet pages for students. These pages should be photo-
copied and distributed for student use. It is the teacher’s choice how these lessons should be implemented,
but the modules were written with the intention of being a combination of classroom discussion, group, and
individual work. The first page of this section is an “artifact page” which lays the foundation for the scenario
to be modeled. Occasionally, tables of information, helpful pictures, or tools to be used in the model are in-
cluded – the so-called “artifacts”. The artifact page concludes with the “leading question” that is the main idea
to be addressed and is meant to drive the modeling activities.
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The first day’s lesson continues after the artifact page and consists of two or three pages. Questions are pre-

sented in such a way that students are expected to develop a model to begin to answer the leading question

presented on the artifact page. By the end of the first day in most lessons, students craft their model either with

mathematics or, sometimes, with actual, physical constructions.

The second day’s lesson immediately follows the first day’s lesson. It often begins with a “recap” of what 

happened previously. Definitions sometimes are listed to help drive the model in a mathematical direction in

order to focus student attention on specific mathematical ideas. Students continue to work with and refine

their model in an effort to answer the leading question more completely or accurately. Sometimes, the lesson

proceeds beyond the idea originally posed to help students apply their model to different or more complex 

scenarios.

Throughout the student pages, there are bracketed notes intended to help guide students through more 

difficult problems. These are meant to be used if there is trouble moving on from the question and can help

you, the teacher, guide the lesson in the direction necessary for completing a model.

The “Teacher’s Guide – Possible Solutions” section follows the student pages. Possible answers to the ques-

tions posed on both days’ student worksheets are given according to the numbered questions. This is 

intended to give teachers a general guide for how the lesson might progress, but is not meant to be a rigid

structure by which classes must abide. Mathematical modeling often can be perceived within several disci-

plines: students’ work should be based on mathematical validity and not on the ability to adhere to the strict

mathematical idea presented in the modules.

Each module concludes with a section entitled “Teacher’s Guide – Extending the Model” contributed by 

Pollak. Typically, three kinds of materials for interested and advanced students may be found there: possible

extensions of the model developed in the module, other applications of the mathematics of the module, and

mathematical extensions of the mathematics within the module. Models are not restricted to one idea and

thus have many different uses. “Extending the Model” shows how this is possible.

Editorial Committee:

Heather Gould, Chair

Diane R. Murray

Andrew Sanfratello

Reference – The CCSSM is referenced throughout this Handbook, but we will refrain from listing it within each

module and only give it here.

National Governors Association Center for Best Practices, Council of Chief State School Officers.  (2010). 

Common core state standards for mathematics (CCSSM).  Washington, D.C.: National Governors Association

Center for Best Practices, Council of Chief State School Officers.

  New Modeling HB FM R3 :FM  5/16/12  11:24 AM  Page vii
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INTRODUCTION
What Is Mathematical Modeling?

Henry O. Pollak
Teachers College, Columbia University

Mathematical Modeling in a Nutshell
Mathematicians are in the habit of dividing the universe into two parts: mathematics, and everything else,
that is, the rest of the world, sometimes called “the real world”. People often tend to see the two as independent
from one another – nothing could be further from the truth. When you use mathematics to understand a sit-
uation in the real world, and then perhaps use it to take action or even to predict the future, both the real-world
situation and the ensuing mathematics are taken seriously. The situations and the questions associated with
them may be any size from huge to little. The big ones may lead to lifetime careers for those who study them
deeply and special curricula or whole university departments may be set up to prepare people for such careers.
Electromagnetic theory, medical imaging, and cryptography are some such examples. At the other end of the
scale, there are small situations and corresponding questions, although they may be of great importance to the
individuals involved: planning a trip, scheduling the preparation of Thanksgiving dinner, hiring a new assis-
tant, or bidding in an auction. Problems of intelligent citizenship vary greatly in complexity: deciding whether
to vote sincerely in the first round of an election, or to vote so as to try to remove the most dangerous threat
to your actual favorite candidate; planning the one-way traffic patterns for your downtown; thinking seri-
ously, when the school system argues about testing athletes for steroids, whether you prefer a test that catches
almost all the users at the price of designating some non-users as (false) positives, or a test in which almost
everybody it catches is a user, but misses some of the actual users.

Whether the problem is huge or little, the process of “interaction” between the mathematics and the real
world is the same: the real situation usually has so many facets that you can’t take everything into account, so
you decide which aspects are most important and keep those. At this point, you have an idealized version of
the real-world situation, which you can then translate into mathematical terms. What do you have now? A
mathematical model of the idealized question. You then apply your mathematical instincts and knowledge to
the model, and gain interesting insights, examples, approximations, theorems, and algorithms. You translate
all this back into the real-world situation, and you hope to have a theory for the idealized question. But you
have to check back: are the results practical, the answers reasonable, the consequences acceptable? If so,
great! If not, take another look at the choices you made at the beginning, and try again. This entire process is
what is called mathematical modeling.

You may be wondering how mathematical modeling differs from what you already teach, particularly, “prob-
lem solving”. Problem solving may not refer to the outside world at all. Even when it does, problem solving usu-
ally begins with the idealized real-world situation in mathematical terms, and ends with a mathematical result.
Mathematical modeling, on the other hand, begins in the “unedited” real world, requires problem formulat-
ing before problem solving, and once the problem is solved, moves back into the real world where the results
are considered in their original context.  Additionally, it would take us too far afield to discuss whimsical prob-
lems, where mythical kingdoms and incredible professions and procedures may become the setting of some
lovely mathematics. They make no pretense of being problems motivated by the real world.

Mathematical Modeling and Education
Now that we have an idea about what mathematical modeling is in the real world, what do we do about it in
mathematics education? One hundred years ago, the big areas – classical physics, astronomy, cartography,
and surveying, for instance – were taught in university mathematics departments, perhaps called depart-
ments of mathematics and astronomy. Nowadays, in the United States at least, these are taught in science or
engineering departments. These branches of science are big and they are very old. What about areas that have
become major appliers of mathematics during the last century? Information theory and cryptography may be
included in the curricula of electrical engineering, inventory control, programming (as in “linear”), schedul-
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ing and queuing in operations research, and fair division and voting in political science. These topics are such
exciting new areas of application, often of discrete mathematics, that they frequently have a home in mathe-
matics, as well. Who is going to “own” them in the long run is undecided.

What do we, as mathematicians and mathematics educators, conclude? Many scientific disciplines use math-
ematics in their development and practice, and when they are faithful to the science they do indeed check
which aspects of the situation they have kept and which they have chosen to ignore. Engineers and scientists,
be they physical, social, or biological, have not expected mathematics to teach the modeling point of view for
them within a scientific framework, although preparing for this kind of reasoning is part of mathematics. Since
the scientists will do mathematical modeling anyway, can we just leave mathematical modeling to them? 
Absolutely not. Why not? Mathematics education is at the very least responsible for teaching how to use math-
ematics in everyday life and in intelligent citizenship, and let’s not forget it. Actually, any separation of science
from everyday life is a delusion. Both everyday life and intelligent citizenship often also involve scientific 
issues. So what really matters in mathematics education is learning and practicing the mathematical model-
ing process. The particular field of application, whether it is everyday life or being a good citizen or under-
standing some piece of science, is less important than the experience with this thinking process.

Mathematical Modeling in School
Let us now look at mathematical modeling as an essential component of school mathematics. How success-
fully have we done this in the past? What are the recollections, and the attitudes, of our graduates? People often
say that the mathematics they learned in school and the mathematics that they use in their lives are very dif-
ferent and have little if anything to do with each other. Here’s an example: the textbook or the teacher may have
asked how long it takes to drive 20 miles at 40 miles per hour, and accepted the answer of 30 minutes. But how
does all this come up in everyday life? When you live 20 miles from the airport, the speed limit is 40 mph, and
your cousin is due at 6:00 pm, does that mean you leave at 5:30 pm? Your actual thinking may be quite 
different. This is rush hour. There are those intersections at which you don’t have the right of way. How long
will it take to find a place to park? If you take the back way, the average drive may take longer, but there is much
less variability in the total drive time. And don’t forget that the arrival time the airline’s website gives you is
the time the plane is expected to touch down on the runway, not when it will start discharging passengers at
the gate. And so forth. Contrasting these two thought processes, there is no wonder that students don’t see the
connection between mathematics and real life.

We said at the beginning that in mathematical modeling, both the real-world situation and the mathematics
are “taken seriously”. What does that mean? It means that the words and images from outside of mathemat-
ics are not just idle decorations. It means that the size of any numbers involved is realistic, that the precision
of the numbers is realistic, that the question asked is one that you would ask in the real world. It means that
you have considered what aspects of the real-world situation you intend to keep and what aspects you will 
ignore.

A mathematical model, as we have seen, begins with a situation in the real world which we wish to understand.
The particular branch of mathematics that you will end up using may not be known when you start. But then
how do you know when and where in the curriculum to discuss a certain modeling problem? If you put it in
a section on plane geometry, then students will look for a plane geometric model! Is that what you want? An
answer to this difficulty, which is quite real, is that, as in all of mathematics, the learning and the pedagogy are
spiral and you return to a major idea many times. In the student’s first experiences with modeling, the 
particular mathematics to be used will be quite obvious, and that’s fine. Later on, the student may have to
consider some alternatives (“Should I try plane geometry, or analytic geometry, or vectors?”), but may very
well need help in finding what these alternatives might be, and how to think about the consequences of pick-
ing any particular one. At an advanced level, such hints will, we hope, become less necessary.

The Variety of Modules
We have seen that modeling arises in many major disciplines within science, engineering, and even social 
sciences. As such, it will be at the heart of courses in many disciplines, and at the heart of many varied careers.
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Mathematical modeling is also an important aspect of everyday life, where everyone will be better off if they
become comfortable with it. It enters many facets of intelligent citizenship. Which kinds of situations do you
want to emphasize in school? It is tempting to use modeling as an opportunity to get students thinking about
the big issues of our time: world peace, health care, the economy, or the environment. The main point is to 
develop a favorable disposition and comfort with mathematical modeling, and big issues don’t often fit into
modules with two lessons.

So, tempting as it may be, the contents of this Handbook do not attack any of the major problems of the world.
There are some modules that can be considered as giving a foretaste of a whole discipline. A Model Solar Sys-
tem points towards Newton, Kepler, and the laws of motion and astronomy. Periodic phenomena also appear
in both natural and man-made systems, as can be seen in Sunrise, Sunset. A Bit of Information gives a taste of
the very beginning of information theory, and State Apportionment starts some thinking about that particu-
lar fair division problem. An introduction to the modeling of epidemics can be associated with Viral Market-
ing.

Both continuous and discrete mathematics are important for modeling. Bending Steel and Water Down the
Drain are examples of continuous problems. An important aspect of a modeling disposition is the ability to
make “back-of-the-envelope” estimates that give insight into phenomena that are sometimes surprising. Both
Bending Steel and the extension to Water Down the Drain partake of this aspect of modeling. On the other
hand, A Tour of Jaffa is discrete, and Sunken Treasure has discrete, continuous, and even experimental 
aspects. And it is sometimes surprising that functions with piecewise definitions occur in the real world as
often as they do. Such a problem involves both continuous and discrete thinking. For the Birds gives an unex-
pected example.

Quite naturally, the modules involve a wide variety of high school mathematical topics. Looking for a function
with particular properties is at the heart of A Bit of Information (logarithms) and of Rating Systems (a logis-
tic curve). Another method of looking for a function is to fit a curve to data, which is part of A Model Solar Sys-
tem. It is also part of the mathematical modeling process to progress through various areas of mathematics
as you become more adept at a particular modeling situation. Thus geometry, algebra, and trigonometry are
all part of the development of Narrow Corridor. Sunken Treasure, besides using a variety of forms of 
mathematical reasoning, even suggests using physics in order to do mathematics!

A number of other important mathematical ideas arise in the course of this collection of modeling problems.
For example, in connection with several modules involving probability and statistics, the notion of optimal
stopping occurs more than once. It is the central idea in Picking a Painting and has an important role in The
Whe to Play. The Intermediate Value Theorem has a crucial role in Unstable Table, a delightful everyday-life
application of mathematics towards having a comfortable meal in a restaurant. The logistic curve shows up
in Rating Systems and Voronoi diagrams in Gauging Rainfall. Simple everyday-life situations are found in For
the Birds, Estimating Temperatures, and Changing It Up. We do have one whimsical problem, Flipping for a
Grade.

A fundamental aspect of mathematical modeling, as is emphasized many times in the Common Core State
Standards for Mathematics, in the literature on modeling, and in the present work, is the fact that every model
downplays certain aspects of reality, which in turn means that the mathematical results eventually have to be
checked against reality. This may lead to successive deepening of the models, which shows up particularly in
Narrow Corridor, A Tour of Jaffa, and Unstable Table. This may be viewed as a new facet of Polya’s dictum, “look
for a simpler problem”.

It is time to bring this introductory essay to a close. We propose two codas, one for mathematicians and one
for mathematics educators.
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Coda for Mathematicians
We have discussed a number of examples to show the variety of experiences which this collection is intended
to encompass. They illustrate situations from everyday life, from citizenship, and from major quantitative dis-
ciplines, situations chosen because they lend themselves to brief introductory experiences in mathematical
modeling. Don’t get the impression that all of this is an unnatural demand on mathematics education. Far
from it, it strengthens the affinity between pure mathematics and its applications. The heart of mathematical
modeling, as we have seen, is problem formulating before problem solving. So often in mathematics, we say
“prove the following theorem” or “solve the following problem”. When we start at this point, we are ignoring
the fact that finding the theorem or the right problem was a large part of the battle. By emphasizing problem
finding, mathematical modeling brings back to mathematics education this aspect of our subject, and greatly
reinforces the unity of the total mathematical experience.

Coda for Mathematics Educators
Probably 40 years ago, I was an invited guest at a national summer conference whose purpose was to grade
the AP Examinations in Calculus. When I arrived, I found myself in the middle of a debate occasioned by the
need to evaluate a particular student’s solution of a problem. The problem was to find the volume of a 
particular solid which was inside a unit three-dimensional cube. The student had set up the relevant integrals
correctly, but had made a computational error at the end and came up with an answer in the millions. (He mul-
tiplied instead of dividing by some power of 10.) The two sides of the debate had very different ideas about
how to allocate the ten possible points. Side 1 argued, “He set everything up correctly, he knew what he was
doing, he made a silly numerical error, let’s take off a point.” Side 2 argued, “He must have been sound asleep!
How can a solid inside a unit cube have a volume in the millions?! It shows no judgment at all. Let’s give him
a point.”

My recollection is that Side 1 won the argument, by a large margin. But now suppose the problem had been
set in a mathematical modeling context. Then it would no longer be an argument just from the traditional
mathematics point of view. In a mathematical modeling situation, pure mathematics loses some of its sover-
eignty. The quality of a result is judged not only by the correctness of the mathematics done within the 
idealized mathematical situation, but also by the success of the confrontation with reality at the end. If the 
result doesn’t make sense in terms of the original situation in the real world, it’s not an acceptable solution.

How would you vote?
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A NOTE ON TEACHER EDUCATION 
AND PROFESSIONAL DEVELOPMENT

While this Handbook was written with the goal of providing CCSSM-aligned, “ready-made” worksheets for
high school teachers to distribute for student use, it also can be adapted easily for use in undergraduate teacher
education programs, pre- and in-service training programs, and professional development.  The editors would
like to recommend some uses of the Handbook for those working within these contexts.

In the early years of CCSSM, a large task will be leading all types of teachers to an understanding of exactly what
mathematical modeling is.  Henry O. Pollak’s introductory essay in this Handbook should help begin to forge
this understanding.  To further its development, future and current teachers should analyze the progression
of each of the modules with particular focus on how students are led to think.  This progression closely repli-
cates the processes a working mathematician would use to model.  Once the thinking process is understood,
an understanding of modeling as a whole will begin to blossom.

The modules in the Handbook were written to be accessible to most students.  Every student is unique and it
is reasonable to try to adapt the modules to the needs of different students.  Adaptation is another task that
can be undertaken in teacher education and professional development programs.  Consideration of students’
needs, capabilities, and interests is important and adaptation of the modules in this Handbook is encouraged,
given that the modeling process – from variable identification to model revision or refinement and reporting
the results – is maintained.

A prepared teacher is one who, among other things, anticipates how students will respond to questions and
tasks.  Another possible task that can be undertaken in teacher education and professional development is try-
ing to anticipate how students will answer the questions posed in the modules, what questions will cause
trouble, and how to respond to these.  A prepared teacher also will try to determine what to do to help 
students persevere in developing the model and, if necessary, what extra information can be provided to a
student without “giving away” the solution.  Determining other mathematically valid types of models besides
those presented in the “Possible Solutions” section is also helpful.  A task such as this is one all teachers should
learn to undertake before teaching a particular lesson.

An interesting teacher education or professional development task would be to determine where the use of
these lessons can be taught in an interdisciplinary context.  Several modules can be adapted easily for use in
science classrooms; some could even be used in the context of social studies, for instance.  The act of devel-
oping and teaching interdisciplinary lessons using these modules should help both students and teachers un-
derstand that a person who is capable of – or at least understands – mathematical modeling is an informed
citizen.  This is an important lesson to be learned for anyone.

There are various mathematical topics covered within the Handbook that may be unfamiliar to teachers as sev-
eral of them are not frequently taught even in typical undergraduate mathematics courses.  This is particularly
true of those topics involving discrete mathematics.  The topics covered in the Handbook all have the “typi-
cal” mathematics at their core – number, algebra, geometry, trigonometry, and statistics – but they also 
frequently involve mathematics not typically seen in high school curricula.  It is well-within reason for teacher
education and professional development programs to engage in some “content preparation”, such as presen-
tations or short courses on the areas of mathematics that are not typically covered in many teacher prepara-
tion curricula that will allow teachers to become more familiar and comfortable with the mathematics
employed in the Handbook.

A final suggestion for professional development tasks related to the use of this Handbook is to determine the
best way to assess students, by both formative and summative means.  The act of monitoring and evaluating
students’ cognitive processes is much more difficult than the act monitoring and evaluating their fluency with
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or acquisition of facts and procedures.  Mathematical modeling is both a procedure and a cognitive process,
so its evaluation is “tricky”.   Those engaged in teacher education and professional development programs are
encouraged to devise creative and novel ways to assess the modeling activities included in this Handbook.

All of the activities listed above would generally be addressed during the course of a lesson study.  Practicing
teachers might find lesson study to be a valuable professional development activity related to mathematical
modeling, and one that can be undertaken without the need to employ outside resources.  Lesson study is a
common activity in Japanese schools and it involves several teachers working collaboratively on a single 
lesson or activity in order to understand how to teach it best.  While the whole process of lesson study will not
be addressed here, it is recommended that teachers work together to develop plans for exactly how to facili-
tate the teaching of the modeling activities included in this Handbook.  Making use of one’s colleagues may
prove to be the most important and helpful lesson to be learned from professional development activities.

This set of tasks is certainly not exhaustive, nor do we claim that all the suggested tasks are necessary.  We do
hope, however, that this Handbook provides a valuable and enjoyable resource for teacher education and pro-
fessional development activities related to CCSSM modeling.
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COULD KING KONG EXIST? Diane R. Murray

Teacher’s Guide — Getting Started
Manhattanville College

1

Purpose

When watching the movie King Kong, moviegoers are swept away with the idea of a gigantic gorilla capable

of running around, climbing with ease, and, most importantly, saving Ann Darrow from harm.  But could

this animal really exist?  In this two-day lesson, students will investigate surface area, volume, and bone

strength to determine if his existence is mathematically possible.  

Prerequisites

Knowledge of proportions, surface area, and volume formulas are required for this lesson.  Unit conversions

also are used.

Materials

Required:  Scientific calculator.

Suggested:  Internet.

Optional:  Base-10 1 cm x 1 cm x 1 cm cubes to help demonstrate how volume increases.

Worksheet 1 Guide

The first three pages of the lesson constitute the first day’s work.  Students will discover that the area of a

regular two-dimensional object is proportional to the square of the scale factor.  Applying this to three-

dimensional objects, students will learn that the surface area is proportional to the square of the scale 

factor and the volume is proportional to the cube of the scale factor.  Using this knowledge, students will

apply it to human weight and height measurements.

Worksheet 2 Guide

The fourth and fifth pages of the lesson constitute the second day’s work. The students use their knowledge

of surface area and volume increases and combine that with information about the strength of bones to 

discover if King Kong could really exist.  Students will finish by searching for information on the largest 

animals to have existed.  

CCSSM Addressed

N-Q.1:  Use units as a way to understand problems and to guide the solution of multi-step problems; choose

and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and

data displays.

N-Q.2:  Define appropriate quantities for the purpose of descriptive modeling.

N-Q.3:  Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
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A human body contains 206 bones!  Each bone in your body is designed for a specific function.  The longest
and strongest bones in your body are the leg bones; the femur, or the thighbone, is the longest and most
powerful.  It is required to bear your weight and gravitational pressure. The shaft of the bone is shaped like
a hollow cylinder, which helps make it so strong.  Without the strength of our leg muscles, we would not be
able to run, walk, or even stand upright.  This also is true for other animals like chimpanzees and orang-
utans, but what about fictional creatures such as King Kong?  

Public Domain Image. Wikipedia Commons

Leading Question
Given the weight and height of King Kong, could he really have existed?

COULD KING KONG EXIST?
Student Name:_____________________________________________ Date:_____________________
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1. If one square has sides of length 1 cm while a second square has
sides of length 2 cm, how are the two areas related?  

2. If one rectangle has width of 1 cm and length of 2 cm and the dimensions of a second rectangle are 3
times that of the first, how are the two areas related? 

3. If one right triangle has dimensions 3 cm, 4 cm, and 5 cm for the two legs and hypotenuse, respectively,
while a second right triangle has 5 times the dimensions of the first, how are the two areas related?  

4. Using the previous exercises, write a rule that describes what happens to its area when a “normal” two-
dimensional object is scaled by a certain factor.  

COULD KING KONG EXIST?
Student Name:_____________________________________________ Date:_____________________

Draw diagrams to help
demonstrate your solution for

any of the problems in the
lesson.
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5. If a cube has dimensions 1 cm x 1 cm x 1 cm, what is the surface area of the cube?  What is the volume
of the cube?  Find the surface area and volume of a second cube that has double the dimensions of the
first cube (i.e., 2 cm x 2 cm x 2 cm).  How are the surface areas of the two cubes related?  How are the
volumes of the two cubes related? 

6. What if the original 1 cm x 1 cm x 1 cm cube had its dimensions tripled?  How are the surface areas of
the original cube and the “tripled” cube related?  How are the two volumes related? 

7. Create two rules:  one that describes what happens to the surface area of a three-dimensional object
when its dimensions are increased by a given factor and one that describes what happens to the vol-
ume of a three-dimensional object when its dimensions are increased by this same factor.

8. How could the rules that you have created be applied to other shapes?  As a person grows in height by a
given factor, by what factor might his or her skin grow?  By what factor does his or her volume 
(or weight) grow?  If a 10-year-old boy is 51 inches tall and weighs 70.4 pounds and his father is 72
inches tall, determine how much you think the father weighs (assuming that the father and son have
similar builds).

9. In the Austin Powers series, Dr. Evil created Mini-Me to be one-
eighth of his own height.  Assuming Dr. Evil is 68 inches tall and
weighs 200 pounds, how much should Mini-Me weigh?  How tall
should he be?

COULD KING KONG EXIST?
Student Name:_____________________________________________ Date:_____________________

What does “size” 
mean here?
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You have determined that when a three­dimensional object’s dimensions are increased by a given factor, n,

the surface area increases by a factor of n2 and the volume increases by n3.  Now you need to understand

how bones support weight.  Bone strength is proportional to cross­sectional areas of the bone.  A perpen­
dicular cross­section is the surface found by cutting an object perpendicular to its length.  Thus, the cross­

sectional area of a leg bone can be thought of as a somewhat irregular disk with a hole in the middle (since

the bone is not a perfect cylinder and it is hollow.)

10. Using the dimensions of the father and son from question 8, by approximately what factor is the

father’s surface area larger than the son’s surface area? 

11. Using the factor found in question 10 how does the cross­sectional area of the father’s leg bone 

compare to the cross­sectional area of the son’s leg bone? 

12. A typical male gorilla weighs 375 pounds and is 68 inches tall.  In Peter Jackson’s 2005 remake of King
Kong, the animal is said to be 25 feet tall.  How much would the movie King Kong weigh in pounds?

13. Using the scale from question 12, by what factor should the cross­sectional area of King Kong’s bones

be increased to support his weight?

COULD KING KONG EXIST?
Student Name:_____________________________________________ Date:_____________________
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14. Using the dimensions from question 12, by what factor has King Kong’s surface area actually increased
compared to the typical male gorilla? 

15. From the previous exercises, could King Kong exist?  Why or why not?

16. What about Godzilla?  He is portrayed as weighing 50,000 tons and 150 feet tall.  If scaled down to 6
feet, how much would he weigh?  Is this weight plausible?  Why or why not?

17. Using what you know about scaling, weight, and bone strength, find information on large beings that
exist or existed, such as elephants, dinosaurs, and whales.  What are their heights and weights? How
could they exist? 

COULD KING KONG EXIST?
Student Name:_____________________________________________ Date:_____________________



COULD KING KONG EXIST?
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods.  Please evaluate students’ solution 
methods on the basis of mathematical validity.

1. The area of the second square will be 4 times that of the original square.
2. The first rectangle has area of 2 cm2 while the second rectangle has dimensions 3 cm x 6 cm and an

area of 18 cm2.  The second area is 9, or 32, times that of the original rectangle.
3. The first triangle has area of 6 cm2 while the second triangle has dimensions 15 cm x 20 cm x 25 cm

and an area of 150 cm2.  The second area is 25, or 52, times that of the original triangle.
4. The area of a regular two-dimensional object is proportional to the square of the scale factor.  
5. The surface area of the cube is 6 cm2.  The volume of the cube is 1 cm3.  The surface area of the new

cube is 24 cm2.  The volume of the new cube is 8 cm3.  The new surface area is 4 or 22 times that of the
original cube.  The new volume is 8 or 23 times that of the original cube.  

6. The surface area of the new cube is 54 cm2.  The volume of the new cube is 27 cm3.  The new surface
area is 9, or 32, times that of the original cube.  The new volume is 27, or 33, times that of the original
cube.  

7. The surface area of a three-dimensional object is proportional to the square of the scale factor.  The vol-
ume of a three-dimensional object is proportional to the cube of the scale factor.  

8. The skin grows proportional to the square of the scale factor of the height growth.  The weight grows
proportional to the cube of the scale factor of the height growth.  The father weighs approximately 198
pounds.  

9. Mini-Me should weigh 25 pounds.  
10. The father’s surface area is larger than the son’s surface area by a factor of approximately 2.  
11. The cross-sectional area of the leg bone in the father is double that of the son.  
12. The movie King Kong should weigh approximately 32,200 pounds.
13. The cross-sectional area of King Kong’s bones should be increased by a factor of approximately 86.
14. King Kong’s surface area as compared to the typical male gorilla has increased by a factor of approxi-

mately 19.5.
15. No, King Kong’s bones would crumble from his weight.
16. Godzilla would weigh approximately 6,400 pounds if we were scaled down to a height of 6 feet tall. This

is not a plausible weight for an animal that is 6 feet tall.  
17. Elephants are the world’s largest land animals. Coco, an elephant at the Columbus Zoo, weighed 11,000

pounds and was 10.5 feet tall. The largest dinosaur was the Amphicoelias, which weighed 250,000
pounds and was nearly 200 feet long. The largest whale is the blue whale weighing in at 300,000
pounds and 100 feet long. Elephants and dinosaurs have appropriate bones and whales can exist
because they live in water.

7
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A very natural extension of this module is to develop a rough understanding of many limitations governing
fauna, flora, and structures on our planet.  Just to name a few, very far from random, choices:

• How high can a mountain be?   
• How high can a tree grow?
• Why can some animals fly and others cannot?  What are possible and what are impossible combina-  

tions of weight, area of wings, and speed of flight?
• How do animals keep cool – or keep warm?
• How different really are the jumping abilities of people, kangaroos, grasshoppers, and fleas?

These examples are all taken from COMAP’s For All Practical Purposes, chapter 18 in the eighth edition.

Scaling
The fact that surface area and volume scale differently as length changes is fundamental to the above kinds
of models.  If you take a cube of side s, then the surface area is 6s2, and the volume is s3.  So surface area
divided by volume is 6/s.  Students will gain more of a feeling for this by trying other simple solid figures.
Here is an opportunity to become familiar with the five Platonic regular solids.  It is of course easiest to do
the computations for a cube, but they are not difficult to carry out for the tetrahedron and the octahedron,
as well.

The octahedron has a surface consisting of eight equilateral triangles, so if the side length is s, then the sur-
face area is 8 s2.  The volume is s3, so the ratio of surface area to volume is .  There are
various ways of computing the volume, but since a cross-section in the usual drawing of an octahedron is a
square, you can do it by integration if you like.

The tetrahedron’s surface consists of four equilateral triangles, rather than eight for the octahedron.  Here,
the cross-sections are also equilateral triangles.  The volume of a tetrahedron of side s is s3, making the
ratio of surface area to volume .

The other two Platonic solids, the dodecahedron and the icosahedron, may well require some more learn-
ing since formulas for regular pentagons, and the trigonometric functions for , are less familiar.
(Very few students learn that sin(18°) = .)

3
4 s

3 62
3

2
12

s
6 6

π
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COULD KING KONG EXIST?
Teacher’s Guide — Extending the Model

Comparing with Spheres
One other extension that some students might find interesting is to compare the volumes of the regular
solids to the volume of the smallest sphere in which they can be inscribed.  Let’s look for two points on a
unit cube which are furthest apart and call the distance between them the diameter of the cube.  This will
also be the diameter of the smallest sphere to enclose the cube.  For a unit cube, the two points furthest
apart are at the ends of the longest diagonal, whose distance then is .  So, the volume of the cube is 1, 
and the volume of the circumscribing sphere is .  Hence the cube occupies the fraction of the 

sphere, which is about 0.368.  That’s not very much! For the octahedron, the computation gives a ratio of ,
which is about 0.318.  The tetrahedron occupies the smallest part of its circumscribing sphere, and the

answer is only , which is about 0.123.
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COULD KING KONG EXIST?
Teacher’s Guide — Extending the Model

It is worth noting that the diameter of the circumscribing sphere is the distance between two opposite ver-
tices for both the cube and the octahedron, but this is not the case for the tetrahedron.  For both the dodeca-
hedron and the icosahedron, the computations of the smallest circumscribing sphere are more formidable,
although the diameter is indeed the distance between two vertices.  But these solids do a much better job of
trying to fill a sphere.

The sphere by itself solves the so-called “isoperimetric problem”, that is, it has the smallest surface area
needed for enclosing a given volume.  Hence it would require the least amount of material for a container.
Nevertheless, as John W. Tukey observed decades ago, nobody makes spherical milk bottles.  The best
shapes for packaging are a fascinating problem.

Reference
COMAP.  (2009).  For All Practical Purposes:  Mathematical Literacy in Today’s World (8th ed.).  New York:
WH Freeman and Company.
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A MODEL SOLAR SYSTEM Diane R. Murray

Teacher’s Guide — Getting Started Manhattanville College

Purpose
In this two-day lesson, students will create several scale models of the Solar System using everyday items.
Open with discussing the size of the universe and aim to steer the conversation towards the size of the
astronomical bodies. Pose questions that make students think about how large one astronomical body is
compared to another. How can they create a model that considers the scale of the bodies?

Prerequisites
An elementary understanding of the Solar System is especially helpful. Students need to be able to use con-
versions and rates.

Materials
The table below lists diameters and true mean distance of the planets from the Sun. 
(source: http://solarsystem.nasa.gov/planets/index.cfm).

Astronomical Body Diameter (miles) True Mean Distance from the Sun 
(millions of miles)

Sun 864,337 -

Mercury 3,032 36.0

Venus 7,521 67.2

Earth 7,918 93.0

Moon 2,159 N/A

Mars 4,212 141.6

Jupiter 86,881 483.6

Saturn 72,367 886.5

Uranus 31,518 1,783.7

Neptune 30,599 2,795.2

Required: Some of the everyday items listed in the table on the second student page and tools to measure
these objects.
Suggested: Access to the internet or other reference source for finding diameters and mean distances, mod-
eling clay is useful for creating spheres with small diameters.
Optional: Spreadsheet software such as Excel, logarithmic graphing paper.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work and focus on gathering measurements and
the first attempt at devising a model.

Worksheet 2 Guide
The fourth and fifth pages of the lesson consitiute the second day’s work. Students try two more scales then
extend the lesson to mean distance from the Sun.

CCSSM Addressed
N-Q.1, 2, and 3: Reason quantitatively and use units to solve problems.
F-LE.1: Distinguish situations that can be modeled with linear functions.
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A MODEL SOLAR SYSTEM
Student Name:_____________________________________________ Date:_____________________

Hayden Planetarium, part of the Rose Center for Earth and Space of the American
Museum of Natural History in New York City, was redesigned in 2000 to include the
“Scales of the Solar System” exhibit, which shows the vast array of sizes of the planets
and the Sun. The exhibit demonstrates the massive size of the Solar System by modeling
the astronomical bodies as spheres with the Sun being the extremely large sphere par-
tially visible in the top left corner of the photo below. The model Earth, pictured above

with the other terrestrial planets, is 10 inches in diameter. How large is the model Sun in the Hayden Plane-
tarium? How large are the other modeled planets? How might you calculate these things?
If you were to build your own model of the Solar System, the first piece of information that you would need
to gather would be sizes of the astronomical bodies. One of the easier ways to think about the sizes of the
bodies is in terms of diameter. What are the approximate diameters of the Sun, planets, and Moon in our
solar system? Use the internet or another reference tool to find these diameters.

Once you have the approximate diameters of the bodies in the Solar System, determine how to model the
Solar System physically in the classroom. The table on the following page provides objects and approximate
diameters to help create your model.

Astronomical Body Diameter in miles

Sun

Mercury

Venus

Earth

Moon

Mars

Jupiter

Saturn

Uranus

Neptune

Leading Question
What objects found in everyday life might be most helpful in your model? What object would you choose to
represent the Earth? Jupiter? The Sun? Are there other objects that you might add?

Photos: ©Hayden Planetarium
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A MODEL SOLAR SYSTEM
Student Name:_____________________________________________ Date:_____________________

Everyday Objects with Approximate Diameters

Possible Objects to Use Approximate Diameter Possible Objects to Use Approximate Diameter

0.1 inch

0.2 inch Plasma Ball

0.3 inch Hamster Ball 7.5 inches

0.4 inch Crystal Ball 8 inches

Marble 0.5 inch Volleyball

0.6 inch Honeydew Melon

Tolley Marble 0.75 inch 10 inches

Black Grape 0.8 inch 12 inches

Gnocchi 1 inch Basketball

Golf Ball Beach Ball 20 inches

Racketball Ball Bean Bag Chair 4 feet

Bouncy Ball 2.5 inches Wrecking Ball 6 feet

Tennis Ball Water Walking Ball 6.5 feet

Baseball Times Square New Year’s Eve Ball

Orange Tempietto of San Pietro in Rome 15 feet

Bocce Ball 4 inches Large Cannonball Concretion 18 feet

5 inches 40 feet

Medium Medicine Ball 6 inches Epcot Geosphere 165 feet

1939 New York World’s Fair Perisphere 180 feet

1. If the Sun were to be represented by something with a 40-foot diameter, what is the model’s scale?
Show your work.
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A MODEL SOLAR SYSTEM
Student Name:_____________________________________________ Date:_____________________

2. With the scale found in question 1, what everyday object would represent the Earth? The remaining
seven planets? The Moon? Show your work.

Model Scale #1: _______________________________________________________________________

Planet True Diameter Scale Diameter Everyday Object Diameter

Sun 864,327 miles 40 feet

Mercury

Venus

Earth

Moon

Mars

Jupiter

Saturn

Uranus

Neptune

3. What flaws does this particular scale have? Is it possible to create this model in your classroom? Why
or why not? If not, how might you alter your scale so you could use things you can represent in the
classroom?
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A MODEL SOLAR SYSTEM
Student Name:_____________________________________________ Date:_____________________

Recall from the last class what problems your scale might have had. What might you do differently so that
your scale uses objects that you can use in the classroom?

Model Scale #2: _______________________________________________________________________

Planet True Diameter Scale Diameter Everyday Object Diameter

Sun

Mercury

Venus

Earth

Moon

Mars

Jupiter

Saturn

Uranus

Neptune

4. How does your new model compare to the first one? Is it smaller or larger in scale? Which aspects of
the first model are better than the second? Which aspects of the second are better than the first?

5. Can you create a model that incorporates the best qualities of the first and the best qualities of the sec-
ond model? Fill in the table on the next page with your new model scale. Compare with your classmates
and see if you can find the best possible scale. What qualities should the best scale possess?
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A MODEL SOLAR SYSTEM
Student Name:_____________________________________________ Date:_____________________

Model Scale #3: _______________________________________________________________________

Planet True Diameter Scale Diameter Everyday Object Diameter

Sun

Mercury

Venus

Earth

Moon

Mars

Jupiter

Saturn

Uranus

Neptune

Model Scale #4: _____________________________________________________________________________

Planet
True Mean Distance 

from the Sun
(millions of miles)

Scale Mean Distance
(miles)

Scaled Mean Distance
(feet)

Scaled Mean Distance
(inches)

Mercury
Venus
Earth
Mars

Jupiter
Saturn
Uranus

Neptune

Now consider the mean distance of each planet from the Sun (exclude the Moon now). Search for the values
of the average distance between the planets and the Sun, and see if you can incorporate this into your
model. Is the scale also appropriate for your ideal model chosen in the last question?

6. Using this scale, would you be able to see Neptune if you were standing at the Sun? Can you think of a
place where you could demonstrate this model? 

7. Since the model Earth at Hayden Planetarium is 10 inches in diameter, what is the scale that the design-
ers used? How large are the remaining planets and the Sun?
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A MODEL SOLAR SYSTEM
Teacher’s Guide — Possible Solutions

Below are three possible scales that your students might use.

Scale 1: (1/10^8):1 Scale 2: (1/10^9):1 Scale 3: [1/(2.5x10^7)]:1

Celestial 
Body Object Diameter Object Diameter Object Diameter

Sun Hot Air Balloon 40 feet Bean Bag Chair 4 feet World’s Fair 
Perisphere 180 feet

Mercury Golf Ball 1.7 inches English Pea 0.2 inches Hamster Ball 7.5 inches

Venus Bocce Ball 4 inches Raisin 0.4 inches Basketball 18 inches

Earth Grapefruit 5 inches Marble 0.5 inches Beach Ball 20 inches

Moon Gnocchi 1 inch Nerds candy 0.1 inches Grapefruit 5 inches

Mars Bouncy Ball 2.5 inches Pea 0.3 inches Small Sugar Pumpkin 10 inches

Jupiter Wrecking Ball 6 feet Grapefruit 5 inches Large Cannonball 18 feet

Saturn Bean Bag Chair 4 feet Bocce Ball 4 inches Tempiette of San
Pietro 15 feet

Uranus Beach Ball 20 inches Racketball 2.25 inches Water Walking ball 6.5 feet

Neptune Basketball 18 inches Golf Ball 1.7 inches Wrecking Ball 6 feet

Listed below are objects and diameters that could fill the missing table on the second student page.

Possible Objects to
Use

Approximate 
Diameter Possible Objects to Use Approximate Diameter

Nerds Candy 0.1 inch Grapefruit 5 inches

English Pea 0.2 inch Plasma Ball 7 inches

Popcorn Kernel 0.3 inch Volleyball 8.5 inches

Raisin 0.4 inch Honeydew Melon 9 inches

Acorn 0.6 inch Small Sugar Pumpkin 10 inches

Golf Ball 1.7 inches Watermelon 12 inches

Racketball Ball 2.25 inches Basketball 18 inches

Tennis Ball 2.7 inches Times Square New Year’s Eve Ball 12 feet

Baseball 2.8 inches First Modern Hot Air Balloon 40 feet

Orange 3 inches Epcot Geosphere 165 feet
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A MODEL SOLAR SYSTEM
Teacher’s Guide — Extending the Model

Visualizing the geometry of the planets is an accomplishment. For further work, you may also be interested
in looking at the numbers and plotting them and to see how various properties of the planets might be
related. The geometry so far has warned us that this will be difficult since the diameters of the four smallest
planets and the diameters of the four largest form two clusters that are quite different in diameter. The
mean distances from the Sun also span quite a large range and seeing any patterns on a regular piece of
graph paper will be difficult.
A mathematical device that makes it easier to see the behavior of numbers spread widely is to plot loga-
rithms of the numbers rather than the numbers themselves. For any set of data that varies over many
orders of magnitude, such as the planets, the energies of earthquakes, or the annual incomes of families,
plots of the logarithms of the data tend to be very helpful.
When you look at the diameters and the mean distance from the Sun of the various planets and plot them
on log-log paper, no pattern becomes immediately evident. There would be a purpose in doing this prima-
rily to obtain yet another set of data about the planets — the time it takes each planet to complete one revo-
lution about the Sun. The unit in which this typically is measured is the time it takes the Earth to do this,
namely one Earth year. Take the data for the mean time of revolution of each planet and list them next to the
mean distances from the Sun. The sensible thing to do is to plot these on log-log paper. You’re able to see
one phenomenon right away: the two sets of data move up together.
A closer look at the log-log plot shows that the numbers seem to fall very close to a straight line. This means
that for each planet, the logarithm of y, the period of revolution, is linearly related to the logarithm of x, the
mean distance from the Sun. The form of the mathematical equation that these data seem to tell you is

log y = a log x + b
where a and b are numbers we can read from the graph.
If you measure the difference in x and y between Mercury and Pluto (when plotted, of course) you should
get about 8.2 cm and about 12.3 cm, respectively. The slope of the line is very nearly 1.5 (or 3/2).
This says that

log y = (3/2) log x + b

or log y2 = log x3 + 2b

which gives y2 = Bx3

with  B = 102b.

What this shows is Kepler’s Third Law — the square of the period of revolution is proportional to the cube
of the mean radius of the orbit.
If students are intrigued by logarithmic plots, they may want to investigate the Richter Scale for earth-
quakes or the loudness of sounds at various distances.
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A MODEL SOLAR SYSTEM
Teacher’s Guide — Extending the Model

Planet True Mean Period of 
Distance from Revolution
the Sun around the Sun
(millions of miles) (Earth Years)

Mercury 36.0 0.241

Venus 67.2 0.615

Earth 93.0 1.000

Mars 141.6 1.881

Jupiter 483.6 11.863

Saturn 886.5 29.447

Uranus 1783.7 84.017

Neptune 2795.2 164.791
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FOR THE BIRDS Heather Gould

Teacher’s Guide — Getting Started Stone Ridge, NY

Purpose
In this two-day lesson, students are challenged to consider the different physical factors that affect real-
world models. Students are asked to find out how long it will take a birdfeeder — with a constant stream of
birds feeding at it — to empty completely.
To begin, explain that the students will be watching over a neighbor’s home. This neighbor is an ornitholo-
gist (a scientist that studies birds) with a birdfeeder to be looked after. Humans can’t come around too often
because it will frighten the birds, but they also can’t come around too infrequently because the birds will
leave if the feeder frequently is empty. The students need to find out when to come back and fill the feeder
to ensure that the neighbor and the birds are all happy.

Prerequisites
Students need to be very strong with algebra as there is a heavy reliance on equation manipulation in the
lesson.

Materials
Required: (For a physical model) Cardboard box, rice (or sand), cylindrical plastic bottle (a Starbucks Ethos
Water bottle, for example), scissors, stopwatches or timers.
Suggested: Graphing paper or a graphing utility.
Optional: None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are given the opportunity to
explore a physical model of a birdfeeder using a cylindrical, plastic bottle as the feeder and rice as the feed.
Make sure the bottle is perfectly or very nearly cylindrical. Use scissors to cut “feed holes” (approximately 1
cm in diameter) in the appropriate spots, as indicated in the lesson. Cover the holes so no rice falls out until
the experiment is ready to begin (a few students “plugging up” the holes with their fingers is sufficient).
Hold the model feeder over a cardboard box so the rice doesn’t make a mess. Use stopwatches or other
timers to keep track of the total time it takes to empty as well as each of the time periods elapsed at each of
the mathematically important moments.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students need to find out how to
model various different situations; they’ll learn that each one has a mathematical tie-in to the birdfeeder
problems. It turns out that the mathematical model they created for the birdfeeder is sufficient to solve
each problem, but this is not obvious until connections are made as to how the problems are related mathe-
matically.

CCSSM Addressed 
N-Q.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose
and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and
data displays.
N-Q.2: Define appropriate quantities for the purpose of descriptive modeling.
A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving
equations.
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FOR THE BIRDS
Student Name:_____________________________________________ Date:_____________________

Your neighbor, an ornithologist, has to leave for the weekend to do a research study. She has asked you to
make sure her birdfeeder always has food in it so that the birds keep coming back throughout the day.
Refilling too seldom will cause the birds to look elsewhere for food; refilling too much will scare off the
birds.

Leading Question
How often should you feed the birds so they keep coming back?

© Ken Hutchinson | Dreamstime.com
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FOR THE BIRDS
Student Name:_____________________________________________ Date:_____________________

1. Your neighbor told you that it’s important not to fill the feeder too
often or to fill the feeder too seldom, so how can you determine
how often to fill it?

2. When you go over first thing in the morning, the birdfeeder — which has 4 holes, one pair near the 
bottom and another pair about halfway up (shown in the picture) — is nearly full. You check back 45

minutes later and it’s about half full. When do you expect it to empty again?

3. You come back 45 minutes later and it’s still not nearly empty. Why is that? The birds are still coming
by consistently to eat, so they still are hungry. When should you expect the feeder to be nearly empty
and ready for you to fill it again?

4. Describe a method for calculating when the birdfeeder should be empty. Use mathematical notation, 
if you can.

What’s mathematically
important about how the

birdfeeder empties? Are there
any important variables?

Perches

Feeding
Holes
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FOR THE BIRDS
Student Name:_____________________________________________ Date:_____________________

You did so well taking care of your neighbor’s birdfeeder that she recommended
you for a weekend job watching over one of her colleague’s birdfeeders. This bird-
feeder has 6 feeding holes, with pairs equally spaced as shown in the picture.

5. The first morning you get there, you notice that the feeder is about 2/3 full. You wait a while and notice
that it takes about 30 minutes before the feeder is about 1/3 full. How long will it take before you need
to refill the feeder? How long will it take for the feeder to need to be refilled after that?

6. Build a mock birdfeeder like the one above to test your answers
from question 5 above. Use a clear, cylindrical container as the
birdfeeder and rice as the food. How well did your mathematical
model agree with your physical model?

7. Write a mathematical description of how to determine how quickly the birdfeeder will empty.

8. Can you generalize the description above? Are your answers from  questions 4 and 7 similar? How so?

How should you track your
findings? Are there certain

important events?
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FOR THE BIRDS
Student Name:_____________________________________________ Date:_____________________

9. You and 3 of your friends are making crafts for a charity sale. All of you work on Saturday and make
180 in all. On Sunday, only 2 of you can work. How many can you expect to have ready for the sale on
Monday morning?

10. There is another charity sale on Saturday. You will make a new type of craft this time. You plan your
schedules so that on Monday, 5 of you work; 4 work on Tuesday; 3 work on Wednesday; 2 work on
Thursday; and only you make the new craft on Friday. There are 360 crafts done by the end of Tuesday.
How many crafts do you expect will be done for the sale?

11. Describe, using words and mathematical notation, how you obtained your answers.

12. Are the birdfeeder problems related to the craft problems? If so, describe the relationship. Is the math-
ematics involved similar? Why or why not?
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FOR THE BIRDS
Student Name:_____________________________________________ Date:_____________________

13. You are starting a weekend landscaping business. After the first day, you only finished 25% of the week-
end’s work. How many friends do you need to hire for tomorrow to help you make sure all the work
gets done on time?

14. How is question 13 above similar to the birdfeeder and craft problems? How is it different? What math-
ematical ideas, if any, are similar? Did you use similar methods?

15. What other types of problems use methods similar to those used above? Make up and solve a problem
that uses those methods.

16. What are the types of units used in the problems above? If you know the unit needed in the answer of a
problem, can that help you determine how to solve it? Explain.
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FOR THE BIRDS
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Important variables to consider are how quickly a portion empties, if birds will always be feeding (the
lesson assumes they will, given that they are not frightened by a human tending the feeder too often or
frustrated from finding too little food), and how many feeding holes there are and where they’re
located. The latter two variables often are overlooked.

2. One half of the birdfeeder empties in 45 minutes when the birds are able to access 4 feeding holes.
After the halfway point, they are only able to access 2 feeding holes, thereby halving their rate. It takes
45+2(45) = 45+90 = 135 minutes = 2 hours, 15 minutes to empty completely. (Often, incorrect
answers occur because many people don’t consider the different rates.)

3. See answer 2 above.
4. Let F = one feeder, r = the rate at which the feeder empties (the unit is feeders/minute), and t = the

time it takes, in minutes. Then F = rt is satisfied if the rate is always constant. The challenge is that the
rate changes at the halfway point. So F = r1t1 + r2t2. The initial situation gives (1/2)F = r1 • (45). Thus, 
r1 = 1/90. Since the rate slows based on the number of feeding holes available, r2 = (1/2)r1 =
(1/2)(1/90) = 1/180. Then the following is satisfied:
1 = (1/90) • 45 + (1/180) • t2

1 = (1/2) +(1/180)t2

(1/2) = (1/180)t2

90 = t2

The birdfeeder empties after t1 + t2 minutes, which is 135 minutes, or 2 hours and 15 minutes.
5. F = r1t1 + r2t2 + r3t3; t2 = 30; r2 = 2r3; r1 = 3r3. Also, (1/3)F = r2 • (30), so r2 = 1/90. Combine these as

above to get that r3 = 1/180 and t3 = 60. Finally, r1 = 1/60, t1 = 20. The total time is 110 minutes, or 1
hour and 50 minutes.

6. An accurate physical model will have few differences from the mathematical model.
7. See answer 5 above.
8. See answer 5 above.
9. If 4 people can make 180, then 2 people can make (2/4) as many crafts, or 90. Then the total number of

crafts ready by Monday is 270. Mathematically, Crafts = Rate • People. This can be modified as in ques-
tion 4.

10. There are 9 people each completing a workday Monday and Tuesday and they make a total of 360
crafts. Rearrange the formula to get the rate. Rate = crafts/workdays completed, so rate = 360/9 = 40
crafts/workday. So by the end of the week, 15 workdays will be completed in all. Thus, crafts = 40
(crafts/workday) • 15 workdays = 600 crafts.

11. See answer 10 above.
12. Both depend heavily on rates.
13. Rate = (1/4)(total job/person). Thus, (3/4)(total job) = (1/4)(total job/person) • 3 people. 3 people

are needed.
14. This uses different rates, but all rely heavily on rate issues.
15. Answers will vary. Distance/rate/time problems, d = rt, are very common.
16. The unit needed can help with the rearrangement of the necessary formula and can help sort out the

“direction” of the problem.
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FOR THE BIRDS
Teacher’s Guide — Extending the Model

If you plot your data in question 2 to how full the bird feeder is as a function of time, you have three points:
at time 0, it is full (y = 1); at 45 minutes, it is half full (y = 1/2 = 0.5); and your students probably discov-
ered that it would be empty at 135 minutes (y = 0). So they have three points: (0, 1); (45, 0.5); and (135,0).
What do you think happens between these points? You expect the birds to eat pretty steadily! So you con-
nect (0, 1) and (45, 0.5) by a straight-line segment, and then (45, 0.5) and (135, 0) also by a straight-line
segment. You have a function that is defined piecewise. So what would you expect to be the level of the bird
feeder to have been at 18 minutes? Probably 0.8. What about at 1 hour and at 2 hours? 
Suppose you want the upper part of the feeder to empty in the same time as it took the lower part. How can
you get it to do that, with the same number of birds involved in each part? One way is to put the upper
perches closer to the top! Where should you put them? You should put them 1/3 of the way down, or you
could fail to fill the bird feeder completely when you start. Neither the birds nor the scientists would like
that. You can now play with different vertical distances among the rows of perches, and see what variety of
patterns you can get.
You have an interesting new question first: when do you think the bird feeder was originally filled? Pro-
ceeding as before you will again get a function defined-piecewise, but this time it will consist of three
pieces. Why?
Something more should be said about piecewise-defined functions. Such functions are seen much more
often in modeling the outside world than is generally realized. Here are 3 more examples.
(i) Post office functions. The simplest example is the postage for a letter as a function of its weight. Highly

variable from year-to-year. Other rules, dealing with postage for packages, are more complicated.

(ii) There was an ad for the price of turkeys at a supermarket the week before Thanksgiving. It said some-
thing like 89 cents a pound for birds under 8 pounds, 69 cents a pound between 8 and 14 pounds, and
49 cents a pound above 14 pounds. What could you buy for 7 dollars? 8? 9? In the real world, you may
not have all these choices. If you wait too long, you have to settle for whatever size is left.

(iii) Look at the rpm of an automobile engine as the car starts and accelerates to cruising speed. When you
shift from 1st to 2nd, you get onto a different curve and it happens again on the shift from 2nd to high.
When shown this function, many students, even those in engineering schools, have trouble understand-
ing what it represents. Jeff Griffiths from Cardiff, Wales was the source of this observation.

Some of these functions are discontinuous, while others have discontinuous first derivatives. They are all
defined piecewise, and they all model real situations.
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Purpose
In this two-day lesson, students determine the best way to schedule their time while out on a safari.  With
only four hours to be out they must use the probabilities of seeing an animal species to determine how
much time they should spend there before moving on.  The probabilities change with the amount of time
spent at a location.

By determining the expected number of animal species seen, students see that the ideal amount of time
spent at each location is neither the maximum value nor the minimum value.  They justify their conclusion
about scheduling using a graph and the slopes of lines from the origin.

Prerequisites
Students should understand weighted average or expected value and they should be able to construct
smooth curves through a set of points.  Students need to be able to graph points and determine slopes.

Materials
Required:  None.
Suggested:  Graphing paper.
Optional:  None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work.  Students use the table of information
(given on the first page of the lesson) to determine the best length of time to spend at a location while on
safari.  The best length is that which will give them the greatest probability of seeing at least one animal of a
species per amount of time spent.  Thus, students must maximize the unit “probability per minute of seeing
at least one animal of a species”.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work.  To begin, students are introduced
to the idea of a “line segment from the origin”.  They graph the time spent at a location on the x-axis and the
probability of seeing at least one animal of a species on the y-axis and connect the given points with a
smooth S-curve.  Students then plot the line segments from the origin to the curve to find that the optimal
time spent at a location is the one that is associated with the steepest slope from the origin.  Finally, they
compare and analyze both models.

CCSSM Addressed
N-Q.1:  Use units as a way to understand problems and to guide the solution to multi-step problems; choose
and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and
data displays.
F-IF.4:  For a function that models a relationship between two quantities, interpret key features of graphs
and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of
the relationship.
S-MD.5:  (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and 
finding expected values.
S-MD.7:  (+) Analyze decisions and strategies using probability concepts. 
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You’re going on an African safari!  Your goal is to see as many different species of animals as possible.
Before you go on your trip, you have to plan how to organize the four hours you will spend in the game
park.  You will be dropped off and picked up at different locations to spend as much time as you indicate.
The field guide (a person who helps tourists on safaris) tells you that the different types of animals are ter-
ritorial in nature and that seeing two different types of animals at one location is very unlikely.  The guide
knows where to expect to find the different species, so all you have to do is tell him which species you want
to try to see and how long you would like to stay to try to see each one.  The guide has provided you with
information from last season’s safaris (shown below) to help you make your decision.  He also tells you
that, based on his experience, spending a short amount of time at each location results in fewer sightings
because you have to keep quiet and still for a while in order for the animals to feel comfortable enough to
make an appearance.  Spending too long at a location, however, seems to be a waste because sometimes the
animals just don’t show up – there’s no sense in waiting around for uncooperative animals forever!

Public Domain Image. Wikimedia Commons

Leading Question
How should you plan your time so that you see as many different types of animals as possible?

ON SAFARI
Student Name:_____________________________________________ Date:_____________________

Time Spent at
Location

(in minutes)

Number of
Safari

Groups

Total Number of
Groups that had 

a Sighting 

10 150 6

20 160 24

30 80 24

40 20 72

50 25 90

60 110 88

>60 90 72
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1. Examine the table.  Which amount of time is best to spend at any location?  Which amount of time is
worst?  Explain your reasoning.

2. If you choose to divide your four total hours equally among several
locations, how could you do it? 

3. In which of the divisions are you most likely to see as many different species as possible?  In which of
the divisions are you least likely to see many different species?  Use a mathematical explanation, 
if possible.

ON SAFARI
Student Name:_____________________________________________ Date:_____________________

How many ways can you 
split up your time equally?
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4. Can you devise a schedule using unequal divisions of time?  Try to do so and explain your schedule
using either words or mathematical notation.

5. Do you expect to have better results with unequal divisions of time or equal divisions of time?  Explain
your reasoning.

6. Create a mathematical model that indicates the best way to allocate your time.  

7. Explain mathematically how you know your model indicates the best way to allocate your time.

ON SAFARI
Student Name:_____________________________________________ Date:_____________________
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A line segment from the origin is a line segment with endpoints at the origin (0, 0) and at a point on the
curve.  A line that contains a line segment is the unique line that passes through both of the line segment’s
endpoints.

8. One way to model the safari schedule is working with a graph of the time spent at any location and the
probabilities of sighting at least one animal of a species for those times.  Make a graph containing the
points (t, p(t)) by connecting the points with a smooth curve, where p(t) is the probability of seeing the
desired species if you spend t minutes at a location.  What features of the graph do you think are impor-
tant to the model?   

9. Sketch line segments from the origin for each of the 10-minute marks from t = 10 to t = 80 and their
associated probabilities.  What do you notice about these line segments from the origin?  What do you
notice about the lines that contain these line segments?

ON SAFARI
Student Name:_____________________________________________ Date:_____________________
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10. What are the slopes of each of the line segments you drew?  What
are the meanings of each of these slopes in terms of the model?

11. Is there a point on the curve, different from the ones you have focused on so far, where the line segment
from the origin is steeper than the ones you just found?  What are the meanings of each of these slopes?

12. Describe a model using line segments from the origin that gives you the greatest chance of seeing many
different types of animals.  Describe the similarities and differences between your original model and
this one.  Did you use any of the same mathematical ideas?

13. Do you think the line segment model has any flaws?  If so, describe
them and suggest a possible solution, if you can.

ON SAFARI
Student Name:_____________________________________________ Date:_____________________

What is the unit of
measure for the slopes?  Does
this tell you anything helpful?

What variables were not
considered?  Should they have

been?  What if the optimal time
does not divide evenly into the

total time?



ON SAFARI
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods.  Please evaluate students’ solution 
methods on the basis of mathematical validity.

1. The probability per minute of spotting at least one animal of a species is greatest at 40 minutes.
2. Answers will vary, but students should note that the 4 total hours allowed can be divided evenly into

10-, 20-, 30-, 40-, and 60-minute intervals.
3. The probability of seeing as many types of animals is greatest when dividing the total time into 40­

minute intervals.  In a division with only 10­minute intervals, the probability is the least.  This can be

determined by calculating the expected value per minute.

4. Yes, answers will vary.  Unequal divisions of time do not maximize the expected value of animals seen

since this is done with the 40­minute interval.

5. In this case, equally divided time provides the best results possible.

6. Answers will vary but should take into account the probability per minute of seeing an animal.

7. Answers will vary but comparing intervals to one another

shows that the probability of seeing the animals is highest

at the 40­minute interval.

8. Some important features are the inflection points and the

point of the S­curve where a line that contains the line seg­

ment from the origin always lies at or above the curve itself

(See figure to the right. Here, it is at the point (40, 0.6)). 

9. Steeper line segments from the origin indicate the greatest

probability of seeing at least one animal of a certain species

at a location.  In this case, the line that contains the line

segment with greatest slope always lies at or above the

curve while the others do not.  (This particular line is a tan­

gent from the origin to the smooth S­curve.)

10. The line segments from the origin have slopes 0.0040, 0.0075, 0.0100, 0.0150, 0.0144, 0.0125, 0.0114,

and 0.0100, for 10, 20, 30, 40, 50, 60, 70, and 80 minutes spent at each location, respectively.

11. The 40­minute interval is the best use of time since its line segment from the origin has the steepest

slope anywhere on the curve.  In fact, the entire S­curve lies below the line that contains the line seg­

ment from the origin, and this is not the case anywhere else on the curve.  If there were a more efficient

use of time, this point would be at the point of the S­curve where a line containing the line segment

from the origin always lies at or above the S­curve itself.

12. The model plots the probabilities against the time intervals and uses the line segments from the origin

to determine the best way to allot the time.  Answers will vary based on each student’s original model,

but they both should have taken into account the probability per minute of sighting different types of

animals.  One such model that does this is an expected value model.

13. There are several variables that were not taken into account.  Some examples are that the sighting data

for different species may differ from the data for all species combined (as given), different species are

active during different times of the day, the time to travel between locations was ignored, and some­

times the ideal time spent at each location might not divide evenly into the total time allowed in the

game park.
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ON SAFARI
Teacher’s Guide — Extending the Model

In World War II, the most cogent measure of success in air defense was attrition.  If a sufficient percentage
of attacking bombers were shot down regularly, the enemy could not build new planes and train new crews
rapidly enough to keep up their attacks.  A basic design principle for defenses against air attacks was to
achieve the necessary level of attrition.

It was around 1960 that people realized that this was no longer the correct measure of defense.  If each
attacker carries a sufficiently powerful warhead, then it takes only one attacker penetrating the defense to
destroy the target.  The principles for designing defenses needed to be rethought.  What follows is the very
beginning of the new defense theory, the simplest model of the new reality, a model that provides new
insight.

1. There are targets that the attack is trying to destroy and the defense is trying to save.  In this simplest
model, assume that every target has the same value.

2. The attack has a number of offensive weapons and the basic assumption is that one attacker that pene-
trates the defense will wipe out the target.

3. The installed defensive equipment is known to the offense.  The doctrine by which it will be operated is
not.

4. The defense does not know the attack’s intended deployment until the battle is actually under way.  
5. The defensive weapons will be called “missiles”, and assume that targets are sufficiently far apart that

missiles installed to defend one target cannot also defend another.  
6. In this simplest model, assume that attackers arrive simultaneously at a target so that what matters is

the number of defensive missiles that can be launched against a simultaneous attack.  This number of
defensive missiles will be denoted m.

7. There is a known probability k, 0 < k < 1, for one missile to destroy the attacker against which it is sent
and all missiles succeed independently with the same probability k.

Analysis
If the defense sends two missiles against the same attacker, the attacker escapes one with probability 
(1 – k) and escapes both with probability (1 – k)2, so that the attacker is destroyed with probability 
1 – (1 – k)2.  

If the defense sends n missiles against one attacker then the attacker is destroyed with probability 
A = 1 – (1 – k)n.

If the offense sends b attackers against one target, the probability that all attackers are destroyed is Ab, so
that the target is lost with probability 1 – Ab.  

You can show easily that the best the defense can do is divide the available defensive missiles as nearly
equally as possible among the b attackers.  Ignore the fact that equal division may not be exactly possible,
and therefore assume that n = m/b.

Therefore, if the attack sends b attackers against a target and if the defense has m accessible missiles
divided optimally, then the probability that the target is wiped out is

PK = .− − −k1 [1 (1 ) ]
m
b b

36
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Think of PK as a function of b.  If you plot PK against b you get an S-curve just like the curve in question 8.
The offense’s problem of the best choice of b is the same as the problem of picking the viewing time to be
spent on each species.  Picking too many targets is like making the viewing time too short—you don’t have
much of a chance to destroy the target/view the species.

Try a numerical example.  There are 100 possible targets, a total force of b = 600 attackers, and 20 accessi-
ble defensive missiles at each target, each of them with k = 0.5.  If the offense chooses to go after 100 tar-
gets, then b = 6, PK = 0.484, and the expected number of targets destroyed is 48.4.  If the offense attacks
only 75 targets, b = 8, PK = 0.814, and the expected number of targets destroyed is 61.3.  On the other hand,
choosing 60 targets will obviously not get the attack as many as 61.3, but “only” 58.  So there is an optimum
choice for the attack.  Where is it?  Exactly as in the module, it’s at the point where PK(b)/b is maximized,
but that is the slope of the line segment joining the origin to the point (b, PK(b)), and it is maximized if the
line segment is actually part of the tangent from the origin to the curve.

There are many important implications of what has been suggested here.  For example, the PK for the opti-
mum b is almost always near 1.  This means that any target that the offense chooses to attack is almost cer-
tainly lost.  So why would the defense even bother to defend it?  In order to make the optimum value of b as
large as possible.  What good is that?  It makes the attack so expensive for the offense that they will be not
able to attack enough targets to make the overall results worthwhile.

ON SAFARI
Teacher’s Guide — Extending the Model
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Purpose
In this two-day lesson, students determine their best-matched college.  They use decision-making strategies
based on their preferences and ranked choices.  This lesson guides students through the process of select-
ing a list of choices and rating these choices based on their preferences in order to find the college most
suited to their preferences and requirements.

Prerequisites
Students must understand how information is sorted in matrices or arrays and they should have experience
with problem solving in elementary algebra and utilizing open-ended questioning in mathematics.

Materials
Required:  A current issue of US World & News Report 100 Best Colleges & Universities (or similar
resource).
Suggested:  Spreadsheet software (such as MS Excel), internet access.
Optional:  None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work in which students generate a list of suit-
able criteria to help them select a college or university.  Students use mathematics to show their prefer-
ences of one criterion over another, which may be considered in the model.  A set of colleges to consider is
determined, and students rate each of the colleges in the set based on how well they meet their preferences
for each of the criteria.  An initial model for choosing the best school is created. 

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work in which students are introduced
to and create a decision matrix using the ratings determined on the first day.  This becomes a refined model
used for determining the best-suited college.  Finally, students are introduced to column vectors and use
them to weigh each of the important criteria to create a more refined model.  The students are not specifi-
cally introduced to multiplication of a matrix by a vector, although they are led toward it.

CCSSM Addressed
N-Q.2:  Define appropriate quantities for the purpose of descriptive modeling.
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Making decisions can sometimes be quite difficult, especially when it’s a decision about where you will
spend the next two to four years of your life after you graduate from high school – we’re talking about 
college, of course!

© Comap, Inc.

Leading Question
How can you choose the most suitable college for you?

CHOOSING A COLLEGE
Student Name:_____________________________________________ Date:_____________________

COLLEGE 101
A guide to higher education
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1. What criteria are important for you in considering a college or uni-
versity?  Choose 3 – 5 of the criteria that are the most important
ones in your opinion.

2. Of the criteria you have chosen, which are more important to you?
For instance, is tuition more important than location, or is location
more important than tuition?  List your preferences in order of
importance.  Explain why each criterion is more important than
the next.

3. Choose 3 – 5 colleges in which you are interested and indicate how
well they match or meet each of your chosen criteria.  Use refer-
ence materials such as the US News & World Report 100 Best 
Colleges & Universities or similar resource about colleges to help
guide you. 

CHOOSING A COLLEGE
Student Name:_____________________________________________ Date:_____________________

Think about a rating scheme
like GPA in which 

A = 4, B = 3, C = 2, D = 1, and
F = 0.

What makes one criterion
more important to you than

another?

Some examples of
criteria to consider are

athletics, academics, costs,
financial aid available, and

location.
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4. Use your responses to question 3 to create a model that will help you choose the best school for you.

5. Does your model help you determine which college is best for you?
Does it give you your expected results?  Does it organize your 
opinions conveniently?  Do you think anyone could use it to help
determine their best college choice?

6. If your friend has a different list of schools and preferences that he wants to test, how can you use your
model to help him?  Be specific.

CHOOSING A COLLEGE
Student Name:_____________________________________________ Date:_____________________

Is there a tie?  If so, how does
your model help you break it?
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A decision matrix is a tool used to manage a large number of preferences in a simple form.  The entries of
the decision matrix indicate how well each alternative meets the criterion in question.  The rows represent
alternatives (the objects that are being compared) and the columns represent criteria (the characteristics
on which the alternatives are being judged).  Mathematical operations are used on decision matrices to help
reach conclusions about questions related to real-life situations, such as choosing a college.

7. Use your preferences to create a decision matrix for your criteria and the colleges you are considering.

8. Using the decision matrix, how can you determine the final rating
of a specific college?

9. Think of your initial model.  If you didn’t use a decision matrix, use one to model a method to determine
the best college for you.  Do the results make sense?  If so, how do they make sense?  If not, why do you
think they do not make sense?  Compare your initial model to this new method. If you used a decision
matrix model initially, what led you to do so?

CHOOSING A COLLEGE
Student Name:_____________________________________________ Date:_____________________

If it looks like College A
should be rated higher than

College B, what mathematics
can you use to show that the

individual ratings in each
preference “add up” to be

more for one than the other?
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In linear algebra, a column (or row) vector is a matrix consisting only of a single column (or row).  
Mathematical operations with vectors are used on matrices to help allow for the easy analysis of preference
matrices.

10. Look at the relationship between each of your chosen criteria.  How can you use mathematics to show
that you prefer one criterion over another?  Did the decision matrix model you created give equal con-
sideration to all of your criteria?  Explain how your model gives either equal or unequal consideration
to the criteria and which of these two options should be used in the model.

11. If your model should give unequal consideration to different criteria and it does not, use your
responses to question 10 to create a column vector to help you weigh each criteria against one another.
The vector, should indicate how you’ve given unequal consideration to each of your criteria and the 
ith row should correspond to the ith criterion.

12. Use your decision matrix and column vector to create a modified model and determine the best college
for you.  What does this model say about the best college for you?

13. Can other real-life decisions be determined using decision matrices?  If so, list them and describe
briefly how you would go about creating a model for each.

�
v

CHOOSING A COLLEGE
Student Name:_____________________________________________ Date:_____________________



CHOOSING A COLLEGE
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The solutions shown represent only some possible solution methods.  Please evaluate students’ solution
methods on the basis of mathematical validity.

1. There are various criteria that may be considered. In this answer key we will consider academics,
financial aid, and the location of the college as the most important.

2. Here, financial aid is the most important, followed by academics, then location.
3. A scoring or point system can be used in which colleges that meet a given criterion perfectly are given 5

points and colleges that do not meet the criterion at all are given 0 points.  So if College I has great
financial aid, is a decent school academically, but is a bit far away from home, it will be given the scores
5, 3, and 2 for financial aid, academics, and location, respectively.  Similar lines of reasoning gives Col-
lege II the scores 2, 4, and 5; College III is given the scores 1, 5, and 5; and College IV is given the scores
4, 4, and 0.

4. Each college has been rated on each of the criteria and this information can be summarized in an array,
as shown below.  The college with the highest sum in its row is the best college choice.  Colleges II and
III are the best options thus far, but this particular model does not have a method of breaking ties.

5. The model helps determine better schools, but it has flaws because it cannot help break a tie and deter-
mine a single best college.  Notice it considers each criterion to have equal value.  A person who cares
about financial aid much more than academics and location, but still considers those to be the three
most important criteria, will not necessarily be satisfied with this model.

6. The same model can be used to help, although different criteria will need to be chosen, his set of col-
leges to consider will be different, and his ratings will be different.  He still has no way to break a tie.

7. The decision matrix associated with these rankings is similar to the array given above.  It is shown
below. 

8. The final rating of a college is the sum of the entries in its row.  The college with the highest rating is the
best one for the student.

9. The decision matrix model and the initial model provided here are very similar, so they have similar
benefits and flaws.

10. One way to indicate preference of one criterion over another is to give different point values to them.  If
academic quality is considered to be about twice as important as location, and financial aid is consid-
ered to be a small bit more important than academics, then we can give each criterion a point value.  So
we can give ratings of 5 points to financial aid, 4 points to academics, and 2 points to location.  The 
initial model gives equal consideration to all criteria, but it probably should not.

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

5 3 2
2 4 5
1 5 5
4 4 0
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Financial Aid Academics Location Sum
College I 5 3 2 10
College II 2 4 5 11
College III 1 5 5 11
College IV 4 4 0 8
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11. Most people won’t consider all of their most important criteria all to be equally important, so there
should probably be some weighting system in place.  The points given in answer 10, namely 5, 4, and 2
points for financial aid, academics, and location, respectively, yield a column matrix whose entries sum
to 1.  Thus,

12. The decision matrix model can be revised by multiplying the decision matrix by the column vector.
This will gives weights to each of the entries.  The product of the multiplication gives College I a rating
of 3.69, College II a rating of 3.24, College III a rating of 3.15, and College IV a rating of 3.24.  This model
gives College I the highest rating because it meets the financial aid criterion the best and it was compa-
rably rated in the initial model.  Thus, College I is the best choice using this model.  Note that if a stu-
dent had chosen to give different ranges of point values for different criteria, then this step would
unnecessarily inflate ratings.  (So if, for example, financial aid ratings were between 0 and 25, academ-
ics ratings were between 0 and 20, and location ratings were between 0 and 10, then this step would
give too much weight to some criteria and not enough to others.)  Thus, it is important for the student
to recognize if their initial model or decision matrix model had already taken the relative importance of
each criterion into account.

13. This model can be modified to use to help solve many real-life decision problems.  One could choose
which political candidate is the right one for them to vote for, for instance.  In this case, the alternatives
would be each candidate and the criteria would be political issues.  The candidates would be rated on
how well each of their views or voting records matched with the voter in question.  The model could be
refined to incorporate the importance of each issue to the voter using matrix multiplication by a col-
umn vector in which the entries represent the relative importance of each issue to one another for the
voter.
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Our method for choosing a college came in two steps: in the first, we created a decision matrix and rated
each of four Colleges (I, II, III, and IV in our example) on each of three criteria (financial aid, academics, and
location in our example); in the second, we assigned a weight to each criterion, specifically, 5/11 for finan-
cial aid, 4/11 for academics, and 2/11 for location.  Notice that these are proportions that add up to 1.  In
the example, College I was the winner, II and IV were tied for second, and III came in last.

Suppose that instead of (5/11, 4/11, 2/11) as the weights, we had used (x, y, z) with the conditions that
each of x, y, and z are greater than or equal to 0, and that the sum of x, y, and z is 1.  Can our choice of the
four colleges be the winner given that we have appropriately chosen values of x, y, and z?  We can’t be sure,
but we can find out.  Remembering the decision matrix, we see that the score for College I will be 5x + 3y +
2z.  Since it’s a lot easier to work with visual representations, and since it’s a lot easier to draw pictures in
two dimensions than in three, we can try to reduce our work from three dimensions to two.  We know that 
z = 1 – x – y.  If we make that substitution, we get scores, S, for each of the colleges in just two variables:  for
College I, the score is SI = 5x + 3y + 2(1 – x – y) = 3x + y + 2; for College II, SII = –3x – y + 5; for College III,
SIII = –4x + 5; and for College IV, SIV = 4x + 4y.

So College I will win if SI = max(SI, SII, SIII, SIV).  If we want to plot our results, the region of the (x, y) plane in
which we look is given by the conditions x ≥ 0, y ≥ 0, and also z = 1 – x – y ≤ 0, which we rewrite as x + y ≤ 1.
Together, these form an isosceles right triangle T in the first quadrant.  What will happen is that this trian-
gle will be divided into at most four polygonal regions, and in each of those regions, one of the four colleges
will be the winner.  In this case, we do get four regions, which means that with the right choice of (x, y, z),
any one of the four can be the winner.  This will not always happen.  Each polygonal region is convex and
any segment of each boundary is a segment of a straight line Si = Sj (where i and j stand for Roman numer-
als), or else a segment of the three boundary edges of the triangle T.  The picture is given on a separate
page.  A line Si = Sj divides the plane into two half-planes:  in one, Si < Sj , and in the other, Si > Sj .  Unless the
line happens to go through the origin, a lazy way to tell which is which is to see where the origin should be.
(In our example, only the line SII = SIII goes through the origin.)  This makes each of the four polygonal
regions the intersection of half-planes determined by its boundary segments and the boundaries of T.

There is a good chance that this extension of the module could be of tactical value to a student.  Suppose she
really wants to go to College III, but has pressure from outside sources to choose a different one.  Rather
than choosing her preference outright, it might be more impressive and help her make her case to say,
“Well, I set up my decision matrix, and then I made the choice that financial aid was 2/10 of my personal
weight, academics was 5/10, and location was 3/10.  When I set x = 0.2 and y = 0.5, I ended up smack in
the middle of the region in which College III was the best!  It just happened!”

When you look at the picture, however, you see that it would be much more difficult to end up with College
IV as the best choice.  There is only a small triangular region in which College IV is preferred to each of the
other three, and you would have to pick something very near x = 0.35 and y = 0.6 (and therefore z = 0.05)
to end up there.

Note that it is possible to use a different coordinate system so that all three of x, y, and z can be seen at the
same time.  These are called barycentric coordinates, they are not well known, and it would take a major
project to see how they work.
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A graph of each of the combinations of scores set equal to one another so that Si = Sj and one of the lines
defining triangle, T.

A graph showing each of the four polygonal regions in which each of the colleges can attain a maximum
score compared to the others.

CHOOSING A COLLEGE
Teacher’s Guide — Extending the Model
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A TOUR OF JAFFA Inbar Aricha

Teacher’s Guide — Getting Started Hadera, Israel

Purpose
In this two-day lesson, students will model a graph optimization problem called the “Traveling Salesman
Problem” (TSP). The TSP seeks to minimize the cost of the route a salesperson should follow to visit a set of
cities and return to home. The goal is to find a minimal-cost Hamilton circuit in a complete graph having an
associated cost array, M.

To begin, explain the situation to students. They are about to visit a new place such as a zoo, a city, a shop-
ping center, or an amusement park, and they wish to plan their trip beforehand. What should they consider
when planning their trip? How would they plan the most efficient route? 

Prerequisites
Students need only basic understanding of graphs and matrices or arrays.

Materials
Required: Rulers.
Suggested: Push-pins, corkboard, and string.
Optional: Internet access, printer (to find and print maps of different attractions).

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are asked to think of a site they
wish to visit — or, in the absence of availability of a computer with internet access, they may use the map of
Jaffa provided. Students identify 5–7 sites that are “must-sees” in that they are the most important to visit
while on the trip. Students consider different variables that should be taken into account when planning a
trip to that site; these variables include distance or time to travel from one site to another, or perhaps the
cost to use a toll-road on the route between these areas. Students build their own model for the problem of
planning the best route for their visit at their chosen site. They are then introduced to the model a mathe-
matician would generally build, a graph. Finally, they are challenged to find a “best route” using the graph
and must consider if this is, indeed, the best route possible.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students are given the definition
of a Hamilton circuit as well as an algorithm to find efficient Hamilton circuits in mathematical language.
Students will be asked to think deeply about the properties and constraints of the model they created. Stu-
dents then apply the algorithm and use a cost array to determine how close the algorithm came to the lower
bound of the route.

CCSSM Addressed
N-Q.2: Define appropriate quantities for the purpose of descriptive modeling.
G-MG.3: Apply geometric methods to solve design problems.
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Student Name:_____________________________________________ Date:_____________________

Have you ever been on vacation and didn’t get to visit all the attractions you wanted? Do you think you
could have used mathematics to help you get to all or, at least, more of the attractions you wanted to visit?

Leading Question
How can you plan a route so you have time to make it to all the sites you want to see?

A

C

BB

D     

E

F

MEDITERRANEAN

Old Jaffa, 
Tel Aviv

Andromeda’s Rock

Map illustration by Comap

THE CLOCK TOWER SQUARE
A- THE CLOCK TOWER. One of a hundred clock towers erected throughout the

Ottoman Empire in 1900, commemorating the twenty �ive years of the Sul-
tanate Abdul Hamid the Second. The Clock Tower was the focus point for the
diverse commercial activities and many markets �lourished around it.

B- THE SARAYA. The Turkish Government building, in the center of the market
square (known today as the Clock Tower Square), was erected in 1897. Saraya
means castle in Turkish.

C- THE MAHMUDIYA MOSQUE. Jaffa’s large Mosque, built by Muhammad Abu
Nabut, who was the Ottoman ruler of the city between 1807–1818. Nabut was
responsible for building and developing Jaffa after a long period of recession.
On the southern side of the mosque is the SABIL (meaning road)–water foun-
tain, where travelers and their livestock stopped to refresh themselves before
continuing their journey.

OLD JAFFA
D- ST. PETER’S CHURCH. Built by the Franciscan Church between 1888-1894. As

early as the 17th century, Franciscan Monks arrived at this site and built a
church on the remains of a crusader fortress dated from the days of King Louis
IX, who took part in the Crusades. According to local tradition, the church also
hosted Napoleon when he visited Jaffa on his journey in the land of Israel.

E- HOUSE OF SIMON THE TANNER. The site has real importance in the Christian
tradition. In his house stayed St. Peter (one of the foremost apostles of the
Christ and also considered the �irst pope) and there took place the miracle of
the dream.

F- THE BRIDGE OF DREAMS. According to an ancient legend, wishes will be
granted to anyone who stands on the bridge, holding his astrological sign and
looking at the sea.
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Student Name:_____________________________________________ Date:_____________________

Choose a specific site that you wish to visit, such as a zoo, a theme park, a shopping mall, a recreation 
park, a new city, or any other site you can think of. Make sure that the site you choose has several points of
interest.

1. You will not be able to visit all the attractions at your site, so
choose 5–7 of your favorite points of interest. How many ways are
there to travel from any starting point you choose, visit each site
exactly once, then return to the starting point?

2. What do you think is a good way to plan your route? What might cause you to be unable to visit all the
sites you want in a single day? What do you need to know about the site before you can plan a route?

3. Make a mathematical model to help you plan your route.

Why do you think you should
only visit each place (except
the starting/ending point)

exactly once? Is it necessary
to start and end at the same

place?

What do you think is
important to consider in your

model? What do you think
you can “ignore” for now?
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Student Name:_____________________________________________ Date:_____________________

4. Did your model help you find a route? Did it help you find the best route? How can you be sure? Is there
a way to be sure? Explain.

One way that mathematicians would show a route is to use a graph. These are not the types of graphs that
you usually think of, though. These graphs have two important features: vertices (these usually are drawn
as points or dots and they represent something of interest; the singular form of the name is vertex) and
edges (lines connecting the vertices; they are used to show some relationship between the vertices they
connect).

5. Did you use a graph to model your route or not? If not, try to do so. What do the vertices represent?
What do the edges represent? Which model do you like better and why? If you did make a graph,
explain how you chose your vertices and edges. What do they represent?

6. Are there factors that you ignored while making your graph that
maybe you shouldn’t have? Is there a way to modify the graph so
some of these factors can be considered? If so, modify it.

7. Are you sure that you found the best, most efficient route? What does it mean for a route to be the
“most efficient”? Give an example of two different routes from your graph. Is one more efficient than the
other? How can you tell?

Are all the edges equal or do
they have different “edge

weights”? What might “edge
weight” mean?
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A route (known as a path) that starts and ends at the same vertex and visits each vertex in the graph exactly
once until ending at the starting point is called a Hamilton circuit, and the problem of looking for the most
efficient Hamilton circuit is a famous mathematical problem called the Traveling Salesman Problem (TSP).
There is an algorithm (a set of steps) to help find some very efficient Hamilton circuits.

The algorithm has three requirements:
i) The cost of going between two vertices is the same in either direction. (The cost is symmetric.)

ii) The cost of going from vertex A to vertex B is less than or equal to the cost of going from vertex A to
vertex C to vertex B. (The costs fulfill the triangle inequality.)

iii) Each vertex is connected by an edge to every other vertex. (The graph is complete.)

8. Explain why and in which real-life cases these requirements are reasonable.

9. Does your graph fulfill these requirements? How would you make it fulfill the requirements without
drastically changing what you expect to be the most efficient paths?
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The Traveling Salesman Algorithm
The following algorithm helps to determine near-minimal routes.

I) Pick any vertex as a starting point for a circuit C1 consisting of 1 vertex.
II) Given the circuit Ck with k vertices and k≥1, find the vertex Zk not in Ck that is closest to a vertex in Ck;

call the vertex in Ck that is Zk is closest to Yk.
III) Let Ck+1 be the circuit with k+1 vertices obtained by inserting Zk immediately before Yk in Ck.
IV) Repeat steps II and III until a Hamilton circuit (containing all vertices) is formed.

10. Can you use an array M to represent the cost of moving between any two vertices on your graph? What
does the entry in the cell M(i,j) represent? What is the value of a cell M(i,i)?

11. Apply the algorithm for several different starting points. Compute the “cost” of the route you found. Did
you get the same cost for each route?

12. Look at your graph and cost array and try to find a lower bound for the optimal route. How close is the
lower bound to the smallest result from the algorithm? Do you think the algorithm got you reasonably
close to the lower bound? Is the algorithm a good way to help you visit all the places you want to visit?



55

A TOUR OF JAFFA
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. A tour of old Jaffa in Israel could feature the following five sites: A – The Clock Tower, C  – The Mahmu-
dia Mosque, D – Saint Peter’s Church, E – House of Simon the Tanner, and F – The Bridge of Dreams.
There are five different attractions and so there are 5! = 120 different routes. For n attractions, there
are n! different routes. It is usually important to start and end at the same point, since we’ll usually
park our car and will want to start and end next to it. You can also plan a trip in which, for example, you
use public transportation and can start and end at different points.

2. There’s a good chance that there won’t be enough time to visit all the attractions or there may be mone-
tary limitations due to entrance fees and problems of the like. Some factors to check between any two
attractions are distance, time, money, different modes of transportation (such as walking, driving a car,
or public transportation), and the cost of each attraction.

3. The undirected graph to the right can be used to model these
attractions.

4. The model helps to see the different possible routes, but it’s dif-
ficult to decide which is “best”.

5. The vertices represent the attractions. The edges represent
routes between vertices.

6. Edges are not equal; each edge can represent any of the factors
suggested in the answer to question 2. “Edge weight” is a num-
ber that is assigned to each edge that represents the factor cho-
sen. On the graph shown to the right, each edge weight
represents the time it takes (in minutes) to go from one site to
another. Another choice for edge weights could have been dis-
tance between two sites.

7. The most efficient route is the route that goes through all ver-
tices at a minimal time. This is because time is the important fac-
tor chosen. If distance was highlighted as the edge weight
meaning in question 6, then the most efficient route would have
been the shortest one that goes through all the vertices once and
only once. Essentially, out of all possible routes, the sum of the
edges that are used in the most efficient route will be the smallest. In the graph shown, the route AED-
FCA takes 22 minutes. The route CAFEDC takes 20 minutes. The route CAFEDC is more efficient. It is
unclear if the latter is the most efficient route. Without an algorithm to insure the most efficient route,
one would have to check all 120 possible routes.

8. (i) A graph that models this problem can be directed (with non-symmetric costs) or undirected (with
symmetric costs). One real-life case is when edge weights represent distance, walking can be repre-
sented as an undirected graph, while it will be more reasonable to represent driving with a directed
graph; when the edge weights represent time, walking in a level plane can be represented as an undi-
rected graph, while it will be more reasonable to represent driving and or walking on an unlevel plane
by a directed graph.
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(ii) When the edge weights represent distance or time the triangle inequality is satisfied.

(iii) If the graph is not complete, adding an arbitrarily long edge when there is no path between two
attractions will complete the graph without affecting the optimal route.

9. The graph in question 6 fulfills constraints i and iii, but not ii; AE = 10, but AD + DE = 9. The probable
source of this error is that time was rounded to whole minutes and the sum of two numbers that round
to 6 and 3 respectively can easily round to 10. This can be solved by changing the weight of edge AD to
9 and then the graph will fulfill the second constraint.

A C D E F

A ∞ 2 6 10 6 

C 2 ∞ 5 9 5 

D 6 5 ∞ 3 2 

E 10 9 3 ∞ 4 

F 6 5 2 4 ∞ 

10. The associated cost array is shown to the right. The value of M(i,j) is the cost of using the edge from
vertex i to vertex j. The value of M(i,i) is the cost of using the edge from the vertex i to itself, and so,
doesn’t matter; one can use the infinity symbol or any other symbol or notation that won’t be confused
as a possible value between two vertices.

11. Start with vertex A as C1. Vertex C is closest to A, so C2= ACA. Vertices D and F are the vertices not in C2

that are closest to vertices in C2, namely, closest to C. Pick F, so C3= AFCA. Now, vertex D is the vertex
not in C3 that is closest to a vertex in C3, namely, closest to F; thus C4= ADFCA. Finally, vertex E is of dis-
tance 3 from D, so place it before D. A near-minimal route has been obtained: C5= AEDFCA, whose cost
is 22. Try other vertices as the starting vertex or other decisions (in cases of more than one option) and
apply the algorithm again; other near-minimal routes are obtained. Pick the shortest of these. So, start-
ing with C, the near-minimal route CAFEDC, whose cost is 20, is obtained; starting with D, the near-
minimal route DFEACD, whose cost is 23, is obtained; starting E, the near-minimal routes EACFDE and
EFACDE, whose costs are 22 and 23 respectively, are obtained. The best result so far costs 20 minutes.
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A C D E F 

A ∞ 0 4 7 4 

C 0 ∞ 3 6 3 

D 4 3 ∞ 0 0 

E 7 6 0 ∞ 1 

F 4 3 0 1 ∞ 

12. A lower bound for the cost of this TSP can be obtained by subtracting a constant value (as large as pos-
sible) from every row and then from every column without making any entry in a row or a column neg-
ative. This works because every route must contain an entry in every row/column, the edges of a
minimal tour will not change if we subtract a constant value from each row/column of the array. In this
case, subtract a total of 2+2+2+3+2+1= 12 to obtain the array shown. A minimal route using the cost
in this array must cost at least 0, and so a minimal route using the original array will cost at least 12. In
general, the lower bound for the TSP equals the sum of the constants subtracted from the rows and
columns of the original cost array to obtain a new cost array with a 0 entry in each row and column.
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First of all, what if students wish to go beyond question 12, which gives a lower bound of 12? Some might
find it interesting to consider an argument like the following: it sure looks like using the link from A to C is a
good idea since it gives no additional cost than the minimum necessary (that’s what the 0 in the array
means). If you use AC, your circuit will have to get into A from somewhere, and the cheapest link into A is
from D or F at a cost of 4. Similarly, the circuit will have to go out of C to somewhere (but not A), and the
cheapest way out of C is to either D or F, which cost 3. So in fact, you know that a circuit which uses AC will
cost at least 12+4+3, which is 19. As a matter of fact, 19 is a darn good guess for the best possible answer.
Because the problem is so small — it has only 5 sites — there are only 12 possible circuits, namely ACDEFA,
ACDFEA, ACEDFA, ACEFDA, ACFDEA, ACFEDA, ADCEFA, ADCFEA, AECDFA, AECFDA, AFCDEA, and AFCEDA.
(Twelve others are each of these read in reverse.) You can compute the costs of these 12 circuits from the
table in problem 10. See how close you get to 19. 
Wait a minute! Question 1 said that there are n! different circuits, and with n = 5, this is 120. How come
only 12? Well, when you have n sites, the n! comes from starting at any site, then going to any other, etc.,
until you’ve been to them all, and then going back to the original site. But you will get the identical circuit n
times by starting at any of the n sites. So there are only (n–1)! directed circuits. And also we are assuming
that our cost matrix is symmetric, so each circuit at each beginning can be traversed backwards at the same
cost. That’s where you obtain (n–1)!/2 for the number of undirected circuits. So really, the number of differ-
ent circuits depends on how you’re defining “different”. By the way, just how do you make that list of
twelve? How do you know it’s right? Well, one way is to start and end with A and make sure that C is either
second or third. Those lists in which C is fourth or fifth are then the ones given when you read each of them
in reverse order. 
The instinct for what goes on in a TSP often comes from a TSP in the Euclidean plane. In that case, the costs
are Euclidean distances and according to question 7, the distances are symmetric, there is a known distance
between any two sites, and the distances satisfy the triangle inequality. That, as we have said, is where our
instincts come from. It follows that the circuit never passes through any site more than once, and the circuit
never crosses itself. (That’s a theorem.)
Contrary to instinct, the cost in the real world is not necessarily direct Euclidean distance; it may be some-
thing like distance along actual streets or pathways, or may be time along the pathway rather than distance,
for example. This is what happens in the Jaffa problem. You can’t go “as the crow flies” from one point to
another, there may be walls, buildings, ditches, and other obstacles in the way. You also may have noticed
that the costs in the table of question 10 do not all satisfy the triangle inequality. AD costs 6, DE costs 3, but
AE costs 10. What’s going on here? Well, the physical route for walking from A to E probably goes through
D. And let’s imagine that the costs were time, and the original numbers perhaps had one more significant
figure, so that AD was really 6.3 minutes, which rounds to 6 minutes; DE was 3.4 minutes which rounds to 3
minutes, and AE was 9.7 minutes, which rounds to 10 minutes. Maybe that’s why it looks like the triangle
inequality was violated. All are perfectly real, but that’s the kind of difficulty you have to watch out for! And
the circuit ACDEFA is a very good one, but if you look at it as the crow flies on the tour map, it crosses itself!
But you couldn’t walk exactly that way! Euclidean distance is a good guide, but the numbers in the real
world are not exactly proportional to Euclidean distance.
If you are thinking of a TSP for an airplane business trip, the situation with airplane fares is much worse!
Between many pairs of commercial airports there are no direct flights and you will pay for the actual rout-
ing — or worse. Flying to, or through, airports in which there is lots of competition is usually cheaper than
flying to a single-provider airport — and Euclid doesn’t have anything to say about that!
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GAUGING RAINFALL Stuart Weinberg

Teacher’s Guide — Getting Started Teachers College, Columbia University

Purpose
In this two-day lesson, students will estimate the average rainfall for a 16 km by 18 km territory in
Rajasthan, India. Rainfall estimations will be based on rain gauges scattered around the territory. Since
these placements are varied, students will need to identify each gauge’s “region of influence” to estimate
the average rainfall.
To begin, explain the situation that needs to be modeled. Meteorologists need to understand average rain-
fall totals in a region in order to make short-term forecasts. These are usually for relatively shorter periods
of time. Climatologists need to understand average rainfall totals for relatively longer periods of time in
order to understand, among other things, climate change.

Prerequisites
Students need to understand equidistance, how to compute areas of various polygons, and how to compute
a weighted average. The ability to make basic straightedge and compass constructions is desirable.

Materials
Required: Rulers.
Suggested: Compasses or protractors and colored pencils (to distinguish different polygons).
Optional: Geometry software or Internet access.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are given the opportunity to
explore their intuition regarding rainfall and suggest ways to approximate average rainfall. Students are
likely to use an outright arithmetic mean to determine average weekly rainfall. Maps are then introduced to
convey the idea that the relative placement of each of the gauges is mathematically important. Finally, stu-
dents are asked to try to construct a model that will take into account the placement of the gauges.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. To begin, students consider the
idea of “region of influence”. Voronoi diagrams (also called Thiessen polygons in relation to meteorology)
are introduced. Students are asked how Voronoi diagrams may be useful in estimating average depth of
rainfall and will construct these diagrams. They are then asked to determine how the polygons can be used
to weight the readings at the rain gauges and will use this method. Then the model is extended to use more
gauges. The students will determine which of their original method (from the first day) and Voronoi dia-
grams works better than the other or if they work in the same way. Finally, students are asked to consider
the main property of the polygons in Voronoi diagrams (the boundaries of regions of influence) and deter-
mine where else they can be applied. Students may want to research possible uses on the internet.

CCSSM Addressed
N-Q.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
G-MG.1: Use geometric shapes, their measures, and their properties to describe objects.
G-MG.3: Apply geometric methods to solve design problems.
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Student Name:_____________________________________________ Date:_____________________

Meteorologists and climatologists are concerned with tracking the amount of rainfall in a given place over
different periods of time. They use these data for things like making short-term forecasts and making long-
term inferences about climate change. They collect rainfall data using rain gauges that are spread out
around the region that they are studying.

Source: California Precipitation Map — 
Department of Forestry and Fire Protection

Leading Question
How can a climatologist determine the average rainfall using rain gauges spread throughout a territory in
the state of Rajasthan in India? The territory is rectangular, measuring about 16 km by 18 km and the
gauges are scattered around.
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1. Consider the territory described in the leading question. Use the table below to determine the average
rainfall for the territory in that week. The table below gives the rainfall measurements for one week at
each guage.

2. Using the data from question 1, determine the total volume of rain-
fall for the week. Can this be done? Why or why not? Explain.

3. Suppose in another week, the rain gauges give the total rainfall as in the map below. What is the aver-
age depth of the rainfall that week?

Gauge
Rainfall
Depth 

(in mm)

A 12.6

B 13.4

C 10.8

Do you need more
information? What is meant
by “total volume”? What do

you know about volume?
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4. Consider the rainfall in another week in this territory. How much
rainfall do you think was measured at the gauge at B? Why do you
think that? Using your guess for the depth of rainfall at B, find the
average rainfall in the territory.

5. What do you think your answers for questions 3 and 4 say about rainfall gauges? What is important to
consider when looking at the measurements from the gauges?

6. Consider the map of the territory below. Use your ideas from question 5 to help you create a better
model to estimate the week’s average depth of rainfall in the territory below.

For what points is the gauge
at A a better estimator? At C?
Is B in one of those regions?
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7. It seems that rain gauges have different “regions of influence” depending on where they are placed. Did
your model from question 6 use “regions of influence”? How might using these help you estimate the
average weekly rainfall?

In mathematics, a Voronoi diagram is a partition of a space as a set of discrete polygons. Each region con-
tains one “center of influence”. The other points in the interior of a polygon represent all the points that are
closer to that polygon’s point of interest than any other point of interest. In meteorology, Voronoi diagrams
are also called Thiessen polygons.

8. Why does a Voronoi diagram help to determine the average depth of rainfall?

9. Use Voronoi diagrams to estimate the average weekly rainfall in
the map given below. How would you construct a

Voronoi diagram? What is
important about their

boundaries?
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10. Use two methods to estimate the average weekly depth of rainfall for the map below: first, your method
from question 6, and second, Voronoi diagrams. Did both methods give the same result? Which method
seems to work better?

11. Use the method you used in question 6 and also Voronoi diagrams to estimate the average weekly
depth of rainfall for the map below. Do both methods work here?

12. Where else do you think you can use Voronoi diagrams? What property of Voronoi diagrams makes
them reasonable to use in these types of applications?
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Arithmetic Mean: (12.6 mm + 13.4 mm + 10.8 mm)/3 = 12.27 mm
2. Area of region = (16 • 18) km2 = 288 km2. Volume ≈ 3,500,000 m3. (Change units.)
3. Arithmetic Mean: (2 mm + 2 mm + 5 mm)/3 = 3 mm.
4. B probably measured 5 mm. This is because rainfall does not change much over short distances. Aver-

age rainfall will thus be (2 mm + 5 mm + 5 mm)/3 = 4 mm.
5. Rainfall gauges near each other will have similar rainfall totals. The relative position of each gauge is an

important variable to consider.
6. The Voronoi diagram (to the right) will give the poly-

gons that represent each gauge’s “region of influ-
ence”. They are constructed using the perpendicular
bisectors of each side of the triangle ABC. Average
rainfall is computed by using the relative area of each
polygon and multiplying this by the rainfall at the
gauge encompassed by the polygon, then summing.
The areas for the polygons defined by A, B, and C rep-
resent 0.301, 0.313, and 0.386 of the total area,
respectively. So the average rainfall is about 7.1 mm.

7. “Regions of influence” can be used in a weighted
average of the rainfall.

8. The Voronoi diagram helps determine average rain-
fall because polygon boundaries represent all points
equidistant from two points and their interiors rep-
resent all points closest to its gauge than any other
gauge.

9. Using the same model as in question 6, the average depth of rainfall is about 8.4 mm.
10. Answers will vary, but the average depth of rainfall for the Voronoi diagram method is about 8.8 mm.

The proportion of areas given by A, B, C, and D are about 0.314, 0.244, 0.257, and 0.185, respectively.
11. Answers will vary, but the average depth of rainfall should be about 8.5 mm. The Voronoi method

should work as a good approximation; the specific model the student initially chose to use may or may
not work as well.

12. Voronoi diagrams can be used to calculate the end of a solar system because the end of a solar system is
the boundary at which the star’s influence is less than the next closest star’s influence. They have also
been used in anthropology to determine the influence of Mayan city-states and by epidemiologists to
show a point of origination of disease.
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The ideas in this model have been used in building understanding in a surprisingly large number of situa-
tions. One of the earliest that is often cited was in determining a likely source of the Broad Street cholera
outbreak in London in the mid-1850s. It was determined that each of a large number of victims lived closer
to a particular water pump than to any other and this pump was then determined to be the source of the
infection. But there are dozens of other applications — in chemistry, in archaeology, you name it. 
For those interested in going further into the geometry of Voronoi diagrams, Chapter 5 of Course 2 in
COMAP’s Mathematics: Modeling Our World contains a number of suggestions.  An especially nice problem
is to recover the centers of each individual region given the boundaries, as distinguished from the original
problem of finding the polygon boundaries given the centers.  One method that might particularly appeal to
those with an interest in algorithms is as follows:  Pick a location X that seems
likely to be close to the center you are trying to find.  Then its reflection in one of
the edges should be close to the center of that polygon.  Keep doing this as you "go
around" a corner at which polygons meet until you get to your original polygon.  If
X′ = X, then your direction from the corner A is correct.  If X′ ≠ X, pick a new guess
halfway in between X′ and X and try again.  You will rapidly approach the correct
direction from A.  Then do the same process around an adjacent corner B.  You
then know the direction from A to the center and the direction from B to the cen-
ter.  Together they determine the location of the center.  (See the image shown to
the right with the points numbered from 1 to 8 in the order they were placed
and/or reflected around corner A.)
We are now within sniffing distance of a computer algorithm, and for those who are doing a first course in
computer science, here is one more connection to Voronoi diagrams. Your course is likely to include two
methods for finding a shortest connecting network, also called a minimal spanning tree in the context of
graph theory. The two methods are Kruskal’s Method and Prim’s Method, and let’s look at them for vertices
in the Euclidean plane. In both methods, it is necessary at some time to compute the distance from every
vertex to every other. (In Kruskal’s, you do them all at once; in Prim’s, you do them in dribs and drabs, but
you do them all eventually.) Now, if the computer had eyes, it would know that two vertices which are far
apart, with other vertices in between, never end up being directly connected. You know that, but how does
the computer know that? A lovely result is the following: before you try to compute the shortest connecting
network for your vertices, first compute the Voronoi regions for these vertices. Then vertex a can be con-
nected to vertex b in a shortest connecting network only if the Voronoi polygons centered at a and at b
share an edge! This is how the computer can “see” that two vertices are too far apart to be directly con-
nected in a shortest connecting network.
As a practical matter, computing the Voronoi diagrams for a given set of vertices is not cheap, but for large
numbers of vertices it is quicker than the full Kruskal and Prim algorithms. So it would pay you to do this
computation – but only for a problem with many vertices.

Reference
Mathematics: Modeling Our World, Course 2 (2nd ed.). (2011). Bedford, MA: COMAP.
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Purpose
In this two-day lesson, students are asked to determine whether large, long, and bulky objects fit around
the corner of a narrow corridor. 
The objective of this lesson is to apply the concept of turning points (maximum or minimum points) and
the Pythagorean Theorem to determine the longest object that can go around the corner of a corridor.

Prerequisites
Students should know how to draw and interpret graphs and should know how to identify the maximum
and minimum points of a graph. Prior knowledge of Pythagorean Theorem is required. 

Materials
Required: Ruler (metric).
Suggested: A graphing calculator or other graphing utility.
Optional: None.

Worksheet 1 Guide
The first four pages of the lesson constitute the first day’s work in which students are introduced to the
problem of moving a sofa, but then asked to investigate a similar but simpler problem. Instead of a sofa,
which is a three-dimensional object, they are asked to explore the case where a plumber tries to carry a
long pipe around a corner. Since no prior knowledge in differentiation is necessary, students are expected to
use graphing tools to sketch the graph of the mathematical expression that they have formulated. They are
then required to interpret the graph(s) and draw a conclusion. This activity can be modified to incorporate
differentiation to find the minimum value of a function.

Worksheet 2 Guide
The fifth and sixth pages of the lesson constitute the second day’s work in which students use the results
obtained in the earlier class to model the original problem. Different corridor shapes are introduced to
incorporate real-world variations within their model. 

CCSSM Addressed
A-CED.1: Create equations and inequalities in one variable and use them to solve problems.
A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph
equations on coordinates axes with labels and scales.
F-IF.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases
and using technology for more complicated cases.
F-BF.1: Write a function that describes a relationship between two quantities.
G-SRT.8: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied 
problems. 
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George and Linda wanted to buy a sofa for their new apartment at a sale. Linda saw a sofa that she really
liked. But George thought otherwise. 

I like this sofa!
Let’s get it for our 
apartment!

  Honey, I don’t think that’s
a good idea. I think the sofa

might not go around the 
corner of our corridor!

Oh come on,
the sofa is only
3 ft. wide and 

the width of the 
corridor is 5 ft.

I am sure the sofa
will go around 

the corner!

SALE

The sofa is 3 feet wide, 9.5 feet long, and 3 feet high. Figure 1 shows
the floor plan of the corridor that leads to George and Linda’s new
apartment. In addition, the ceiling is 9 feet above the floor.

Leading Question
If George and Linda buy the sofa, will they be able to move it into their apartment? 
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Before modeling with a sofa, think of a similar problem in which a
plumber tries to carry a long pipe horizontally around the corner of
the corridor. You may assume that the width of the pipe is negligible. If
the pipe is too long, it will be stuck at the corner as shown in Figure 2.

1. Investigate the relationship between l, y, and x in Figure 3 on the 
next page. Complete the following table by measuring l and y with a
ruler for different values of x.

a = _________________ cm.

x cm y cm l cm

10

9

8

7

6

5

4

3

2

1
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2. Use a graphing calculator to draw the scatter plot of l against x. What do you observe?
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3. Write an algebraic expression for l in terms of x.

4. With the help of a graphing calculator, sketch the graph of the equation found in question 3 for 
1 ≤ x ≤ 10. What do you observe? Does the graph fit the scatter plot in question 2? 

5. From the graph found in question 4, what is the length of the longest pipe that can go around the 
corner of the corridor horizontally in Figure 2?

6. If it is not necessary for the plumber to carry the pipe horizontally, do you still think the answer
obtained in question 5 is the length of the longest pipe that can go around the corner? Justify your
answer.
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Use your previous results to help solve the original question of moving a sofa around the corner of a 
corridor.

7. What is the length of the longest sofa with a width of 3 feet that can go around the corner of the 
corridor horizontally?

8. If the movers are allowed to tilt the sofa while moving it, what is the length of the longest sofa that can
go around the corner of the corridor? Do you think George and Linda should buy the sofa?
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9. If the corner of the corridor makes an angle of 120˚ instead of a right angle as shown in Figure 4, what
is the length of the longest sofa with a width of 3 feet and a height of 3 feet that can go around the cor-
ner? Should George and Linda buy the sofa in this case?

10. Suppose George’s and Linda’s apartment is along the corridor as shown in Figure 5 and the width of the
door is 4 feet and its height is 8 feet. Will the longest possible sofa found in questions 7 and 8 be able to
fit through the door?
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Students should obtain a value of approximately a = 5 cm.
2. A scatter plot on their graphing calculator should look similar to the one pic-

tured. They should conclude that there exists a minimum value of l as x varies. In
other words, there exists the shortest pipe that will be stuck at the corner of the

x cm y cm l cm
10 2.5 16.8
9 2.8 16.0
8 3.1 15.3
7 3.6 14.7
6 4.4 14.3
5 5.0 14.1
4 6.3 14.4
3 8.3 15.5
2 12.5 18.8
1 25 30.6

corridor and it appears to occur when x = 5. 

3. By the Pythagorean Theorem, l2 = (x + 5)2 + (y + 5)2. By similar triangles, = → y = .

Therefore, l2 = (x + 5)2 ( + 5)2  which yields l = 

4. The graph of l against x for x > 0 has a minimum 
point at x = 5.

When x = 5, l = = 10 When the graph
is superimposed on the scatter plot in question 2, the
graph should fit the scatter plot well. The solution can
also be obtained by using trigonometric functions.     

25
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5
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x
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5. From question 4, the length of the longest pipe that can go around the corner is 10 ft.

6. Using the Pythagorean Theorem, the length of the longest pipe that can go around the corner is 16.8 ft.
7. The length of the longest sofa that can go around the corner horizontally is 8.14 ft. So the sofa, which is

8.5 ft. long, will not be able to go around the corridor horizontally.
8. The length of the longest sofa that can go around the corner of the corridor is 9.18 ft. George and Linda

should not buy the sofa.
9. The length of the longest sofa that can go around the corner of the corridor is 10.2 ft. 

10. If the sofa is moved horizontally, the length of the longest sofa that can pass through the door is 6.67 ft.
The length of the longest sofa that can go around the corner of the corridor is 7.60 ft and so the sofa
found in questions 7 and 8 will not be able to pass through the door.

2
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The length of the longest pipe that would go around the 90° corner was computed by using the Pythagorean
Theorem. The horizontal distance was x + 5, and the vertical distance was (25/x) + 5. Hence:

l = 

The length l could have been computed in a different way. The pipe can be thought of as consisting of two
pieces, one to the left of the point where it is up against the interior wall, and one to the right of that point.
The piece to the left has length

while the piece to the right has length

.

Thus, the length can also be written as 

l = .

Perfectly true, but perhaps unexpected. It is unusual in high school algebra for the sum of two such differ-
ently looking square roots to equal yet another different single square root. You can see why it is true in our
model, but why is it true algebraically? 

The question about going around the 120° corner leads to another interesting problem. If we have an
obtuse triangle with sides of length a and b on either side of the 120° angle, how long is the side opposite
the 120° angle?  By the law of cosines, we get that c2 = a2 – 2ab cos 120° + b2 = a2 + ab + b2. So it is natural
to ask the question, “What corresponds to Pythagorean triples in a 120° triangle?” Are there integers a, b,
and c such that a2 + ab + b2 = c2? Well, a = 5 and b = 3 yield c = 7, so it can certainly happen. Other exam-
ples are (7, 8, 13) and (7, 33, 37). [No, it is not true that all solutions involve 7. There is (5, 16, 19).] Here is
a general formula for solutions: pick non-negative integers m and n, and let

a = 3n2 + 2mn

b = 2mn + n2

c = 3n2 + 3mn + n2.

See the following reference for an application of this bit of mathematics in the context of high-speed 
photography. 

Reference
Gilbert, E.N. (1963)., Masks to pack circles densely, J.SMPTE 72, 606-608
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Purpose
In this two-day lesson, students will model the path of a baseball in flight and use that model to determine
how far the ball will travel (in ground distance).  Students then use those ideas to apply them to skeet
shooting where they determine not just the flight of the clay disk, but also the flight of the pellet and their
intersection point.

Ideally, the lesson will involve solving a system of linear equations to determine the function and solving a
quadratic equation to find the roots of this function, although other models are encouraged.  For some
examples, you may be able to factor to solve the resulting quadratic equation, but if the polynomial is prime,
the quadratic formula, completing the square, or the graphing calculator can be used. 

Prerequisites
Knowledge of quadratic functions, solving systems of linear equations, and solving quadratic equations is
required.  Students should also know the meaning of domain and range of functions.

Materials
Required:  A tennis ball or other round object that can be tossed by students.
Suggested:  Graphing calculators, geometry software (for diagrams), and a SMART Board.
Optional:  None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work.  Students work towards determining a
good model that follows the path of the baseball.  They are encouraged to focus on what variables are
important to consider as well as the domain of the function.  Students are then given measurements for a
hit baseball to apply their model to the real world of baseball.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work, which focuses on skeet shooting.
Students use their models from the baseball example to model the flight of the clay target while also model-
ing the path of a pellet to determine how far the pellet traveled to hit the clay target.

CCSSM Addressed 
A-CED.1:  Create equations and inequalities in one variable and use them to solve problems.  
A-REI.11:  Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and 
y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using
technology to graph the functions, make tables of values, or find successive approximations. Include cases
where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic 
functions.
F-IF.5:  Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it
describes.
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You are sitting in the stands at a baseball game when a towering home run goes over your head and you
cannot help but wonder how far the ball will go if unimpeded.  The “long ball” is considered by many to be
one of the most exciting parts of the game.  One of baseball’s great home run hitters, Mickey Mantle, was
said once to have hit a ball a distance over 700 feet!  Is there an accurate way to estimate the distance a
home run hit could travel if unimpeded?

Public domain Photo–www.flickr.com/photos/tonythemisfit

Leading Question 
How can you determine how far the ball could travel if unimpeded?

TALE OF THE TAPE
Student Name:_____________________________________________ Date:_____________________
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1. What mathematical properties does the path of the 
baseball have?

2. What information is essential in order to create a model for the flight of the baseball?  What aspects of
the flight of the baseball might be too difficult to use in your model?  What information is less impor-
tant to your model?

3. What type of mathematical model can you use to represent the path of the ball?  Create your model.

TALE OF THE TAPE
Student Name:_____________________________________________ Date:_____________________

Try throwing a ball in the
air.  Are there any symmetries

in its flight?
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4. A baseball player makes contact with a ball 4 feet above the
ground.  The ball reaches its maximum height of 84 feet when the
ball is 200 feet from home plate, measured along the ground.  The
ball hits the scoreboard at a height of 64 feet when the ball is 300
feet from home plate.  Use your model to find where it would land 
if it were not impeded.

5. If you obtained more than one numerical value, how do you know which one is the solution to your
problem?  If you have more than one value, what do these values mean?  What does the presence of one
negative and one positive value each say about the domain of your function?  What would be an appro-
priate domain for your function?

6. How could you solve this problem if you were given only the maxi-
mum point and the initial point, and not the impact point with the
stands?   

TALE OF THE TAPE
Student Name:_____________________________________________ Date:_____________________

What mathematical
value describes the landing

point of the baseball?

What special properties
of the maximum can you use 

to help you?
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While the path of a baseball uses only one mathematical function, other sports sometimes require more
than one function to be used in the model.  In skeet shooting, a clay disk is launched into the air and the
goal is to shoot the disk in mid-flight.

7. What function might you use to model the flight of the disk?  How much (or little) information do you
need to create a model that traces its path?

8. What type of function might you use as a model to approximate the path of a pellet that hits the clay
disk?  What information do you need to create a model that traces its path?

9. How can you use the models of the two paths to indicate where the pellet hits the clay disk?

TALE OF THE TAPE
Student Name:_____________________________________________ Date:_____________________
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10. Create a mathematical model that you could use to describe the path of a pellet and a clay disk in skeet
shooting.  

11. A clay disk is shot from one yard directly behind the shooter and reaches its maximum height of 9 yards
when it is 2 yards in ground distance in front of the shooter.  If the shooter fires the gun and the clay
disk is hit when it is 3 yards in ground distance away from the shooter, how far did the pellet travel in
actual distance (not in ground distance)? How does determining the distance the pellet traveled help
you determine when you have to shoot the gun?

12. Can you think of any other situations (besides baseball and skeet shooting) where you can use this
technique to help you solve another problem?  Research methods that are used to find the distance a
home run has traveled.  How are these methods similar to or different from your methods used in this
lesson?  What other variables are considered in these models?

TALE OF THE TAPE
Student Name:_____________________________________________ Date:_____________________
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The solutions shown represent only some possible solution methods.  Please evaluate students’ solution 
methods on the basis of mathematical validity.

1. The flight of the baseball is uniformly continuous (i.e., smooth) and its path follows that of a parabolic
curve.

2. Instantaneous points during the flight of the ball are essential for creating an accurate model.  Gravity,
friction, and the spin on the baseball are a few of the things that do act upon the baseball but are too
difficult to consider without advanced mathematics or physics.  A variable such as speed has little
importance in creating the model.

3. While the path of the ball is parabolic in nature, some students might choose to model with other func-
tions such as arcs of circles or trigonometric functions.  

4. For a parabolic model, the equation is y = (–1/500)x2 + (4/5)x + 4.  This has a positive solution of
approximately 405, so the ball would land about 405 feet from home plate.

5. For a “concave down” parabola whose y-intercept is positive, there will always be two real solutions,
one positive and one negative — the positive solution is the correct one to use in this case.  Negative
distance does not make sense in this context.  The domain of the function should be restricted to non-
negative values.

6. In the parabolic model, the x-coordinate of the maximum is equal to –b/(2a).  Since c = 4 (from the 

initial height), using the formula for the x-coordinate of the vertex gives 200 = .  It follows that 

b = –400a and substituting results in a = and b = (–400) = .

7. The flight of the clay disk is comparable to the flight of a baseball.  It can be modeled with a parabola in
a similar way as the flight of a baseball.

8. While a pellet’s flight is also parabolic, a good approximation can be made with a linear function over
short distances.  Two points are necessary to determine the formula for a linear function.

9. The point of impact is the intersection point of the two functions.  This can be calculated by setting the
two functions equal to each other and solving.

10. A good model will have the clay disk’s path modeled as a parabolic function with a negative value for
the x2 coefficient.  The pellet’s path will be modeled with a linear function and the two should have at
least one point of intersection.

11. One function that models the flight of the clay disk is f(x) = –x2 + 4x + 5 = –(x +1)(x –5).  The point 
(3, 8) lies on this parabola and represents where a linear approximation of the pellet’s path would hit
the disk.  Using the distance formula or the Pythagorean Theorem, students can calculate that the
approximate distance that the pellet traveled is ≈ 8.5 yards.  If you know the approximate distance
the pellet traveled, and you know the speed of the clay disk and the pellet, you can determine when to
fire the gun

12. Answers will vary depending on what ideas students have and what they discover while researching.
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The most common models for projectile motions ignore air resistance, and the only force acting on the pro-
jectile is taken to be gravity.  The mathematics involved is that of parabolas and there are lots of pretty
problems.  For example, how high should the roof of a domed baseball stadium be?

The truth of the matter is that there is a force opposing the motion. When mathematics or classical physics
models try to take this into account, the most common method takes the force opposing the motion to be
proportional to the square of the velocity.  Are either of these true?  Well, at relatively low velocities, the
force proportional to velocity is said to be pretty accurate; at high velocities, the force proportional to the
square of the velocity is endorsed.  For the specific application to baseball, there is no better source of infor-
mation than Robert K. Adair’s book The Physics of Baseball.  This tells you that the real world is pretty com-
plicated, but in the region of speeds most relevant to baseball, Adair prefers the “square of the velocity”
model.  One might harbor some suspicions that the true power of the velocity can vary a good deal.

Not that truth is the only influence on the design of a mathematical model of motion with air resistance.
Mathematical analysis applied to motion with no air resistance leads to parabolic models, and a minor diffi-
culty is the pedagogic confusion between height as a function of time and height as a function of horizontal
distance traveled.  Both of them are quadratics, you see, and the possible confusion between y as a function
of t and y as a function of x can be quite troublesome because both are parabolas!

If you wish to model projectile motion with a force opposing the motion proportional to some power b of
velocity, only the cases b = 1 and b = 2 have analytic solutions, although the solution with b = 1 is easier
than the solution with b = 2.  For other constant values of b, or, even worse, values of b possibly varying
with velocity and air density, your friendly numerical analyst or computational physicist will take over, and
the mathematical analyst will mourn the loss of elegance.

Let us take a quick look at the case where b = 1, in the simplest scenario of a ball going straight up and then

down.  The equation of motion on the way up is , where c > 0.  Here, is positive, and 

the air resistance acts with the force of gravity to slow the motion.  You can write this as

or

When you integrate this, you obtain
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The constant of integration, k, turns out to be v0 + , where v0 is the initial velocity at t = 0.  

You can integrate this once more, and remembering that y(0) = 0, you obtain 

y(t) = .

It is instructive to see that when c goes to 0, the usual equation of motion results.  Also, you may find the
value of t at which y is maximized, and the corresponding maximum value of y.  Calculator plots of the
results with varying c give you insight into the size of the effect of the air resistance.  From an incorrigible
analyst, one more comment.  The equation when b = 2 succumbs to a corresponding analytic attack, except
that the first integration leads to an arctangent rather than a natural logarithm.  It is, admittedly, messier.

So, do the books emphasize the cases b = 1 and 2 because a traditional mathematical analysis is possible, or
because they are reasonable models of some aspect of physical truth?  As Alfred Doolittle says in “Pyg-
malion” when Henry Higgins asks him whether he is an honest man or a rogue, “a little of both, Henry, like
the rest of us: a little of both.”

References
Adair, R.K.  (2002).  The physics of baseball.  New York:  Perennial.
Shaw, G.B.  (1912).  Pygmalion:  A play in five acts.
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UNSTABLE TABLE Heather Gould

Teacher’s Guide — Getting Started Stone Ridge, NY

Purpose
Have you ever tried to eat on an unstable, tippy table? No doubt drinks and soup were spilled easily!
Restaurant wait staff often fold paper napkins to wedge under one of the legs to stabilize the table.
In this two-day lesson, students learn to stabilize a table without the use of napkins — they can rotate it up
to 90°. The result is counterintuitive but can be verified mathematically.

Prerequisites
Knowledge of slope and continuous functions.

Materials
Required: Small furniture such as doll furniture, construction paper, scissors, and string.
Suggested: None.
Optional: None.

Worksheet 1 Guide
The first four pages of the lesson constitute the first day’s work. Students are encouraged to experiment
with small furniture to check to see if they can stabilize it by a rotation in various spots around the class-
room. Students develop a model in two dimensions that will help them understand the situation more com-
pletely. Students experiment with the model and find the commonalities between the two- and
three-dimensional worlds. Finally, they begin to build an intuitive understanding of the Intermediate Value
Theorem.

Worksheet 2 Guide
The fifth through eighth pages of the lesson constitute the second day’s work. Students continue to work
with the two-dimensional model, but the situation becomes more complicated — it is the two-dimensional
version of a 4-legged table in three dimensions. They find through experimentation that it always is possi-
ble to stabilize a 3-legged table in two dimensions and give a mathematical explanation that relies on the
Intermediate Value Theorem. Finally, they extend their model to the situation at hand (a 4-legged table in
three dimensions) and mathematically show that it always is possible to stabilize the 4-legged table.

CCSSM Addressed
A-CED.1: Create equations in one variable and solve them.
F-IF.4: For a function that models a relationship between two quantities, interpret key features of graphs
and tables in terms of quantities, and sketch graphs showing key features given a verbal description of the
relationship.
F-BF.4: Write a function that describes a relationship between two quantities.
F-LE.5: Interpret the parameters of a linear function in terms of context.



88

UNSTABLE TABLE
Student Name:_____________________________________________ Date:_____________________

Have you ever tried to eat a bowl of soup on an unstable, wobbly table? What happened? If you were in a
restaurant, a waiter may have wedged a folded paper napkin under one of the table’s legs to stabilize it —
but there’s another way! This is because the problem usually isn’t with the table’s legs; the problem is that
the floor is uneven!

Leading Question
How can a restaurant’s wait staff use the unevenness of the floor to help them stabilize an unstable table?

© Comap, Inc.



UNSTABLE TABLE
Student Name:_____________________________________________ Date:_____________________

1. It seems that most of the instability in tables is caused by uneven floors. Experiment by placing furni-
ture with 3 or 4 legs in different places around the classroom. Is your furniture unstable? If so, try
rotating it little by little. Does it become stable? Repeat this experiment several times in different spots
around the classroom. Fill in the table below.

2. Do you think some rotation will always cause the table to become stable? Why or why not?

3. If you were unable to stabilize the table, it could be that one leg is
shorter than the others. Stretch string between the tips each pair
of opposite legs. How can you tell if the tips of the legs are copla-
nar?

89

What does “coplanar” mean?
What do you know about
things that are coplanar?

Trial # Degree of Rotation Needed to Stabilize the Table

1

2

3
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Student Name:_____________________________________________ Date:_____________________

If the tips of the table are coplanar, it will be stable when the floor is level. If you conduct more trials by
rotating a table on an uneven floor, you should observe that rotation always seems to stabilize the table —
but to show that it is true requires a mathematical model. Sometimes, to get started, it helps to model a sim-
ilar but simpler situation.
Two-dimensional objects are usually simpler to study than three-dimensional ones. Even though the two-
dimensional tables aren’t useful in the real world, they may be helpful in the mathematical world. In the
two-dimensional world, 2- and 3-legged tables would look like the pictures below.

4. What should represent an uneven floor in the two-dimensional
world? Use construction paper to cut out an uneven two-dimen-
sional floor and several two-dimensional tables.

5. In a two-dimensional model, a rotation in three dimensions must be replaced by a “slide.” Slide a 2-
legged two-dimensional table along the two-dimensional floor until both legs contact the floor. Try this
for several different starting positions. Is it difficult to stabilize the table? Explain your findings.

What properties might an
uneven floor have? Would it
keep rising forever or would

it rise and fall and stay
around the same height?
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Student Name:_____________________________________________ Date:_____________________

6. Do you observe a common property between a 2-legged two-dimensional table and a 3-legged three-
dimensional table? Explain your thoughts.

7. What do you observe about changes in the slope of the top of the 2-legged table as it slides along an
uneven floor?

8. If the slope of the tabletop is positive at one point and negative at another, what must happen in
between? Explain what this tells you about the tabletop.
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Student Name:_____________________________________________ Date:_____________________

9. Consider the 3-legged two-dimensional table on the uneven two-
dimensional floor. Slide it until all 3 legs contact the floor and
record the length of the slide needed to stabilize the table. Repeat
this experiment several times starting at different places on the
floor. Record your results.

10. Was it always possible to stabilize the 3-legged table on the uneven two-dimensional floor? Explain.

11. What do your trials indicate about the length of the slide required?

12. Consider two slope functions: l1, the slope of the line from the first leg to the floor at a point below the
second leg, and l2, the slope of the line from the third leg to the floor below the second leg. An example
is shown below. In the example, the slope of l1 is negative. Is the slope of l2 positive or negative?
Explain.

Trial # Length of Slide Needed to Stabilize the Table

1

2

3

Consider the length of the
slide in terms of the distance

between adjacent legs.
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Student Name:_____________________________________________ Date:_____________________

13. Let S1 and S2 be slope functions that have different values as the table slides along the floor. Subtract
these two functions to obtain S = S1 – S2. Is S a continuous function? Explain.

14. If S is continuous, what must occur between points where S > 0 and S < 0? Explain.

15. At the point where S = 0, what must be true of S1 and S2? What does that tell you about the position of
the middle leg with respect to the uneven floor?

16. Suppose the first leg of the table is above the floor while the two other legs touch the floor, as shown
below. What slopes would you use to show that as the two-dimensional table slides along the floor, at
some position all three legs will touch?



94

UNSTABLE TABLE
Student Name:_____________________________________________ Date:_____________________

If you have understood how two-dimensional tables slide along an uneven two-dimensional floor, you
should be able to extend the two-dimensional model to three dimensions. Begin by thinking of the legs of a
4-legged three-dimensional table as the table is rotated on the uneven floor. Actually, if a two-dimensional
“floor” is bent to form a circle, it’s just like the arc around which a three-dimensional table rotates. 

17. Will a 4-legged three-dimensional table always have 3 of its legs touching the uneven floor? Explain.

18. Can a continuous function be found that is positive somewhere and negative somewhere else? If so,
what would that tell you about the function?

19. Experiment! Perhaps two or more slope functions will suffice. Since 3 legs of an unstable 4-legged table
always will touch the floor, exactly 1 leg always will be above the floor, say, by k mm. Connect the oppo-
site legs of the 4-legged table that do touch the floor with a line segment, l1. At each end, the height
above the floor is 0 mm. To create l2, connect the third leg with the point on the floor below the fourth
leg (the one that doesn’t touch the uneven floor). The slope of line l1 is 0 as is the slope of line l2 – k, that
is, S1 = 0 and S2 = –k. Subtract these two functions to obtain S = S1 – S2. Of course, the values of S1, S2,
and S change as the table is rotated. How do the values of S1 and S2 change when the table is rotated
exactly 90°?
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Student Name:_____________________________________________ Date:_____________________

20. Considering what happens to S1 and S2 when the 4-legged table is rotated by exactly 90°, what must
happen to S in between? What does this mean in terms of the table?

21. What can you say about the possibility of stabilizing a 4-legged table on an uneven floor? Are you sur-
prised by what your model shows?
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UNSTABLE TABLE
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Answers will vary. However, 3-legged tables should always be stable and never need to be rotated
because any 3 points define a plane; 4-legged tables should never require more than a 90° rotation.

2. Most students will believe that it is not always possible to stabilize a table with a rotation. Contrary to
what students believe, a rotation always will stabilize a table with legs whose ends are coplanar on a
surface that is not always increasing or always decreasing.

3. The tips of the legs are coplanar if the strings, when pulled taut, do not bend.
4. Below is a sketch of a possible uneven two-dimensional floor. The floor will rise and fall a bit, but it will

generally stay around the same height.

5. There should be no difficulty stabilizing a 2-legged table in two dimensions. It should be stable in any
position it is placed.

6. The feet of a 2-legged table always define a line (as any 2 points define a line). The feet of a 3-legged
table always define a plane. The concept of a line in two dimensions is similar to the concept of a plane
in three dimensions.

7. The slope of the tabletop will change from negative, to 0, to positive, to 0, to negative, and so on as long
as it keeps sliding.

8. The slope must be 0 at some point in between. This means that the table eventually will not only be sta-
ble, but will also be level.

9. Answers will vary. The length of the slide never should be longer than the distance between adjacent
(consecutive) legs.

10. It is always possible to stabilize the table and, in fact, it always can be done with a slide whose length is
less than or equal to the distance between adjacent legs.

11. The slide never was longer than the distance between adjacent legs.
12. The slope of l2 is positive. Unless they are both 0, the slopes of l1 and l2 will always have opposite signs.
13. Yes, S is a continuous function since both l1 and l2 are continuous functions and subtraction is a continu-

ous operation.
14. Since S is continuous, it must be 0 at some point in between.
15. If S = 0, then S1 = S2 and the middle leg must be touching the floor — the table will be stable.
16. The slopes of l1 and l2 still are used. In the picture, one must find l1 by “wobbling” the table so that the

first leg is touching the floor. Thus, S1 is positive and S2 is negative.
17. Yes, because any 3 points define a plane.
18. Yes, one can. Define lines on opposite legs of the 4-legged three-dimensional table. This means that the

slope would be 0 somewhere in between and the table would be stabilized.
19. At 90°, the slopes S1 and S2 exchange their previous values. So, if S1 was 0, it would become –k and if S2

was –k, it would become 0.
20. Since the values of S1 and S2 exchanged values, then S changed from k to –k. It must have been 0 in

between. Thus, the table can be stabilized within a 90° rotation.
21. It always is possible to stabilize a 4-legged three-dimensional table. This result is usually surprising.



97

UNSTABLE TABLE
Teacher’s Guide — Extending the Model

Please keep in mind that “stabilize” can have two different interpretations. One interpretation is that all the
legs of the table are on the floor at the same time so that it doesn’t take somebody’s foot to hold the table
down or a napkin stuffed under a short leg. Another is that the tabletop is also horizontal so that nothing
will slide off of it. Generally speaking, the first interpretation tends to apply to the three-dimensional table,
and the second to the two-dimensional table.
We want to take a more careful look — you might even say “rigorous” look — at the mathematics underly-
ing the simplest form of this modeling problem. Let us assume that the floor covers the interval [0, 1] and
that the height of the floor is given by a continuous function h(x). We assume that h(0) = h(1). Let the table
have length 1/2. Does it follow that there must be an x ∈ [0, 1] such that h(x + 1/2) = h(x)? That would be
a stable position of the table. It does follow, and the proof is given below.
Proof: Let g(x) = h(x + 1/2) – h(x), which is defined for x ∈ [0, 1/2]. Either g(0) = 0 or it doesn’t. If it g(0)
= 0, then x = 0 is a value of x with the desired property. If g(0) ≠ 0, then we may assume without loss of
generality that g(0) > 0. Then we claim that g(1/2) < 0. Why? Well, g(0) + g(1/2) = h(1/2) – h(0) + h(1) –
h(1/2) = h(1) – h(0) = 0, and so if g(0) > 0, then g(1/2) < 0. But g(x) is a continuous function because
h(x) is continuous. Hence by the Intermediate Value Theorem, there is a value of x0 ∈ (0, 1) such that g(x0)
= 0. By definition of g, h(x0 + 1/2) = h(x0).
A very similar argument will work for a table of length 1/3. We set g(x) = h(x + 1/3) – h(x). Then g(0) +
g(1/3) + g(2/3) = 0, and if g(0) > 0, then at last one of g(1/3) and g(2/3) must be negative. Therefore g(0)
= 0 somewhere in [0, 2/3]. The same argument will work for a table of length 1/n, where n is an integer.
The result is false for a table of length α if α > 1/2. For example, let h(x) = x in the interval (0, 1 – α), h(x) =
(x – 1) from a to 1, and continuous in the middle.
Question: What happens if α = 2/5, or any rational number less than 1/2 and not of the form 1/n? Does
there have to be an x such that h(x + 2/5) = h(x)? No, there doesn’t! And there cannot be. For the proof of
this see “A Stable One-Dimensional Table” in Consortium.
Reference: Pollak, H. O. (2011, Fall/Winter). A Stable One-Dimensional Table. Consortium, 101, 15-16.
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SUNKEN TREASURE Benjamin Dickman

Teacher’s Guide — Getting Started Brookline, MA

Purpose
In this two-day lesson, students help the crew of a shipwreck recovery team minimize the amount of work
done to remove treasure chests from a ship lost at sea. The divers must move the chests to a rope that is
between their locations coming from the recovery team’s boat above. The captain of the boat’s crew insists
on placing the rope in one spot; he doesn’t want to waste time and money moving it each time a chest is col-
lected.

Prerequisites
An understanding of basic algebra and geometry with triangles are needed.

Materials
Required: Large, flat pieces of cardboard, string, small weights, and scissors (to pierce cardboard).
Suggested: Rulers or straightedges, compasses, geometry software, washers (to place on holes in cardboard
to reduce friction).
Optional: None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. A physical model of the situation can be
constructed in the classroom from cardboard. To do this, cut two holes in the cardboard 40 cm apart from
each other and thread two strings through the holes. Tie them together above the cardboard so that the
lengths of the strings below the knot are equal. Set the cardboard between two posts or two tables so that it
is level and the weights can hang freely. Students should experiment by using equal and unequal weights at
the end of each string. The position of the knot should help determine where to position the rope from the
boat.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. The
cardboard model above should be modified to fit the “three chests” problem
(shown at right). Students will need to experiment using different combinations
of weights: all three the same, two the same and one different, and all three dif-
ferent. Students learn the definition of work and will modify their ideas about
how work should be defined from the first day to use this mathematical defini-
tion.

CCSSM Addressed 
A-CED.1: Create equations and inequalities in one variable and use them to solve problems.
G-MG.3: Apply geometric methods to solve design problems.
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SUNKEN TREASURE
Student Name:_____________________________________________ Date:_____________________

A shipwreck containing treasure chests filled with gold and silver was discovered recently in the Bermuda
Triangle. Underwater photos revealed two treasure chests spaced 40 meters apart and it is up to you to
determine how best to retrieve them.
Your boat has a rope that can be lowered and tied around the treasure chests, but your captain insists he
doesn’t want to sail back and forth all day. He says that you have to choose one place to lower the rope, and
then you can swim down with it. To collect the treasure, the chests must be moved to the end of the rope to
be lifted to the surface.

Leading Question
What is the best location to place the recovery ship and drop the rope so you don’t upset the captain?

Undersea Photo: © Kirill Zelianodjevo | Dreamstime.com                                Chest: © Johanna Goodyear | Dreamstime.com
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Student Name:_____________________________________________ Date:_____________________

1. What information is necessary to have before a mathematical model is constructed? What variables do
you have to consider? What variables should be not be taken into account? 

2. Call the treasure chest on the left Chest 1 and the treasure chest on the right Chest 2. If you know the
distance from Chest 1 to the rope, how can you express the distance from Chest 2 to the rope?
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Student Name:_____________________________________________ Date:_____________________

3. When you dive down, you will have to move the chests over to the rope. What’s a good way to measure
the amount of work done to move the chests? What variables should be taken into account in this
measurement? Is there a way to consider all of these variables together?

4. You estimate that each of the chests has the same weight. You want the total work you do to move both
chests to be as little as possible. Where should you lower the rope? How would your answer change if
the chests weighed different amounts? Use a cardboard model to experiment and test your ideas.
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Student Name:_____________________________________________ Date:_____________________

5. When you dive to the bottom, you find that there is a third treasure chest! Fortunately, they all are lined
up in a row. If you still want to minimize the work in moving all the chests, where do you place the rope
now assuming that they each weigh the same? Provide a mathematical explanation for your reasoning.



104

SUNKEN TREASURE
Student Name:_____________________________________________ Date:_____________________

In mathematics and physics, work has a very precise meaning. Work is the amount of energy transferred by
a force acting over a certain distance. Here, “energy transferred by a force” means the same thing as
“weight.” The equation is: Work = Force • Distance.

6. You did so well on your first dive that your captain is bringing you 
to another site. This site has 3 treasure chests, all equal weights, 
but they don’t lie along a line. How do you minimize the amount of 
work done to move the chests to the rope? Use a cardboard model 
to find point D.

7. If the chests in question 6 did not all have the same weight, how would the model change? Modify the
cardboard model for this physical situation. What happens? Can you give a mathematical explanation
for what is going on?

8. What are the differences between a physical model and a mathematical model? What are some advan-
tages and disadvantages of each?
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Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. The weight of the chests and the distance between the chests and the rope are the two variables that
need to be considered. On the other hand, the length of the rope and the depth are not variables that
need to be considered in this model.

2. If the distance between Chest 1 and the rope is x meters, then the distance between the rope and Chest
2 is (40 – x) meters.

3. Work = Force • Distance. In this example, weight is an appropriate substitution for force. You could also
measure the amount of work done in time, energy expended by the divers, or even cost of the entire
operation.

4. When the chests weigh the same, it doesn’t matter where the rope is positioned, as long as it is between
the two chests. When the weights are varied, it is most efficient to place the rope directly above the
heavier of the two chests.

5. Placing the rope over the middle chest will result in the smallest amount of work. Explanations will
vary but they all may be valid if they confirm the correct placement.

6. Three points that are not collinear will create a triangle. The point D, for which the sum of the distances
to the vertices is least, is called the Fermat point. The angle formed in the interior of the triangle by D
and any two of the three chests is 120˚.

7. The weights on the model would need to be adjusted accordingly. The knot would be pulled towards
the heaviest weight and shifted near the second heaviest weight. As a possible extension, you may want
to try using one set of three fixed weights and see what occurs, although note that each combination of
weights will have a unique point.

8. Physical models often do not run as smoothly as a mathematical model would suggest. There may be
variables that were not considered in the mathematical model for simplicity’s sake that can greatly
affect the outcome of the physical model. Each have their own upsides and pitfalls.
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You may wish to consider the extension to two dimensions with three locations. You would expect that if
the three locations were close to being in a straight line that the solution would look similar to the one-
dimensional case.
First look at the problem if the three weights w1, w2, and w3 are equal, and are located at points P1, P2, and
P3, respectively. If the triangle formed by the Pi’s is sufficiently obtuse, then the optimal location for the rope
is at the vertex of the obtuse angle. This is true, as long as the obtuse angle is at least 120˚. If all angles are
less than 120˚, the optimum location for the boom is the point P inside the triangle at which PP1, PP2, and
PP3 meet at 120˚. There are a number of nice geometric proofs of this, but the easiest one is by physics. In
order to see this, we might as well assume that the weights at the three locations are general rather than
equal.
Imagine a piece of Plexiglass, or a sheet of wood, and drill holes at the three locations of P1, P2, and P3. Tie
three pieces of string together at a point P, and run the three strings — one through each hole — and attach
the weights, wi, to the strings of equal length going through their respective Pi. Let the configuration go. It
should settle into a configuration of minimum potential energy, and it follows with a little energy argument
that this will minimize the sum of the three products w1, w2, and w3 multiplied by their respective distances
PP1, PP2, and PP3.
If one of the three wi’s is much more than the sum of the others, then P will be pulled to Pi, and you get the
same end point problem as before.
There is a geometric construction for the general 3-point case which uses Ptolemy’s Theorem.
If you have more than three points, locating a single point P that minimizes the sum of the distances is a
classic problem for which there is literature, but nothing especially simple.
If you have four points and you want the shortest network connecting them, that’s a different problem. The
literature about this problem goes back to Gauss, who put the solution into a letter to Schumacher but
didn’t publish it. Gauss became interested in it because his son was working for the Duchy of Hanover, plan-
ning its first railroad. There was earlier interest in the problem for planning canals in England. It is not the
same problem unless n = 3.
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ESTIMATING TEMPERATURES Heather Gould

Teacher’s Guide — Getting Started Stone Ridge, NY

Purpose
In this two-day lesson, students will model temperature data. They will use “known temperature stations”
in order to estimate temperatures at any given point accurately. Websites that give the temperature at a
specific place typically do not give the actual values; they give an estimate based on meteorological data. 
Explain to students that temperatures are not measured everywhere and educated estimates need to be
made. Have the students imagine they are meteorologists interested in making a model to estimate temper-
ature at a given time and at a given location.

Prerequisites
Students need to understand ratios and equations in one variable, as the lesson is heavily dependent on
these areas. Additionally, reading, interpreting, and understanding graphs is important for completing the
lesson.

Materials
Required: Rulers or straightedges.
Suggested: Graphing paper or a graphing utility. 
Optional: (For three-dimensional models) Cardboard, sticks or drinking straws, and scissors. 

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are asked to estimate the tem-
perature at a point on a map between two other points where the temperature has been measured. It is
important that students understand that the diagrams given are drawn to scale. This fact should arise from
discussion about variable identification in questions 1 and 2. The students should begin to formulate ideas
about linearity. Questions 4 and 5 ask students to extend their model when the unknown points do not fall
in a straight line with two known temperature stations. There will be a variety of solution methods, but
each should use the concept of linearity or a constant rate of change between two points. 

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students are first given a defini-
tion of a linear function and then questions have students making connections between their Day 1 models
and the graph of a linear function. Then students will give their description of the meaning of average rate
of change and its relation to linear functions. They will be challenged to calculate the rate of change of a lin-
ear function.

CCSSM Addressed
A-CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequali-
ties, and interpret solutions as viable or non-viable options in a modeling context.
F-IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table)
over a specified interval. Estimate the rate of change from a graph.
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Student Name:_____________________________________________ Date:_____________________

When you look on websites such as www.weather.com to find out the current temperature, you usually
don’t get the actual measured temperature for your town — it’s an educated estimate!

Leading Question
How would you create a model like one a meteorologist would use to estimate the temperature?

© The Weather Channel
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Student Name:_____________________________________________ Date:_____________________

1. How would you expect temperatures to change in between two towns? Use your experience to make
an educated guess. Would you expect the temperature to change gradually or suddenly? Explain.

2. How can you estimate the change in temperature between two towns? Use your ideas from above to
estimate the temperature in between those towns with known temperature. Show your work.

3. Describe a mathematical model for estimating the temperature in a given town between two towns 
for which the temperatures are known. Write your description in words first, then in mathematical
symbols.
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4. How would you estimate the temperature in a town that isn’t
between two towns where the actual temperatures are measured?

5. It is a cold, rainy day. You and your friends want to drive to an indoor skate park (S) from home (H).
Your parents are worried that it will get colder as you get closer to the skate park and the rain will
freeze; you’re not allowed to drive if there’s a chance of sleet or snow. Use the map below to determine
if it’s safe to go.

6. Describe, verbally and mathematically, your model for estimating the temperature in any given town.
Do you think your model will always work? Are there factors that you didn’t consider that professional
meteorologists probably use in their own models?

Can you still use the model
from before? Do you need to
modify it or do you need to

make a brand new one?

30˚ F

33˚ F

35˚ F

36˚ F
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Using functions is one way to model the change in temperature. A linear function is a function that grows by
equal distances over equal intervals. The amount that they change is called the slope and is usually denoted
by m.

7. Is there a way that you can use a graph to represent the tempera-
tures in the towns shown in question 1? Plot the towns as points
on the coordinate plane. Draw a line containing the points.

8. Use the method above to graph and represent the situation from question 2. What are the coordinates
of the middle point? Does this coordinate have any relationship with the temperature you estimated?

What should the values on the
x-axis and y-axis represent?
What does the line between

the points describe?



ESTIMATING TEMPERATURES
Student Name:_____________________________________________ Date:_____________________

9. Modify your method for modeling the situation in question 4 by
using graphs of linear functions. Does this model give the same
result as in question 4? How is the rate of change in the tempera-
ture between two points described on the graph?

10. Describe how you used graphs of linear functions to model estimating temperatures at given points.
What are the similarities and differences between your original model and the linear function model?

11. Use the work you’ve done to describe what is meant by “rate of change”. How does it relate to the graph
of a linear function? Is there a way to calculate or estimate the rate of change of a linear function easily?

112

You may need to use more
than one graph. 
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. The temperatures here would seem to indicate that temperature changes continuously and constantly
over intervals of equal length. That is, temperature appears to change linearly.

2. The only variable affecting the temperature, as far as we can see, is distance. Many other variables
affect temperature, but those data are not given here. The student may be able to refine the model to
include those variables later, if necessary. The temperature of the unknown is approximately 49°F.

3. The temperature changes at the same rate over equal distances.
Let a, b, and x represent the temperature in degrees at points A,
B, and X, respectively. If an unknown temperature point, X, lies
between (collinearly with) two known temperature points, A and
B where A is the lower temperature, then x =(AX/AB)(b –a)+a.

4. The model found in question 3 can be used twice. First, construct
a line between any of the two known points (the line between
79° and 76° is shown). Second, construct a line through the last
known point and the unknown point. Use the model to estimate
the temperature at the point of intersection of the two lines. Finally, use that estimation to estimate the
temperature at the desired point.

5. The model from question 4 can be used with any 3 known points. Students should find that different
sets of known points produce different answers. They may conclude that the set of closest known
points should be used or that the average of the answers for all sets of three known points should be
used.

6. A model description is given in the solution to question 4. The topography of the area is one major
variable that has been left out of the model. Hills and valleys affect the flow of air and, hence,
temperatures.

7. The answers to the previous questions are replicated in the context of a linear graph.
8. The answers to the previous questions are replicated in the context of a linear graph.
9. The answers to the previous questions are replicated in the context of a linear graph.

10. Linear functions describe the rate of change (in their slope) of the temperature. The distance is the x-
value and the temperature is the y-value.

11. For a linear function, the slope is the rate of change.
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Suppose you wanted to estimate a temperature outside the intervals in questions 1 and 2. What would you
do? Try an example in which the numbers are not just monotone, but with the perturbation of some “noise”.
(What might cause such “noise”? Changes in elevation, wind, etc.) The basic pattern still looks linear. Fit a
line to the data as well as you can. This idea can lead to the method of least squares.
No two of the three given temperature stations have the same temperature. Therefore, one of the three
numbers must be between the other two. In this case, 76°F is between 72°F and 79°F. Where on the line
between 72°F and 79°F is the temperature also 76°F? Find that point and connect it by a straight line to the
vertex with temperature 76°F. All lines of constant temperature will be parallel to this one. Fill in these lines
for all whole-number temperatures between 72°F and 79°F. Now estimate the temperature at the point
marked ?°F. If two of the original three temperatures were the same, how would you modify the procedure
you just found? What is now the direction of lines of constant temperature?
If the point marked ?°F were outside the triangle, how would you estimate its temperature? Draw the points
with temperature 72°F, 76°F, and 79°F on a flat surface, and construct a vertical post of heights 2, 6, and 9
(ignoring the 7) at each of these points. Lay a flat surface on top of these three posts. How does the height of
the point marked ?°F compare with the height you estimated before? Draw lines of constant height onto
your surface. How do they compare with the lines you drew before?
You now have four points whose temperature are known. Take any three of these points and use them to
estimate the temperature at S as you did above. Use a different set of three points and do it again. How
many such sets of three points are there? Look at the guesses for the temperature at S that you now have.
Are they equal? If not, order them. Can you convince your parents that the temperature will be between the
highest and the lowest of these? How do you feel about the average of the four?
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Teacher’s Guide — Getting Started Southern Methodist University

Purpose
Metal railroad tracks expand and contract due to weather. In this two-day lesson, using the assumption that
a railroad track is secured at both ends, students will use models to estimate how expansion of the track
affects the height of the rail off the ground. Sometimes tracks will expand outward along the ground, but
this lesson focuses on the case where they expand upward.
Interestingly, very small increases in length as a result of expansion have a large effect on height. Students
will investigate this phenomenon using both triangular and arc models.

Prerequisites
Students should know conversion of units, systems of equations, properties of circles, and basic 
trigonometry. 

Materials
Required: Graphing calculators.
Suggested: None.
Optional: Any materials to build physical models (e.g., clay, ice pop sticks, cardboard, paper, plastic rulers,
etc.).

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. The situation is explained to the students
and they work at creating a simple model to describe the track length and height upon expansion. Students
estimate how temperature increases affect the total length of the railroad track. (Students should be aware
of the units – both feet and meters – and the conversions between them.) Students use this information to
create an initial model to determine how high the tracks would rise off the ground. Students often choose to
model the track expansion with an isosceles triangle; this model will be refined on the second day.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students are challenged to deter-
mine if their model “overlooks” too much information. A railroad track would have to bend or curve when
its length is expanded, so an isosceles triangular model, for example, will not suffice. Students refine their
model to use an arc (of a circle) to model the track. Students use properties of circles, arc length, and basic
trigonometry to design a system of two equations. Students should describe the original length (a chord of
a circle), which is known, in terms of the unknown radius and central angle using basic trigonometry. Stu-
dents should also describe the arc length, which is known, in terms of the unknown radius and angle of the
arc. This system of equations should allow students to solve for the two unknowns, the radius and central
angle, and to determine the missing height.

CCSSM Addressed
F-IF.4: For a function that models a relationship between two quantities, interpret key features of graphs
and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of
the relationship.
F-IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table)
over a specified interval. Estimate the rate of change from a graph.
G-MG.1: Use geometric shapes, their measures, and their properties to describe objects.
G-MG.3: Apply geometric methods to solve design problems.
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Railroads are a common source of transportation around the world. Because the tracks are made of metals
(often steel), they expand and contract due to changes in temperature and various problems arise.
Suppose a section of track is fastened down at both ends. The natural process of heating and cooling causes
the track to expand and contract. If the track length increases, but is nailed down at both ends, then the
tracks should rise off the ground. The tracks may also expand outward along the ground, but this lesson
focuses on the case where they expand upward.

Leading Question
How can railroad designers design tracks that stay safely on the ground in all types of weather? 

© Jon Sullivan. www.public-domain-image.com
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1. The world’s longest railroad sections are about 120 meters in
length, or about 400 feet, with the typical length in the United
States less than 100 feet. Suppose in your city that temperature
changes on average about 45oF (25oC) from a cold, winter day, to a
warm, summer day. If the track is 120 meters in the winter, the
climbing temperature and heat during the summer causes the
tracks to swell and increase in length. The linear expansion coeffi-
cient, α, for steel is approximately 0.000002 meters per degree change in temperature (oC). Use this
information to determine how much the track expands in length between winter and summer. Convert
your answer to feet and then to inches.

2. Draw a model of how you think the 400 foot track would look if its
length expanded by the amount you found in question 1. Label all
the known lengths.

3. How high off the ground do you think the track would rise? Give an estimate and explain your thoughts.

What is the meaning of
“linear expansion

coefficient”? What does it
help you determine in

relation to this problem?

Does your model look like a
familiar mathematical shape?
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4. What mathematical shape does your model most closely replicate? Use the properties of that shape to
determine how high off of the ground the tracks rise in the summer. Is the result surprising or what you
expected?

5. Generalize the situation. Assume that the increase due to the weather is x feet. Using your solution to
question 4 to guide you, write an algebraic equation that describes the new height, h, as a function of x.
With the help of a graphing calculator, sketch this function below. 

6. Based on the graph, can you explain why the very small increase in length, x, has a very large affect on
the change in height, h? In particular, how do rates help explain this phenomenon?
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Did your model for railroad track expansion seem reasonable? Can you imagine railroad tracks rising as far
off the ground as you determined? In mathematical modeling, one should always check to see if the pro-
posed model is reasonable in the real world. If not, it often serves as a good “starting point” and as a good
guide for a new, revised model — after all, one should always learn from mistakes!

7. Based on real-life, physical models, it seems reasonable to model track expansion as the arc of a circle.
Draw an arced model below, labeling the original straight length (a chord), and the new curved length.
Extend the arc to draw the circle that contains it. Label the unknown radius, r, and central angle, θ, of
the circle. 

8. Design of a system of two equations to help you determine r and θ
Solve for the two unknowns.

What two equations can you
write that will help you solve

for r and θ? What do you
know about them?
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9. Using the identified values for the radius, r, and central angle, θ, that are required for an arced model of
this situation, how high off the ground would the tracks rise? Is the result surprising or what you
expected?

10. Compare your first model and the arced model. How different are the results? Did either of the results
surprise you? Did either result seem unreasonable? Which of the models do you think works better and
why? Was the extra work required to make the arced model “worth it” considering the results found?

11. It seems that very small changes in length due to changes in temperature cause very large changes in
height. Engineers have avoided this problem in railroad tracks, bridges, and other structures by doing
something very simple. Can you find an easy solution to avoid railroad tracks being lifted several feet in
the air due to expansion from the weather? What is it?
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. The length increases 0.000002 • 25 • 120 = 0.006 m, which is approximately 0.02 ft (roughly 0.25 in).
2. One reasonable initial model is an isosceles triangular model.

The length of the base remains the same while the length of
each side is determined by half of the sum of the increase in
length and the initial length (the length of the base). (Shown to
the right, not to scale.)

3. Answers will vary. Most students will expect the height to increase only slightly, probably less than 0.25
in.

4. = 2 ft. A total increase in 0.25 inches in length results in a 2 foot
increase in height at the middle, which is 96 times as large as the increase in length. 

5. h(x) = . The sketch of the graph is shown to the right.
6. Given very small changes in x, near the origin, the height changes

quickly. The slope of the curve is very steep near the origin.
7. The arced model is drawn below (not to scale).

( )200 0 5 2002 2+ −. x

(200+(0.5)(0.25/12)) 2002 2−

8. The two equations in the system are ·2πr = 400.02 and sin = . 

These equations yield θ = and θ = 2sin-1 . The result is that r = 11,314.5 ft

and θ = 2.0256748o.

9. The height in the middle of the arc is h = 11,314.5–11,314.5 • cos(1.0128374o) = 1.768 ft.
10. There is very little difference between the two models: approximately 3 inches. As expected, the arced

model reduces the height, but not by much. An interesting discussion can revolve around the increased
accuracy versus the extra time and effort expended between the two models. 

11. Leave space between the railroad tracks: the use of expansion joints is ubiquitous in building and
designing railroad tracks, bridges, and other structures because of this problem.
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Please note the process of refinement for the model in this problem. The phenomenon is familiar, the math-
ematical fact is that the answers with a triangular and a circular model are surprisingly large but also close
to each other, and the physical fact is that rails are laid with expansion joints.
The linear expansion coefficient for steel is given as approximately 0.000002 meters per degree centigrade.
The accuracy implied by that figure does not justify the number of decimal places in the solutions given to
questions 8 and 9. On the other hand, this is a great opportunity to discuss the number of significant figures
that does make sense, and the extra digits help to check that the right computation was entered into the cal-
culator, even if the answers were copied to too many places.
There is a simpler and more domestic situation which leads to the same kind of mathematical phenomenon
that underlies the problem solved by expansion joints in railroad tracks. But first, a message from our spon-
sor, namely, mathematics.
Here is the mathematical phenomenon: if you have a right triangle whose hypotenuse H is just a tiny bit
longer than its longer leg L, then the length S of the shorter leg is incredibly sensitive to the accuracy of H,
or, more precisely, the accuracy of the difference between H and L. Why? The formula for S is given by

S = 

whose partial derivative with respect to H is .

We now note that H2 – L2 can be factored into (H + L)(H – L). Then is almost as H

approaches L+. Hence is almost and we notice that it becomes arbitrarily large as H

approaches L+. 

This is why you see what you see in the plot accompanying the discussion of question 6, namely why S
becomes large so rapidly as H gets a tiny bit larger than L. A small error in the abscissa can lead to a large
error in the ordinate.
The domestic situation referred to above concerns the hanging of a small picture on a wall at the precise
height which has been recommended by the spouse of the person doing the hanging. Typically, that person
might screw two small eye screws into the two vertical sides of the back of the picture frame, run a taut
string or wire between the screws, and then put a nail into the wall so that the bottom of the picture will be
at the preordained height when the picture hangs from the nail at the middle of said string or wire. Because
of the weight of the picture, the length of the string/wire will be a tiny bit greater than the distance
between the screws, and even a very accurate measurement of that length will lead to a large error in S, and
it is S that determines the height of the picture. The spouse, of course, may be disinclined to transfer the
blame for the inaccurate height from the spouse to a partial derivative going to infinity.
A discussion of this problem, and another almost equally unstable version with a heavy picture hanging
from a molding, can be found in COMAP’s Consortium, Number 85, Fall/Winter 2003, pp. 3–4.
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A BIT OF INFORMATION Nicholas H. Wasserman

Teacher’s Guide — Getting Started Southern Methodist University

Purpose
In this two-day lesson, students will learn to use a logarithmic function to model information functions. A
significant portion of the secondary curriculum revolves around the analysis of functional relationships. In
the context of computers, the notion of sending and receiving information gives way to an interesting rela-
tionship between the required length of code and how much information it carries.
In fact, this represents one of very few real world situations where only a logarithmic function can model
the relationship.

Prerequisites
Students should be familiar with functional and inverse relationships and know the properties of expo-
nents.

Materials
Required: None.
Suggested: Calculators.
Optional: Candy or another manipulative (to identify a specific type out of several).

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students begin the activity by becoming
familiar with the notion of bits — how computers send and receive information. A simple question and
answer game is used to demonstrate how many “questions” or “bits” of information it takes to identify one
item out of many. While playing, students should be encouraged to devise a logical model for finding the
correct item — not a way of guessing it. Students then identify three principles that govern an information
function.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Based on the three principles of
the information function, students investigate and build up specific answers to identify the one function
that can model this relationship.

CCSSM Addressed
F-IF.4: For a function that models the relationship between two quantities, interpret key features of graphs
and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of
the relationship.
F-BF.1: Write a function that describes a relationship between two quantities.
F-BF.5: (+) Understand the inverse relationship between exponents and logarithms and use this relation-
ship to solve problems involving logarithms and exponents.
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Did you know that the on/off symbol on a computer is a combination of a 0 and 1?

In computer language — a world of 0s and 1s — the ability to communicate and understand information
depends on a mathematical function. It is customary to use the term “bits” to describe information: the
usage of “bit” to describe sending information is actually short for “binary digit,” i.e. 0 or 1. A bit is actually a
unit: one bit is the smallest possible building block of computer data, meaning that it can be communicated
by a single binary digit . . . a 0 or a 1.

Leading Question
To get a basic sense of communicating information, if a computer is trying to communicate one of the num-
bers 1–50 to another computer, how many “yes” or “no” questions would it take for the second computer to
identify the number correctly?
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When thinking about how much information it takes to communicate something, one analogy is how many
“yes” or “no” questions you would have to ask to identify one object. Each “yes” or “no” would correspond to
a 1 or a 0, respectively. How many bits of information it takes is the number of questions you have to ask.
The string of 0s and 1s describes the sequence of answers to the questions asked.

1. Work with another person. One person should pick a number
between 1 and 20. The other should ask “yes” or “no” questions
until they guess the number. For every question, record a “0” for
“no” and a “1” for “yes”. Try this several times. Is there a logical way
to find out the answer (without guessing at random!)? If so, what
is it? What does the string of numbers represent?

2. Should the string of numbers in question 1 ever be longer than 20 digits? Explain why or why not.
Explain what a string consisting of a single digit would represent. How long do you think the string of
numbers should be on average?

What types of questions are
more useful — guessing

specific numbers or guessing
a range of numbers?
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The number of bits is the same as the number of questions that MUST be asked in order to “whittle down”
the correct answer in an efficient way. (No guessing at random!) This means that if you had to ask, for
example, 9 questions, the answer would have “cost” you 9 bits. We will use n to represent how many items
there are to choose from. In question 1, n = 20 since there were 20 possible numbers. A functional relation-
ship exists between n and the number of bits required to communicate this information. Let f(n) represent
how many bits of information, i.e. how many 0s or 1s, are required to specify one item out of n possible
items.

In questions 3 – 5, you will work out the properties of the function.

3. What is the numerical value of f(2)? f(1)? Explain your reasoning. Describe what f(50) means.

4. Communicating ONE thing out of MANY possibilities takes a certain amount of information. If you are
trying to communicate ONE thing out of MANY MORE possibilities, what is the effect on the amount of
information ? What does this mean regarding a property of the function?

5. One way to identify something is to start with the whole group and look for the answer. Another way is
to split the large group into groups of 2 or 3 or m, and determine how much information it would take
to identify which of these groups the thing is in, and then figure out how much information it would
take to specify the ONE thing from within that group (however big it is . . . say n). Using the second
method, what does f(m ·n) equal?
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6. Using aspects of the three properties you found in questions 3 – 5, identify values for f(4), f(8), and
f(16). Considering your answer for question 5, what is f(mk)?

7. Estimate f(3) and f(5) based on what you already know.

8. How precise are these estimates? In particular, consider how averaging the number of questions it
might take to guess an object out of 3, or bundling a few sets of 3 objects into one, might affect the
numerical possibilities for f(3). Likely, decimal values would make sense regarding the value of f(3). So,
how precise can you be? Since 32 > 23, then f(32) > f(23), and so 2f(3) > 3f(2). This means that f(3) >
1.5. Using a similar process, try to get a better estimate for f(3) and f(5) than you did in question 7.
How close can you get?
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9. What does the graph of this function look like? Sketch it below. Have you seen a graph that looks similar
to this one before? Do you recognize a function with these properties?

Finally, the minimum number of bits of information it takes to identify one item from n objects, is

f(n)=__________________________________________ .
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity..

1. Answers will vary. An efficient method is to split the set of possibilities into equally-sized subsets and
ask if the correct solution is in one of the subsets. Repeating this process will, for 20 possible items,
usually yield about 4 or 5 questions. No string should be shorter than 1 or longer than 20. The string of
numbers represents both the number of questions asked and the sequence of answers.

2. No, the string should not be longer than 20 digits; there were only 20 possible correct solutions. A sin-
gle digit represents a correct initial guess. The average length will be around 4 or 5.

3. f(2) = 1 because for two items, it should only take 1 question, a “0” or a “1” to designate between the
two possibilities. f(1) = 0, since it should not take any information to guess one item. f(50) would be
the number of “bits” required to identify one item out of 50.

4. More possibilities mean more information is necessary. The function is strictly increasing.
5. f(m·n) = f(m) + f(n). If you split the original number of objects into m-sized groups, then it should take

you f(n) bits to figure out which group, and then f(m) bits to identify the single item within that group.
6. f(4) = 2; f(8) = 3; f(16) = 4; f(mk) = kf(m)
7. 1 < f(3) < 2; 2 < f(5) < 3.
8. Similarly, you might use that: 25 > 33, 26 < 34, 28 > 35, etc.; or 25 > 52, 27 < 53, etc.
9. The graph of the function is logarithmic. Some students may recognize its relation to the graph of an

exponential function. f(n) = log2(n).
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This model has been about measuring the information gained when you find out which one of n equally
likely possibilities is the correct one. The function f(n) which expresses the information gain was first
developed by Claude Shannon in the late 1940s. We have seen that f(n) must have the properties that

(i): f(1) = 0;
(ii): f(n) is a monotone increasing function of n;
(iii): f(m·n) = f(m) + f(n).

If another property, (iv): f(2) is defined to be 1 bit, then the function f(n) = log2(n) is the only function with
these properties. Thus, for example, f(4) must be 2, f(2) = 1, and therefore f(3) must be strictly between 1
and 2. We have estimated f(3) as a little more than 1.5. 
What does such a non-integer function value mean? We can give an estimate of f(3) by thinking as follows:
There are three equally likely possible outcomes a, b, and c. Suppose you ask: Is it a? If that’s correct, which
has probability 1/3, you have found it in one question; if that’s not correct, which has probability 2/3, it will
take you one more question to tell whether it is b or c, so in that case it will have taken you two questions.
So the expected number of questions is (1/3) × 1 + (2/3) × 2 = 5/3, which is approximately 1.67. 
That’s only an upper bound for f(3), but our value f(4) = 2 is exact. Why the difference? Because when we
take four equally likely possibilities a, b, c, and d, and divide them into two groups of two, these groups are
again equally likely. But when we divide three possibilities a, b, and c into a versus the set consisting of b
and c, these two groups are not equally likely, and the partition is inefficient. It’s just like the game of twenty
questions: The fastest way towards the answer is to ask questions whose answer is as nearly equally likely
to be “yes” and “no” as you can make it.
You can get a better estimate for f(3) by imagining that you have two batches of three and want to find the
correct choice in each one. If you do them separately as two threes, it will take an expected number of
2(1.67) = 3.33 questions. But you can do it in fewer questions: If the choices in the first batch a, b, and c
and in the second batch d, e, and f, make a single batch of nine choices ad, ae, af, bd, be, bf, cd, ce, and cf. You
can then divide the nine into batches of four and five — which have the advantage that they are more nearly
equal than batches of size 1 and 2. The answer to the batch of four will be “yes” with probability 4/9 and
“no” with probability 5/9. Divide the batch of four into two batches of two and the batch of five into batches
of size two and three, and you will get that the expected number of questions is 29/9 = 3.22, which is a defi-
nite improvement over (that is, “under”) 3.33. By aggregating more and more problems into one, you can
come closer and closer to f(n). 
You are now better prepared (we hope) for the derivation of Shannon’s formula.
Here is a proof that a function f(n) which satisfies (i) – (iv) above must be log2(n). If n is a power of 2, then
the answer follows from (iii) and (iv). This is the case where exactly equal division is possible all the way to
the answer. So assume that n is NOT a power of 2. Now take an arbitrary power k of n — think of k as large.
It must be that nk is strictly between two consecutive powers of 2, say s and s + 1. In symbols,

2s < nk < 2s+1.
Then

f(2s) < f(nk) < f(2s+1)
s·log2(2) < k·f(n) < (s+1)·log2(2)

< f(n) < .s
k
+1s

k
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Now do the same with nk itself. We get
2s < nk < 2s+1

s·log2(2) < k·log2(n) < (s+1)·log2(2)

< log2(n) < .

So the two quantities f(n) and log2(n) are between the same two bounds, and these bounds differ by only
1/k. Hence

|f(n)–log2(n)| < ,

where, as you remember, k is arbitrary. The only way to satisfy this is to have f(n) = log2(n). 
Given the earlier example, you can see why the proof works. We have batches of n, and we put k such
batches together so that there are now nk possible outcomes. The “cost” in questions “per batch” is now
arbitrarily close to f(n).
The mathematics of information theory begins with these ideas. They extend, for example, to outcomes
which are not assumed to be equally likely and to situations where the possibility of errors “contaminates”
the responses.

s
k

s
k
+1

1
k
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STATE APPORTIONMENT Andrew Sanfratello

Teacher’s Guide — Getting Started Mohegan Lake, NY

Purpose
A new country is being formed in this two-day lesson. Students will determine how to allot the representa-
tion for the different states in the country, also known as apportionment.
Begin by asking students how democracy works in the US Ask them how a country that is newly forming
and wishes to adopt a similar representation system to the US might pick how many representatives each
state gets. What different mathematical ways are there to model this?

Prerequisites
Students should be familiar with percentages and ratios.

Materials
Required: Internet access for searches on the Hamilton and Jefferson Methods.
Suggested: Spreadsheet software (such as Excel).
Optional: None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are introduced to a fictional
country with four states and asked to determine how the states should apportion their representation.
They should be encouraged to try different methods, and then on the third sheet of the day, they are asked
to investigate the Hamilton and Jefferson Methods that were introduced early in United States’ history as a
way to allot representatives among the states.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Here, students are introduced to
the Quota Rule, and then asked to interpret their model from the prior day with the new rules in place.
Additionally, a small change is made to the population distribution that changes which of the models might
be more efficient. Finally, students are urged to use the current US system of state apportionment, create a
recursive function from this (here is where spreadsheets can be used), and determine the pros and cons of
each of the state apportionment methods.

CCSSM Addressed 
F-BF.1: Write a function that describes a relationship between two quantities.
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In the United States House of Representatives, the number of seats that each state receives is based on the
population of the state. Each state is guaranteed at least one representative, but after that it is determined
solely by the number of people living in the state according to the census taken every ten years. There have
been many different ways that the US state apportionment has been determined in the past.

Source: www.2010.census.gov

Leading Question
How might you arrange a system so that each state is represented fairly? What obstacles do you think might
be present?
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For simplicity, imagine that a newly formed country wishes to copy the US House of Representatives. This
new country has just 100,000 people split up into only four different states, listed in the table below.

State Population

A 15,000

B 17,000

C 28,000

D 40,000

1. If the new country plans on having 25 representatives in its House of Representatives, how many
should each state receive? What if they plan to have only 17 representatives?

2. How did you calculate how many representatives each state should receive? Did you use the same
method for both 25 and 17 representatives? 

3. Can you create a method that is fair to all states in both cases? Describe how your method works and
why you believe it to be fair. 
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4. Which states (if any) would disagree with the apportionment that you have created in each of these
cases? Do both scenarios create the same problems?

5. The Hamilton Method was devised by Alexander Hamilton as a technique
for fair apportionment. Investigate what the Hamilton Method was and if
you agree or disagree with its fairness. Do either of your methods share
any similarities with the Hamilton Method?

6. Thomas Jefferson also devised his own method at the same time that
Alexander Hamilton did. Research the Jefferson Method. What are the dif-
ferences and similarities between the Jefferson Method and the Hamilton
Method? Does the Jefferson Method compare with either of your meth-
ods? Which of the two methods is better suited for this model?

Public Domain: 
John Trumbull (1756–1843) 

Gwillhickers (Whitehouse portrait gallery) 
[Public domain], via Wikimedia Commons 
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The Standard Quota is a number assigned to each state that is calculated by taking the percentage of the
country’s population that live in that state, multiplied by the nation’s number of representatives. 
The Quota Rule says that each state will receive one of the whole numbers that the Standard Quota falls
between as their number of representatives. If the standard quota is a whole number, then the number of
representatives must be the same as the Standard Quota.

7. Do your methods from the previous day follow the Quota Rule? If not, might you be able to alter them
so that they do?

8. Suppose that 1000 people move from state B to state A. How would this affect
your earlier models with both 25 and 17 representatives? Which one is better
suited now? Is it the same as before the movement? Should a reasonable
model have to change so dramatically when a small number of people move, as
is the case in this example?

State Population
A 16,000
B 16,000
C 28,000
D 40,000
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9. The current method used by the US uses the geometric mean as the denominator and the state’s popu-
lation in the numerator in a recursive formula. Go back and use the method that the United States uses
in their apportionment for the new country with the original and new populations. Does this method
work well?

10. What might be some other methods to determine fair apportionment? What problems, if any, arise with
other methods? Which of the apportionment methods do you think is fairest? The US House of Repre-
sentatives has 435 representatives.  Does this make sense? There are a number of paradoxes that exist
with state apportionment. What are they and which ones arise with which models?
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. With 25 representatives, the states should receive the following apportionment: A = 4; B = 4; C = 7; D
= 10. With 17 representatives, the states should receive the following apportionment: A = 2; B = 3; C =
5; D = 7.

2. Answers will vary, but you should focus on what to do with any fractional values left over.
3. Answers will vary. In general, methods can be created that are mostly fair but some unfairness remains.
4. State B would likely disagree with the apportionment with 25 representatives, as they are receiving the

same representation as state A even though they have a larger population.
5. The Hamilton Method always gives the states with the highest fractional Standard Quota the extra

seat(s).
6. The Jefferson Method involves modifying the divisor, d, which is calculated by taking the quotient of the

total population and the number of seats. d is then decreased until the quotient of each state’s popula-
tion and the new d add up to the exact number of seats needed.

7. The Jefferson Method violates the Quota Rule at times. The Hamilton Method does not.
8. Under the new population, with 25 representatives, the states receive the following apportionments: 

A = 4; B = 4; C = 7; D = 10. With 17 representatives, the states should receive the following apportion-
ments: A = 2; B = 3; C = 5; D = 7. In the latter apportionment, states A and B have the same population,
but do not receive equal representation.

9. Using the geometric mean eliminates both of the issues that came up in questions 1 and 8.
10. Answers will vary. The various paradoxes are known as the Alabama paradox, the population paradox,

and the new-state paradox. Two additional methods have also been used or proposed in US history.
They are the Webster Method and the Adams Method. More information about state apportionment,
can be found on the websites listed below:

http://www.cut-the-knot.org/ctk/Democracy.shtml
http://www.census.gov/history/www/programs/demographic/methods_of_apportionment.html
http://www.census.gov/population/apportionment/about/index.html
http://www.ctl.ua.edu/math103/apportionment/appmeth.htm
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The terminology and notation for apportionment are taken from the problem of determining how many
seats in the House of Representatives each state should receive. Other applications arise frequently: how to
determine how many teaching slots — or computers — each department in the high school should get, or
how to divide the US Navy among several oceans! The notation is usually taken from apportioning the
House of Representatives:
Let s be the number of states, and let p1, p2, … , ps be the populations of the states. Let a1, a2, …, as be the
number of seats each state receives, and let h be the size of the house. 

Thus, = h. The exact quota for state i is qi = .

Unfortunately, this number is almost never an integer, and so we define the lower quota, denoted by ⎣qi⎦, as
the integer part of qi, and the next integer above or equal to qi as the upper quota, denoted by ⎡qi⎤.
The problem of apportioning is to determine what the functions fj will be that take the population vector 
and the house size h and produce the apportionments aj. In other words, we want aj = fj( , h). The mod-
eling arises with a vengeance when you begin to ask precisely what properties you
would like the functions fj to have. For example, you would probably like four properties:

Property 1: aj is always between the lower quota and the upper quota for state j. We would say that the
apportionment method “satisfies quota”.
Property 2: If the house size h is increased and nothing else changes, then no state’s number of seats
should decrease. We would say that the apportionment method is “house monotone”.
Property 3: If the population of state i does not decrease relative to that of state j, then it should not
happen that ai decreases while aj increases. We would say that the apportionment method is “popula-
tion monotone”.
Property 4: If a new state is added, and the house size is increased by the number of seats for that
state, then no other state’s number of seats should change.

Other properties may of course be considered — and have been (believe me). It’s an extensive and thrilling
area of mathematical modeling. One of the astounding theorems which drives this subject, due to Balinski
and Young, is the following — and it is one of the triumphs of mathematical modeling.
Theorem: There exists no method of apportionment which can guarantee both Property 1 and Property 3.

That’s right! There is no way of being sure that our apportionment method satisfies quota and is population
monotone. The best you can do, for example, is to try to minimize the probability of violating quota (what-
ever that means) under the condition that the method should be population monotone.
One of the discoveries students will make if they get into the subject of apportionment is that the arithmetic
process of dividing is really a tricky business, and full of surprises.
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RATING SYSTEMS Andrew Sanfratello

Teacher’s Guide — Getting Started Mohegan Lake, NY

Purpose
In this two-day lesson, students will model rating systems like those used in many sports. They are asked to
consider the various factors that the human mind employs to “rate” one team over another; they will then
model a way to consider these factors in order to make a systematic, mathematical rating method. Note that
even professional rating systems often are disputed for their “accuracy”: such is the nature of both mathe-
matical modeling and sports!
Begin with the description of the situation: you are trying to compare teams or players, but not every
team/player plays the other, so there is no clear “clean-cut” method. How can you devise a system to do
this?

Prerequisites
Students should understand basic probability concepts such as the computation and meaning of “rate of
success”. Students should be able to interpret the meaning of expressions in an equation or function.

Materials
Required: Internet access (for research), calculators.
Suggested: None.
Optional: None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students consider the factors that they
think should be included when comparing one team or player to another. They use this intuition to create a
simple model for a rating system. Students are introduced to the Elo Rating System, one of the first systems
of its kind, which was developed for chess players. They perform Internet research to determine what is
included in the system and compare the system to their model, which they try to refine.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students consider the different
factors of the Elo system and make judgments about them based on both mathematics and intuition. Stu-
dents then consider another rating system, RPI, and make decisions about its effectiveness based on their
experience and intuition.

CCSSM Addressed
F-BF.1: Write a function that describes a relationship between two quantities.
S-MD.5: (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and find-
ing expected values.
S-MD.6: (+) Use probability to make fair decisions.
S-MD.7: (+) Analyze decisions and strategies using probability concepts.
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In many professional games and sports, players or teams are rated in relation to others. This rating helps
determine which players or teams are a good match for one another and helps determine who might win in
a matchup between any two.

Leading Question
How would you devise a system to determine rating?
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1. What factors would you consider in determining the rating of each person or team?

2. If ratings are determined by the previous games won and/or lost, how could you use an opponents’ 
rating to determine a new rating for a player or team?

3. Can you create a model, such as a function, that would determine
the increase or decrease for each opponent in a match depending
on who wins?

What should be true about
the model? Are there any

properties that should always
be true in any rating system?



144

RATING SYSTEMS
Student Name:_____________________________________________ Date:_____________________

4. Does your model include the problem of one of the opponents being previously unrated? How might
you handle the situation of an unrated player? Incorporate this into your model if you haven’t already.

5. One of the first rating systems was devised for chess players and is known as the Elo Rating System,
named after Arpad Elo, its creator. The Elo system has three elements that help to determine the “Per
Game Rating Change”: K-factor, Expected Result, and Score. Research these factors and determine the
meaning of each one.

6. What similarities or differences do the Elo system and your model have? Are there changes that you
would make to your model now that you know how the Elo system works?
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Recall what your last model looked like and the information you found on the Elo rating.

7. How does the K-factor affect the rating of a player? Is it reasonable to use a fixed number? Did you use a
fixed number in your initial rating system from question 3?

8. How is the Expected Result calculated? Did you use a similar mathematical method in your model? 

9. The “Rule of 400” states that if two players are more than 400
points apart, then to determine the Expected Result, you assume
that they are exactly 400 points apart. Why would this rule come
to exist?

Think of the case where a
very skilled player plays a
bad, inexperienced player.
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10. In college basketball, RPI (Rating Percentage Index) is calculated with three factors: Winning Percent-
age (WP), Opponents’ Average Winning Percentage (OWP), and Opponents’ Opponents’ Average Win-
ning Percentage (OOWP). The weights used are 25%, 50%, and 25%, respectively. What similarities or
differences does this have with the prior models?

11. A team has two options: they can play 5 other teams with an average winning percentage of 80% and
an OWP of 90% and they’ll likely win 1 out of the 5 games, or they can play 5 teams with an average
winning percentage of 40% and an OWP of 50% and win 4 out of the 5 games. Which scenario will gen-
erate a greater RPI?

12. Is the weighting applied to the three factors in RPI appropriate? How might you change the weighting
and/or include factors to alter the weighting?
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The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Answers will vary but may include opponents’ prior record and/or rating, the number of games played,
“strength of schedule”, and (if applicable) home/away records.

2. Generally, if Team A is rated and Team B is new and unrated, then if B beats A, B will have a higher rat-
ing than A. If A beats B, B will have a lower rating than A.

3. Answers will vary, but one way is to award the team or player with 1 point for a win, 0.5 points for a tie,
and 0 points for a loss. The team or player with the most points will have the best rating.

4. This model does not account for unrated opponents. However, unrated teams or players may become
rated by earning enough points to surpass a rated team or player.

5. K-factor is a number applied to a player (which varies according to the player’s rating) and is used to
balance highly rated players from increasing their rating easily. Expected Result is the expected score
given a player’s rating and the opponent’s rating before they have actually played. Score is the actual
result that occurs after the players have played each other. Scores in chess are 1 point for a win, 0.5
points for a tie, or 0 points for a loss. 

6. The model above does not take into account various factors that the Elo system does. For example, it
does not take into account opponents’ rating or ability nor does it account for the advantage a highly
rated player has over a very lowly rated or unrated player. It does, like Elo, consider ties to be “half-win”
and “half-loss”.

7. K-factor diminishes the value of individual games played by players with more experience. This causes
more fluctuations with novice players’ ratings, but more stability with expert players’ ratings.

8. Expected Result is calculated for Player A with rating X against Player B with rating Y with the formula

EA = .

9. The Rule of 400 prevents highly rated players from gaining points on their rating from playing people
who are greatly below their skill level, and thus falsely boosting their rating.

10. Answers will vary, although as compared with the Elo system, both have three variables taken into
account, although they are all quite different.

11. The first choice of games gives the team an RPI of 0.675 while the second choice of games (despite win-
ning more of them) produces an RPI of only 0.525.

12. The RPI has a very high focus on “strength of schedule” — how well opponents perform — and per-
formance of the team itself only accounts for 25% of the rating. Other factors to include might be based
on score differences or how well a team does in “away” games, which are said to be more difficult to
win.

1

1 10 400+
−Y X
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One of the outcomes of this lesson is a formula that is used for rating chess players: we have seen that 
the Expected Result for Player A when Player A with rating X plays Player B with rating Y is given by the 
formula

EA = .

We see that it is based on a logistic curve. What do we expect from a formula like that?
1) If A is a lot better than B, we expect that it will give an answer close to 1. Well, suppose that X is a lot big-

ger than Y, say X–Y = 360. Then the exponent (Y–X)/400 is –0.9, 10–0.9 is about 1/8, so EA is about 0.89.
On the other hand, if we reverse the abilities of A and B, that is, set X–Y = –360, then EA = 0.11. This fits
our expectation of symmetry.

2) If the players are equal in ability, then X = Y, the exponent is 0, and EA = 0.5. This fits our expectation of
equality between the two players.

3) Suppose it has been observed that A wins about 1 time out of 3 against B. The difference in rating is
expected to be Y–X = 120 since then the exponent is about 0.3, and 100.3 = 2. This expectation should
work both ways: players that win 1 time out of 3 against an opponent (or equally rated opponents)
should have a rating 120 less than these opponents, and also, players whose rating is 120 less than an
opponent’s should win 1 time out of 3.

4) This Expected Result can actually be interpreted as the probability that A will win plus half the probabil-
ity of a draw. This implies that for all X and Y, EA + EB = 1. The algebraic exercise to show that this is true
is not quite a one-step trivial exercise, and should not be missed.

5) All of this depends, of course, on how a player’s rating is computed and adjusted. An important issue is
human behavior given the rating system and the natural desire to improve one’s rating.

How does a formula like this compare to a formula in physics, such as the formula for the range of a batted
ball hit with velocity V at an angle a with the horizontal? Yes, that formula usually ignores air resistance and
the height of the batter, but we can defend it on the basis of the principles of mechanics. We could correct
for the height of the batter, and even for air resistance, and really believe the answer. The philosophy behind
our formula for rating chess players is different. We want the formula to act as a probability, and to behave
in certain limiting ways. We want it to agree with our rating system. If it has the effects we desire, we accept
it, not because in some deeper sense we know it to be correct, but because it has the right shape and gives
results we like and can use.
Mathematical models in many aspects of social science often satisfy similar expectations. The shape of the
curve is right, the way we use it to optimize behavior or expenditures makes sense, and we don’t expect the
numbers to be exactly right. For example, a manufacturer expects that there is flexibility in the use of capital
versus the use of labor in a given production program. If we have more machinery and automation, we have
fewer laborers. People like to use a formula of the form

where K stands for capital, L stands for labor, C is a constant, and α is an exponent between 0 and 1 chosen
to be reasonable for the particular industry under consideration. We don’t expect this formula to be exact,
but it’s the right shape and it fits real data at a couple of points pretty well. What can you do with it? Well,
for example, you can draw a line of fixed expenditure on the same plot and get a pretty good idea of the mix
of capital and labor that will give you the most product for your money. But don’t forget maintenance!
This, as people like to say, is not rocket science, but it’s typical of the kind of models that can be created and
used outside of the “hard” sciences.

1

1 10 400+
−Y X
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THE WHE TO PLAY Shereen Khan & Fayad Ali

Teacher’s Guide — Getting Started Trinidad and Tobago

Purpose
In this two-day lesson, students develop different strategies to play a game in order to win. In particular,
they will develop a mathematical formula to calculate potential profits at strategic points in the game and
revise strategies based on their predictions.
Allow students to imagine that they are living in the twin islands of Trinidad and Tobago where a popular
game called Play Whe is played everyday. They can think of the game as an investment opportunity and
their goal is always to realize a profit. How can they devise a strategy so that their expenditure is always
less than their potential winnings?

Prerequisites
Students should understand how to interpret graphs of linear and quadratic functions, how to generate
number sequences, how to calculate simple probabilities, and have basic algebraic skills such as substitu-
tion and manipulation of symbols.

Materials
Required: Graph paper and scientific calculators.
Suggested: Software for generating tables and graphs.
Optional: Graphing calculators.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work where students are first introduced to the
traditional game from Trinidad and Tobago. Students analyze the gameplay and create a model to describe
its profit. Then they revise that model to try to maximize their profit.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work and introduce students to arith-
metic progressions in order to think of the problem algebraically. Upon examining their method from the
first day, they are asked to observe what happens when different variables are altered in the formula. Stu-
dents ultimately are led to question whether an ideal method of betting is possible.

CCSSM Addressed
F-BF.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
to model situations, and translate between the two forms.
F-LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a
graph, a description of a relationship, or two input-output pairs (include reading these from a table).
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In Trinidad and Tobago there is a game called Play Whe, and great numbers of people play every day. In this
game, players place any sum of money on one number from the set 1 to 36. Players can bet on only one
number per day. Each day a number is drawn and winners receive 24 times the amount wagered. All other
money is lost and there are no consolation prizes. If you wish to pick a number the next day, then you must
bet again.

Source: www.nlcb.co.tt/home/playwhe.php

Play Whe (traditionally known as Whe Whe, an almost identical numbers game) was brought to Trinidad
and Tobago by Chinese immigrants. At that time it was known as known as Chinapoo, and was a very popu-
lar game of chance.

Leading Question
What is the best strategy to maximize profit? Should you play the same number each day or should you vary
the numbers? 

PLAYPLAY

EVERY DAY AEVERY DAY A
WHE TO WIN!

Whe
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1. Assuming you bet $5 on the same number each day, calculate the amount spent on bets after 5 days.
After 10 days? 20 days? 30 days?

2. Assuming that you win on the 5th day, will you make a profit? Use calculations to support your answer.
Calculate the profit if you win on the 10th, 20th, or 30th plays. Represent your profit after each play in a
table and draw a graph to determine if there is a trend. Using mathematical notation, create a mathe-
matical model for calculating the profit after the nth play. 

3. How long should you continue with this strategy if you always want to make a profit? Give reasons to
support your answer. Analyze the model. What are its shortcomings? Should you continue with this
strategy?
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4. If you want to be assured of always making a profit, what changes would you make to your previous
model? Predict what your graph will look like if profits are to increase with successive bets. 

5. Devise a plan to increase your bet by the same amount each day. How much will you have spent after 5
days in this model? Is this a better method than the previous one from question 2? How much profit
will you have if you win on that 5th day?

6. Investigate this plan over a series of successive bets by calculating and recording your profits in a table.
If available, use a spreadsheet program to generate the table in which the profit is calculated each day
for a period of 48 days. Plot the profit on a graph to observe any trend. 

7. If you continue with this plan, will you always make a profit? Assuming you do not win, after how many
plays will you choose to discontinue this plan? State why you may wish to stop. Would you stop sooner
or later than with the first plan?
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A sequence of numbers is said to be in an arithmetic progression if there is a common difference between
consecutive numbers in the sequence. The sequences shown below follow this type of progression:

1, 4, 7, 10, 13, 16, …

5, 10, 15, 20, 25, …
If a particular term needs to be predicted, say the 20th term, you do not have to list all the terms. This can
be done by observing a pattern and deriving a rule.

8. Consider the first sequence above and observe the table below where Tn is the nth term of the sequence.

Complete the table for the second sequence of numbers with your method for calculating how much
you spent in question 5.

9. Use your knowledge of arithmetic progressions to calculate the 20th value in your model 
from question 5.

T1 = 1 T2 = 4 T3 = 7 T4 = 10 T5 = 13 T6 = 16

1 1+3 1+3+3 1+3+3+3 1+3+3+3+3 1+3+3+3+3+3

1+3(0) 1+3(1) 1+3(2) 1+3(3) 1+3(4) 1+3(5)

a + d(0) a + d(1) a + d(2) a + d(3) a + d(4) a + d(5)

S1 = S2 = S3 = S4 = S5 = S6 = 
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10. Investigate the effect on the profit when increasing
a) the amount of the initial play, a, and 
b) the fixed difference between successive plays, d.

11. What conclusions can you make when you increase only a while keeping d constant? Observe the trend
by determining the profits graphically or algebraically.

12. What conclusions can you make when you vary both a and d? Observe the trend by graphing the profits.

13. What conclusions can you draw about the game? Is it desirable to arrive at a maximum profit quickly?
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THE WHE TO PLAY
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. $25, $50, $100, and $150 respectively.
2. Yes for the first three, but not if on the 30th day. Your profits will be $95, $70, and $20 for the first three

scenarios, and a loss of $30 in the final scenario. On day n, a
profit of $5(24 – n) should be expected.

3. Students must recognize that betting the same amount every
day will only realize a profit if there is a win within 23 plays. On
the 24th play the player breaks even. The scatter plot shows
that the profit decreases in a linear fashion (negative slope) and
after 24 days, an increase in lost profit will continue to occur.
For an increasing profit, students must conclude that the linear
model with negative slope is undesirable. 

4. A new model must have a positive slope in order to realize an
increasing profit with each additional play. A change in strategy must involve moving away from bet-
ting a constant amount to an increasing amount. A systematic, rather than random, increase in the
amount will enable calculations to be readily made and a new mathematical model to evolve.

5. Answers will vary depending on the amount that students choose to increase their bet each day. If they
choose to start with $1 on the first day and increase their bet by $1 each day they will have spent $15
after 5 days. If they won on the fifth day their winnings would be $120 with a profit of $105.

6. In the new strategy, students must now investigate how to calculate the potential profit after any num-
ber of plays. They should recognize that a mathematical model can be derived to determine the amount
of each successive bet.

7. At some point, the plan will have a loss. Depending on the 
student’s model, it will vary.

8. The completed graph will vary with question 5, but a is their
starting value, and d is the amount that they increase their bet
each day. The bottom line of both tables should be the same, as
they are the variable representation of the arithmetic progres-
sion.

9. The answer should fit the formula a + d(19).
10-13.

Students may choose to increase a either minimally or substantially. This strategy will produce a model
in which the initial profit is high but profits begin to decrease with successive bets (a quadratic func-
tion that starts at the maximum and decreases). Students may be questioned on the feasibility of this
model. They should conclude that manipulating a is not the option for an increasing profit. In exercis-
ing the next option, students may increase d by varying amounts while increasing a by at least d. This
strategy will give rise to a model in which the profit increases from the very first play of this phase,
increases to a maximum, and then decreases to a point of breaking even before suffering a loss. The
pattern is thus similar to earlier examples. Students can now investigate various values of d, while
attempting to obtain the maximum profit at around the same value of n as in the earlier example. If a
win does not occur before or upon reaching the maximum profit, then a similar exploratory method
might need to be employed. 
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THE WHE TO PLAY 
Teacher’s Guide — Extending the Model

Since on average 1/3 of the money bet is lost, Play Whe is probably pretty profitable for the Agency (call it
A) that runs it. Schemes that keep increasing the amount of money bet in order to (more than) overcome
previous losses eventually flounder because A has greater resources than the individual bettor B. The small
probability with which B may lose a huge amount tends to obscure that it is a losing game for B. It may be
argued, especially if B bets only small amounts, that the utility of a potentially large win is greater than the
utility of a stream of small losses. As many experiments have shown, human utility is not linear, as there is
the thrill of participation and of the “Hey, you never know” type advertisement. It can also be argued that a
stream of small bets with intermittent wins, such as on a slot machine, is a reasonable price for the diver-
sion provided by the activity.
Play Whe is characterized by being a losing game, although at first glance it looks like there is a winning
strategy. The following is an example in the other direction: a winning game which at first glance looks like
it must be a loser. You are given an urn which contains 2 red balls and 3 brown ones. If you draw a red ball,
you win a dollar, and if you draw a brown ball, you lose a dollar. Do you want to play? Before you say “No!”,
consider the precise rules: the drawing is done without replacement, and you may stop at any time you
wish. The result is that you want to play, and with optimal strategy the expected outcome is 20 cents in your
favor.
The strategy is as follows (depicted in the tree diagram to the right,
where choosing a red ball is denoted by a move to the reader’s left and
a brown ball by a move to the reader’s right). 

1) If the first ball you draw is red (with p = 2/5), you win a dollar and
stop. If the first ball is brown (with p = 3/5), you draw again. 

2) If you now draw a red ball (with p = 2/4), you stop, and you have
broken even. If the second ball you draw is brown (also with p =
2/4), you now know that there are two red balls and one brown
ball left and continue.

3) If you now draw a red ball (with p = 2/3), draw again, and if this
fourth draw is red, you are even, and you stop. 

4) In all other cases, draw all the balls, and lose one dollar.

The probabilities and payouts for this strategy are as follows.
1) Stopping here happens with probability 2/5, and you win one dollar.
2) Stopping here has probability (3/5)(2/4) = 3/10, and you break even.
3) Stopping here has probability (3/5)(2/4)(2/3)(1/2) = 1/10, and you break even.
4) The probability of the cases so far is 2/5 + 3/10 + 1/10 = 4/5, so the probability of the other cases,

which are the ones in which you draw all five balls, is 1 – 4/5 = 1/5, and the outcome is a loss of 
1 dollar.

Therefore, the expected result of the optimal strategy is (2/5)($1)+(3/10)(0)+(1/10)(0)+(1/5)(–$1) =
$1/5, or 20 cents.
The kind of reasoning in this problem has been adapted to find a strategy for deciding when to sell a bond.
The key characteristic that a bond shares with the above problem is that there is a known fixed terminal
value. If you play our game to the end, you lose a dollar. If you hold a bond to the end, you get its face value.
Think of a curve such that if the price goes above that curve, you sell and take your profit. Think also of a
second curve such that if the price goes below that curve, you sell and cut your losses.
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2/3

1/2

1/1

1/1

1/2
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1/3
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WATER DOWN THE DRAIN Diane R. Murray

Teacher’s Guide — Getting Started Manhattanville College

Purpose
In this two-day lesson, students will collect data from a water dripping experiment. The data that the stu-
dents collect will be the basis for estimating how much water is wasted from typical leaky faucets. At the
beginning of the lesson, the students are faced with a statistic that states leaky faucets in US homes waste
$10,000,000 worth of water each year. At the end of the lesson, students will have the opportunity to deter-
mine what specifications (homes, faucets, drips/minute) result in that amount of money.

Prerequisites
Students need to understand linear equations, graphing techniques, and unit conversions.

Materials
Required: For each group, water, 2 paper cups, 2 paper clips (one small, one large), a ruler, graduated cylin-
der, and stopwatch.
Suggested: Graphing paper or a graphing utility. 
Optional: Internet access. 

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work, which consists mainly of data collection.
Separate students into groups of four and have them conduct the experiment. Demonstrate proper use of
the materials before students begin and emphasize the importance of accurate measurements when gather-
ing data. Each group should record the data in the table provided and should graph the data. Students will
produce plots that will lead to a line of best fit for both the “sink” and “tub” faucets and calculate the slopes
of these lines.

Worksheet 2 Guide
The third and fourth pages of the lesson constitute the second day’s work in which students will use unit
conversions to determine how many are gallons wasted in one day (24 hours) for the sink and tub faucets.
The method that the students create will be used to calculate the amount of water wasted in one month (30
days) and one year for both faucets and then applied to national data to determine the amount of water
wasted from all households in the country. Questions 11 through 13 are optional since they rely on internet
access.

CCSSM Standards
F-LE.1: Distinguish between situations that can be modeled with linear functions and with exponential
functions.
F-LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a
graph, a description of a relationship, or two input-output pairs (include reading these from a table).
F-LE.5: Interpret the parameters in a linear or exponential function in terms of a context.
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WATER DOWN THE DRAIN
Student Name:_______________________________________Date:_____________________

The US Geological Survey estimates that leaky faucets in US homes waste over $10,000,000 worth of water
each year! Do you have a leaky faucet in your house? How much water do you think is wasted? How much
water do you think a leaky bathroom sink faucet wastes compared it to a leaky tub faucet? How would the
US Geological Survey reach the conclusion reported?

© Brent Hathaway | Dreamstime.com

Leading Question
How would you design an experiment to estimate how much water is wasted in US homes?
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WATER DOWN THE DRAIN
Student Name:_______________________________________Date:_____________________

In your groups, use the materials given to you by your teacher to create
a physical model of the situation of a leaking faucet and a leaking bath-
tub. Each group should have a water source, 2 different sized paper
clips, 2 paper cups, a ruler, a stopwatch, and a graduated cylinder.

1. Describe how you initially plan to set up your model. What jobs do
each of the materials play? Might you use other materials not provided by your teacher? If so, what are
they? 

2. Use the model that you have created in your group to fill in the values in the following table:

It helps to have clearly
defined roles for each group
member. Who is in charge of

which tasks?

Leaky Bathroom Sink Faucet Leaky Tub Faucet 

Time (in seconds) Volume (milliliters) Time (in seconds) Volume (milliliters)

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

100 100

110 110

120 120

Number of drips 
during first 10 second interval: ___

Number of drips 
during first 10 second interval: ___

3. Was your model efficient in its original plan, or did you alter it based on the data you collected?
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WATER DOWN THE DRAIN
Student Name:_______________________________________Date:_____________________

4. Plot both sets of data and draw a line of best fit for both sets of data.

x - axis: ___________________________

Title: ___________________________
y -

 a
xi

s:
 _

__
__

__
__

__
__

__
__

__
__

__
__

__

5. How would you determine the slope of a line that seems to fit the points best?

Using your method described above:
a) Find the slope of the best �it line for the Sink Faucet data set: __________

b) Find the slope of the best �it line for the Tub Faucet data set: __________



161

WATER DOWN THE DRAIN
Student Name:_______________________________________Date:_____________________

Use the data you collected in the previous day to help answer the 
following questions.

6. How would you write the equation of each best fit line now that
you know the slope? 
Sink Faucet data set equation: ___________________

Tub Faucet data set equation: ___________________

7. Using the best fit line equations, describe a method of estimating the amount of water in gallons wasted
in one day?

a) Using your method, how much water does the leaky bathroom sink faucet waste in one day?

b) How much water does the leaky tub faucet waste in one day?

8. How much water is wasted in one month (30 days) and one year for both faucets?

9. How many households do you think have at least one leaky faucet? The data from Census 2010
(http://www.census.gov/prod/1/pop/p25-1129.pdf) suggests that there are 114.8 million households
in the United States. How much water is wasted in one day from all households in the country?

What do you know about
linear functions that could

help you answer this
questions?
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WATER DOWN THE DRAIN
Student Name:_______________________________________Date:_____________________

10. A family is going on vacation and accidentally left the leaky bathroom sink and tub drains plugged in.

The sink has dimensions: Sink depth (in.): 19.125
Sink length (in.): 19.125 
Sink width (in.): 8.0

The tub has dimensions: Tub depth (in.): 8.625
Tub length (in.): 60 
Tub width (in.): 30.25

How long will it take to fill the sink completely? The tub?

11. The US Geological Survey has a drip accumulator calculator that can be found online
(http://ga.water.usgs.gov/edu/sc4.html). How do your estimates compare to their calculations? How
many drips/minute did you calculate in your experiments?

Using the drip accumulator calculator, how many gallons per day are wasted in
a) 5 Homes, 2 faucets in each, with 60 drips/minute? __________
b) 10,000 homes, 4 faucets in each, with 20 drips/minute? ___________

12. On average 1 gallon of tap water costs 1 cent. How much money is wasted per day from the two exam-
ples in question 11?

13. What specifications (households, faucets, drips per minute) would give the estimate that US homes
waste over $10,000,000 worth of water each year? 
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WATER DOWN THE DRAIN
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Students should be encouraged to try different methods of creating the model given the constraints of
each group’s specific materials. One possible method for organizing the groups is to assign roles to each
group member as follows: 
Student 1:
Creates the holes in the paper cups; tests holes for dripping accuracy; counts number of drips during

the �irst 10-second interval.
Student 2:
Start stopwatch when the water begins to drip; alerts group at each 10-second interval.
Student 3:
Fills cup and covers hole with �inger until experiment ready to begin; holds cup over graduated cylinder

to measure water lost.
Student 4:
Record the amount of water in the graduated cylinder at each 10-second interval.

2. Answers will vary depending on the physical model created by the students but the data should be lin-
ear.

3. Efficient models may sometimes be difficult to produce depending on the materials. However, students
should think freely about solutions to problems that arise.

4. The tub faucet should have a steeper slope than that of the sink faucet.
5. Finding the average rate of change is an accurate way of determining the slope.
6. Any of the methods of determining the equation of a line work well with this model such as using

slope-intercept form. Plotting the points and using a graphing calculator or utility’s linear regression
can also help to create more mathematically accurate equations.

7. With the x variable representing time (in seconds) in many equations, calculating the number of sec-
onds in a day and then evaluating the functions created in question 6 should give the answer in milli-
liters. A conversion is necessary to compute the answer in gallons.

8. Multiply the answers in question 7 by the number of days (30) in a month.
9. Estimates on the number of houses with leaky faucets will vary. Determine a reasonable estimate, and

then multiply the estimate by the total number of US households, and then by the average amount of
water wasted per faucet.

10. The sink has volume of 2,926.125 in3 and the tub has volume 15,654.375 in3. Evaluate your equations
created in question 6 for y = these volumes. Conversions may be necessary.

11. Answers will vary depending on the models built. The drip accumulator website will give answers of 57
and 76,089 gallons wasted.

12. 57 cents and $760.89.
13. Answers will vary depending on the number of households/faucets/drips per minute. One solution is

1,000,000 households, with one faucet dripping at 30 drips per minute.
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WATER DOWN THE DRAIN
Teacher’s Guide — Extending the Model

Sinks and tubs are naturally modeled as if they were boxes (that is, rectangular parallelepipeds), but liquids
often come in other containers, which can give rise to questions of some interest. (An amusing sidelight –
we won’t do any more with it at this point: it is well known that the most economical shape to enclose a
given volume is a sphere. So why don’t they make spherical milk bottles? Seriously, what criteria should a
packaging method satisfy?)
Your typical plastic or paper cup for a drink may not be in the shape of a cylinder, but more likely a section
of a cone. Some small paper cups next to a water fountain go all the way down to the vertex of a cone; most
have circular cross sections, which are smaller at the bottom than at the top. We would call the shape a frus-
tum of a cone. Suppose you want such a cup half-full: how high should you fill it? If you fill up to just half the
height, you will clearly have it less than half-full, for every cross-sectional circle below the halfway point in
height is smaller than every such circle above the halfway point. So if you want the cup half-full, you will
have to fill it to more than half the height. How much more?
Let us assume that the cross-sectional radius grows linearly with height. This is a fairly good model even
though it ignores the lip at the top for drinking, and some special circles to make gripping the cup easier. A
particular brand of cup (Solo) has a diameter of 6.0 cm on the bottom, 9.0 cm at the top, and is 11.8 cm
high. Changing to radii rather than diameters because the familiar formulas are in terms of radii leaves us
with the bottom radius r0 = 3.0 cm and the top radius r1 = 4.5 cm. A formula for the radius at height h
(where h is between 0 and 11.8 cm) that fits these numbers within the accuracy of 0.1 cm is

r = 3.0+0.13h.
As we said, it won’t do to set r = 3.75 cm, which is halfway up. It turns out that what we need is a radius of
3.9 cm, and this comes at a height of 6.9 cm. We want to see a convenient way to find this and then to gener-
alize the result. The formula found in solid geometry texts gives the volume, v, of the frustum of a cone of
revolution radius, r, at one end and radius, r′, at the other, with a, the altitude, as

v = πa(r2+rr′+r′2).

The typical proof of this requires calculus because it is based on the fact that the volume of a frustum of a
cone is the limit of volumes of frustums of inscribed rectangular polygonal pyramids. Those familiar with
calculus will recognize the above formula for v more intuitively as

v = πx2dx.

We again see the relevance of integral calculus to the formula for the frustum of a cone. Our question was
“When is the cup going to be half full?” At height h along the axis of the cup, the radius of the circular cross-
section is r(h) = r0 + mh, where in our problem r0 = 3 cm and m = 0.13. Then:

r – r0 = mh and = m.

So the volume v(h) from the bottom up to height h is given by 

v(h) = π (3.0 + 0.13x)2dx = [(3 + 0.13h)3 – 3].

We want to find h so that this is half of the volume of the cup, which is

[(4.5)3 – 33].
π
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Teacher’s Guide — Extending the Model

So we get
(3 + 0.13h)3 – 33 = [(4.5)3 – 33].

Approximating the right-hand side of the equation to 59 leads to h ≈ 6.9 cm.
All this can of course be carried out more generally, but there is an interesting wrinkle at the end. We get:

(r0 + mh)3 = (r1
3 + r0

3),

and we can find h by taking cube roots of both sides. But a modeler would also reason as follows: if r0

equaled r1, the h for half a cup would be exactly (r0 + r1)/2. So it would be natural to want to estimate how
far away from (r0 + r1)/2 the answer is if r1 does not equal r0. So let (r0 + r1)/2 = A and (r1 – r0)/2 = B. Then
the previous formula becomes

(r0 + mh)3 = [(A + B)3 + (A – B)3] = A3 + 3AB2 .

Remember that we expect B to be smaller (perhaps much smaller) than A. Then we can argue:
r0 + mh = (A3 + 3AB2)1/3 = A[1 + 3(B/A)2]1/3 ≈ A[1 + (B2/A2)], 

where the right-hand side of the last approximate equality is the first two terms of a binomial expansion
with exponent 1/3. So the answer to our “modeler’s question”, namely “what’s a good simple back-of-the-
envelope approximation to our answer?” is just A + B2/A. So as a good approximation the cup will be half-
full at about B2/A above the midpoint in height; a simple satisfying answer.
In our problem, A is 3.75 cm and B is 0.75 cm, so that B2/A = 0.15 cm. Summing these two we get 3.9 which
is just what we got before!

1
2

1
2

1
2
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VIRAL MARKETING Benjamin Dickman

Teacher’s Guide — Getting Started Brookline, MA

Purpose
In this two-day lesson, students will model “viral marketing.” Viral marketing refers to a marketing strategy
in which people pass on a message (such as an advertisement) to others, much like diseases and viruses are
spread.
To begin, explain that you are interested in starting your own business and you are researching different
marketing strategies to “get the word out.” Viral marketing is one strategy that should be considered. What
is viral marketing and what can be said about it mathematically?

Prerequisites
Students need have good understanding of exponents and how functions work. The lesson relies heavily on
exponential functions to explain how viral marketing works.

Materials
Required: None.
Suggested: Spreadsheet software or a graphing utility.
Optional: Marker chips or index cards (to replicate the passing of a viral advertisement).

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are asked to imagine that they
are creating an ad campaign for their own business and they want the ad to “go viral.” They will need to
model the growth of the ad’s viewership for the first week. They will see that physical models become
unwieldy very quickly and that a convenient way of organizing this information is necessary. Some students
may become frustrated at the rate of growth and may need help understanding that an organized way to
construct this model is necessary.  In this case, restricting their own models to just a few days should per-
mit them to move on through the lesson.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students are given a brief descrip-
tion of what an exponential function is and are instructed to modify their models from the previous day to
include exponential functions. Particular attention should be paid to the base of the function and its mean-
ing. Students then learn to consider the model they’ve created, particularly its real-world constraints and
the mathematical relationship to other phenomena. Finally, students are challenged to write a business pro-
posal for a marketing strategy. This will reinforce their understanding of the mathematics by sharing their
concept with others.

CCSSM Addressed
F-LE.1: Distinguish between situations that can be modeled with linear functions and with exponential
functions.
F-LE.5: Interpret the parameters in a linear or exponential function in terms of a context.
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VIRAL MARKETING
Student Name:_____________________________________________ Date:_____________________

“Viral marketing” is an advertising strategy in which people pass on a marketing message to others. For
example, when Hotmail first began to offer free email addresses, the following was included at the bottom
of every message: “Get your private, free email at http://www.hotmail.com.” When people received emails
from friends and family that were already using Hotmail, many of them would sign up for their own
accounts. Later on, these new Hotmail users would send out their own emails, thereby continuing the cycle.

Leading Question
If you wanted to create an advertising campaign for your own business, why might you choose to use viral
marketing?
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Student Name:_____________________________________________ Date:_____________________

1. You have created an ad that you want to “go viral” and you show it
to several focus groups. Based on their responses, you estimate
that the average viewer will send your ad to three other people the
next day. If you send the ad to five people on the first day, how
many new people do you expect will see the ad each day for the
first week? How many people in total will see the ad each day for the first week?

2. How can you mathematically describe how many new people will see your ad each day? What about
how many people in total will see your ad?

3. Use your model to estimate how many people would see the ad in one month. What conclusions can
you draw from this estimation?

Is there a way to organize
your model to help you see
the situation more easily?
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Student Name:_____________________________________________ Date:_____________________

4. It turns out that the average viewer forwards your advertisement to six other people the day after they
receive it. How does this affect your �irst week’s viewership?

5. You make a second ad campaign and estimate again that the average
viewer will send your ad to three new people the next day. You
decide to send the ad to 20 people on the �irst day. How many new
people will see your second campaign each day of the �irst week?
How many people in all will see the ad over the �irst week?

6. What conclusions can you draw from your answers in questions 
4 and 5? What does this say about the mathematics of viral 
marketing?

Do you have to make a brand-
new model or can you modify

the old one?

Is your model efficient
enough to handle this

situation? If not, is there an
easier way to model the viral

growth?
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Student Name:_____________________________________________ Date:_____________________

An exponential function is a function that grows by a constant factor over every interval of the same length.
This means that every time the x-value of a function increases by 1, the y-value of the function is multiplied
by some given factor, known as the base.

7. Did you use an exponential function to model your viral marketing campaigns? If so, why did you think
this was a good idea? What was your base? How do you know? If you did not use an exponential func-
tion, try to use an exponential function to model the campaign’s growth. What should the base be?
What else needs to be considered? Do you get the same results with either method? Which method do
you like better and why?

8. What are some shortcomings of the viral marketing model? Should other factors be considered? Will an
exponential function always give you the correct number of new viewers you should expect each day?

9. Why do you think this type of advertising is called viral marketing? What other viruses do you know
about? What do you know about how they spread? Could doctors use an exponential function to under-
stand anything about epidemics?
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Student Name:_____________________________________________ Date:_____________________

10. Some more “traditional” forms of advertisement are billboard ads, commercials during a sitcom, and
print ads in a newspaper or magazine. Make a model for how the number of people that see your ad
changes from day-to-day if you use more traditional forms of advertisement like these. Besides the
actual numbers, what is mathematically different about traditional ads and viral ads?

11. Design your own campaign! Imagine you’ve started your own business and you need to design an ad
campaign that will last for two weeks. Write a proposal to your coworkers about how to carry this out.
Don’t forget to include easy-to-understand mathematical explanations for why your campaign will
work better than others! (Feel free to be creative and make up expected numbers of people who will
see your campaign, but be sure to be reasonable!)
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VIRAL MARKETING
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. On days 1–7, you expect 5, 15, 45, 135, 405, 1215, and 3645 new people to see the ad, respectively.
This sums to 5465 people.

2. Use the exponential function f(x) = 5 • 3x, with Day 1 represented by x = 0. The values of f(x) when 
x = 0,1. . . ,6 represent the new people seeing the ad on a given day. The sum of these first seven values
represents the total viewership.

3. Over 30 days, approximately 5.14 • 1014 people will see the ad. Without the use of mathematics soft-
ware, students will be unable to do this calculation by hand without an organized model! Considering
that there are only about 7 billion people in the world, it seems that there should be more restrictions
for this model.

4. On days 1–7, you expect 5, 30, 180, 1080, 6480, 38,880, and 233,280 new people to see the ad. This
total equates to 279,935 people.

5. On days 1–7, you expect 20, 60, 180, 540, 1620, 4860, and 14,580 new people, respectively. This total
equates to 21,860 people.

6. The conclusion to be drawn shows that the total number of people to see the ad is affected more by the
number of people that the ad is passed on to each day. The number of people initially sent the ad does
much less to affect total viewership.

7. The base of the exponential function should be representative of how many people the average person
shares the ad with.

8. One shortcoming of this unrestricted exponential model is that it grows quickly beyond the population
of the planet. Another is that when the real world is considered, people tend to send the majority of
their emails within a general group (high schoolers may send the majority of emails to friends in the
same high school, most people tend to email to speakers of the same language, etc.). Thus, there will be
redundancies in viewers.

9. This is called viral marketing because of the way passing on ads replicates the passing of viral diseases.
10. The traditional forms of advertising only reach the one group of people who see it and viewership gen-

erally does not grow. (Mostly commuters on that route will see a billboard, those who watch the show
will only see a commercial during a sitcom, etc.)

11. Answers will vary. Mathematical explanations should include the idea of exponential growth, or in the
least, continually growing viewership.
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VIRAL MARKETING
Teacher’s Guide — Extending the Model

Modeling of epidemics is an enticing and potentially fulfilling area of mathematical modeling. For example,
trying to understand the relative merits and costs of vaccination and quarantine alone makes it worthwhile.
At first glance, the modeling process seems simple: the population consists of the susceptible, the infected,
and — for whatever reason — the no longer infectious. But the process of transition from one state to
another varies greatly from one situation to another, and can be devilishly hard to model realistically.

Begin with an extremely simple, and simpli�ied, case. Consider a �ixed population of N people, consisting
only of the susceptible and the infectious. (A better model might take account of the fact that it is possible
to be ill but not infectious, and also to be infectious and not know you are ill.) On day n, n > 0, you have the
number s(n) of “susceptibles,” the number i(n) of newly infectious, and the total number t(n) of infectious
on day n, given by t(n) = t (n – 1) + i(n), with i(1) = t(1) = 1. A �ixed fraction, a, of encounters between the
susceptible and the infectious leads to new illness, so that i(n +1) = i(n) + a • s(n) • t(n), and s(n + 1) = 
N – t(n + 1). Even this simple model shows the typical S-shaped curve for t(n) versus n.

In the next step towards realism, we introduce a third group, beginning with the assumption of a number
h(n) of newly harmless on day n. Each day, a fraction, b, of infectious become harmless, so h(n) = b • t(n). In
this model, i(n) has a peak, and it is possible to study whether eventually everyone will be infected, or some
fraction will have escaped when the epidemic is over.
So now our equations are

s(n + 1) = s(n) – a • s(n) • t(n)
i(n + 1) = a • s(n) • t(n) – b • t(n)
t(n + 1) = t(n) + i(n + 1)
s(1) = N, i(1) = 1, t(1) = 1, h(1) = 0
s(n) + t(n) + h(n) = N

In one use of such a model, vaccination would keep s(1) from being all of N, while quarantine would
decrease t(n). Looking at the resulting graphs would help to tell how to divide resources between the two.
Modeling the spreading of rumors can be done in very much the same spirit, but there are different ver-
sions of when an “infectious” person, that is, one who is actively telling the rumor, will stop. A tempting
model might assume that two infectious persons meeting and trying to tell the rumor to each other would
result in both moving into the harmless group: they don’t want to be telling stale rumors! What happens
when an infectious meets a harmless is debatable. The chance that the infectious would then quit telling the
rumor is probably smaller than if (s)he met another infectious. It’s interesting to ponder the analogs of
vaccination and quarantine in the “rumor” version of the model.
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SUNRISE, SUNSET Edward A. DePeau III

Teacher’s Guide — Getting Started Central Connecticut State University

Purpose
In this two-day lesson, students will examine changes in the average monthly sunlight over the course of a
year. They will use actual sunrise and sunset data found on the internet in order to calculate the “length of
an average day” for the chosen city. Students will model the data with a sine curve. The model will be inter-
preted and used to make connections to the real world.

Prerequisites
Students should understand amplitude and period of sine and cosine functions. 

Materials
Required: Data form and a graphing calculator or spreadsheet software.
Suggested: Internet access.
Optional: None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are asked to think about how the
length of the day changes throughout the year. It is important that students not only use real data but that
they also translate the data into values that will help them to understand the behavior of the model better.
By performing the “number of hours” calculations, students are creating a tabular representation for this
model. Some students will begin to make strong connections to the periodic behavior while developing the
tabular representation while other students will need the graphic representation to understand how the
number of daylight hours changed throughout the year. Once the model is created, it is important for stu-
dents to then begin to analyze the model and connect symbolic representation to the real world. 

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work. Students explore the model
they’ve created and use it to make decisions. Finally, they research a city of their choice and must create a
model that describes that city’s length of day. They should present their findings to the class; presentations
should be mathematical and informative about their city’s geographic location at the same time.

CCSSM Addressed
F-TF.5: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency,
and midline.
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SUNRISE, SUNSET
Student Name:_____________________________________________ Date:_____________________

The Earth rotates at a 23.5° tilt from the vertical. As the Earth revolves around the Sun, the amount of sun­

light that each location receives changes based on its location and the relative position of the tilt to the Sun.

If the Earth wasn’t tilted, the amount of daylight at every location would be equal year­round.

© Tudor Stanica | Dreamstime.com

Leading Question
How do the lengths of the days change throughout the year? Is the change constant? Does it matter where

you live? Is there any part of the Earth that receives 24 hours of sunlight?
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SUNRISE, SUNSET
Student Name:_____________________________________________ Date:_____________________

1. If the length of day is defined to be the number of hours of sunlight or the length of time from the sun­

rise to the sunset, 

a) Would the number of hours from one day to the next be a constant difference? 

b) How does the number of hours at the beginning of the year compare with the number of hours at 
the end of the year? 

2. The following table displays the sunrise and sunset times of the 15th of every month in 2010 for Hart­

ford, CT. The data were found on www.sunrisesunset.com.

Month
Number

Sunrise
Time

Sunset
Time

Hours of
Sunlight

Month
Number

Sunrise
Time

Sunset
Time

Hours of
Sunlight

1 7:16a 4:44p 7 5:28a 8:24p

2 6:47a 5:22p 8 5:58a 7:52p

3 7:03a 6:56p 9 6:30a 7:02p

4 6:11a 7:30p 10 7:02a 6:10p

5 5:31a 8:02p 11 6:39a 4:31p

6 5:15a 8:27p 12 7:10a 4:20p

a) Complete the table by calculating the number hours of sunlight for the 15th of every month begin-
ning with January (Month Number 1).

b) What can you say about the length of the day based upon the data in the table?

c) Use graphing technology to make a scatter plot of the length of day versus the month number.
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SUNRISE, SUNSET
Student Name:_____________________________________________ Date:_____________________

3. What type of model, if any, do you think would fit the data?

4. What information does the model give you about the length of the day throughout the year?  Is there a

special feature of your model that indicates the difference in the length of the day over the year at its

maximum and minimum?
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SUNRISE, SUNSET
Student Name:_____________________________________________ Date:_____________________

5. What is the average amount of sunlight that Hartford, CT received per day in 2010? 

6. During what day(s) of the year will Hartford, CT have a day where half of the day has sunlight and half
of the day does not?

7. How many hours of sunlight will Hartford, CT receive on your birthday?



180

SUNRISE, SUNSET
Student Name:_______________________________________Date:_____________________

8. A friend plans to move from Hartford, CT to some other US city. He went onto the website www.sunris-
esunset.com and created models for various cities around the US he is interested in moving to. One par-
ticular model that he developed for a certain city was f(x) = 6.6sin(0.508)(x – 3.1299) + 12.2, where x
is the number of the month in the year and f(x) is the number of hours of sunlight. Determine a city for
which the model might be appropriate. Explain why the determined city fits the model.

9. Are there businesses that might benefit from these models? What kinds of businesses would benefit?
How might a business benefit from knowing a model like the one you created? 

10. Pick your favorite city and collect data on the length of the days for a certain year. Create a model of the
data and explain how it can be used to benefit you, an organization, business, or government agency.
Present your findings to the class.
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SUNRISE, SUNSET
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1 a. No.

1 b. It would be approximately the same amount. The number of hours of sunlight received on December       

31st is not much different than the number of hours of sunlight received on January 1st. 

Month
Number

Sunrise
Time

Sunset
Time

Hours of
Sunlight

Month
Number

Sunrise
Time

Sunset
Time

Hours of
Sunlight

1 7:16a 4:44p 9.46 7 5:28a 8:24p 14.93

2 6:47a 5:22p 10.58 8 5:58a 7:52p 13.9

3 7:03a 6:56p 11.88 9 6:30a 7:02p 12.53

4 6:11a 7:30p 13.32 10 7:02a 6:10p 11.13

5 5:31a 8:02p 14.52 11 6:39a 4:31p 9.87

6 5:15a 8:27p 15.2 12 7:10a 4:20p 9.17

2 a.

b. As the year progresses the average number of hours of sunlight per month increases at a non­con

stant rate until June and then the average number of hours decreases at a non­constant rate. Again, 

the average number of hours of sunlight in December is similar to the average number of hours in 

January.

c. The following graph was created using a TI­nspire.

3. The model needs to be periodic. One possible model is shown. 

4. The model shows that the length of day is periodic throughout the year.  The amplitude helps deter­

mine the difference in the length of day between the longest and shortest days of the year.

5. 12.1 hours.

6. x =3.09 months and x = 9.36 months. The corresponding dates are March 2nd and September 11th. 

7. Answers will vary depending on the student’s birth month.

8. Answers will vary. One possible city is Juneau, AK as the model has as much as 18 hours of sunlight and

as few as 6 hours of sunlight.

9. Answers will vary; one possible business would be gardening centers.

10. Students will present their findings based on their own data.
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SUNRISE, SUNSET
Teacher’s Guide — Extending the Model

Another question about the Hartford length­of­day data is when the length of the day is changing most rap­

idly. In June, the days are longest but the length is changing very little from one day to the next. Then in

December, the length of the day is small but again it is changing very little from day to day. In the latter part

of March, on the other hand, the number of hours of sunlight changes upwards of 3 minutes per day at its

maximum. Later on, students will see this as characteristic of an inflection point in the curve.

To look for other sets of data with such clean periodicity and little added noise, other geophysical phenom­

ena are tempting. Data on tides will be good if you are near an ocean; the visible fraction of the moon is

periodic and you’ll have fun deciding how to define and measure it.

Strictly human creations that can provide nice periodic data include Ferris wheels and bicycles. If you are

watching a Ferris wheel from not too far away, you can take a sequence of photos or make a short movie,

pick a particular spot (for example, by its décor), and then analyze the height of that spot as a function of

time. You have to pick your Ferris wheel carefully, of course: sometimes the famous wheel in the Prater in

Vienna keeps stopping so that every car can get a view from the top and then allows you just one time

around before they make you get out again! (What a disappointment!) 

Other physical phenomena may be basically periodic, but may have decreasing amplitude. If you plot the

oscillations of a tuning fork, you will get nice periodic data but the volume of sound decreases with time.

You will obtain data of similar shape if you measure the height of a basketball as it bounces in as close to

one spot as you can make it. Set up your graphing calculator’s motion sensor above the ball and record the

distance downward to the top of the ball. You will have fun interpreting the results. (Why? If you subtract

the diameter of the ball from its computed height, you may get negative minimum heights for the bottom of

the ball and will have to explain them!)

Human business activities dependent on the length of daylight are likely to have periodic aspects but there

will be additional considerations of a nature different from decreasing amplitudes. Monthly housing starts,

if you are not too far south in the country, have the basic periodicity of daylight but there will be a long­term

trend depending on the local economy that you will need to identify and separate out as an added slowly

varying function. Nowadays, this is unlikely to be linear!  A trend in housing that starts with data from, say,

10 years ago, will probably be more nearly linear, but the difference between “then” and “now” may be

painful to discuss. Daily temperature in your community – be it maximum, average, or minimum – again

inherits its basic periodicity from the length of daylight, but the storage of heat in the ocean changes where

the annual peaks and valleys occur. Again, if your data show evidence of global warming, or if they don’t

show such evidence, you might need to be prepared for non­mathematical aspects to the discussions.
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SURVEYING THE ANCIENT WORLD Heather Gould

Teacher’s Guide — Getting Started Stone Ridge, NY

Purpose
In this two-day lesson, students will construct and use a simple version of an ancient tool called an 
astrolabe.  This tool measures the angle between the tool and the horizontal plane.  It was used frequently
by ancient surveyors, engineers, astronomers, and seafarers to compute angles and heights.

To introduce the lesson, explain the use of the astrolabe to students and have them imagine that they are
ancient surveyors trying to measure the heights of mountains.  The astrolabe only measures angles, though.
How could ancient surveyors complete their task?

Prerequisites
Understanding of the properties of similar triangles and some knowledge of trigonometric ratios are help-
ful but not necessary.  Students must be able to make accurate scale drawings and convert between two
scaled measurements.

Materials
Required:  Simple astrolabe copies (given on next page), straws, string, washers (to serve as a plumb bob),
tape, metric rulers or measuring tape, protractors, calculators, mural of mountain range to post on a tall
wall (made by teacher).
Suggested:  Internet.
Optional:  None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work.  Students must build a simple astrolabe
using the image on the next page.  An explanation of how to make and use a simple astrolabe can be found
online at http://cse.ssl.berkeley.edu/AtHomeAstronomy/activity_07.html.  To save time, the teacher might
choose to make several astrolabes in advance.  To begin the work of the lesson, students will determine
what information they will need to find the height of an object.  They will measure the angles found from a
certain distance (3 meters is recommended) to the tops of several “mountaintops” with known heights on a
wall mural.  Answer 2 in the Possible Solutions guide can be used as a suggestion for the heights of the
mountaintops.  Students will look for mathematical patterns in their findings as well as in scaled-down ver-
sions of the situation.  Finally, they create a mathematical model to find unknown heights based upon scaled
versions of triangles.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work.  Students are introduced to
trigonometric ratios and refine their previous model.  It is not always easy to find the distance to a point
below the top of an object and the students create a model using two measurements to account for this.
Finally, they try to apply their model to more situations.

CCSSM Addressed
G-SRT.8:  Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied prob-
lems.
G-MG.3:  Apply geometric methods to solve design problems.
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A surveyor’s job is to determine the position of places and objects around the world accurately.  Surveyors
assist in the creation of maps and boundaries.  The accuracy of their results is extremely important to scien-
tists, engineers, and even property owners!  In the ancient world, surveyors were just as important and
they had to do their job well with only ancient tools.  One such tool is an astrolabe which helps determine
the height of an object by measuring the angle formed between the object and a horizontal plane (usually
the ground or in the case of an astronomical object, the horizon).

The picture below will help you make a simple astrolabe.

Derived from a picture at http://cse.ssl.berkeley.edu/AtHomeAstronomy/act07_astrolabe.html   

Leading Question
How did ancient surveyors use an astrolabe to determine the height of various land features?

SURVEYING THE ANCIENT WORLD
Student Name:_____________________________________________ Date:_____________________
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1. How do you think knowing angles helps determine unknown
heights?  What other information might you need to help deter-
mine height?  Draw a picture describing the situation; label what
you know, need to know, and what you’re trying to find.

2. Experiment:  Build a simple astrolabe and use it to help you determine the various angles between the
ground and several “mountaintops” with known heights, each from the same distance, for example, 
3 meters away.  Record your findings in the table below.

3. What patterns do you notice in your findings from question 2?  Is there a mathematical relationship to
describe the pattern?  If so, what is it?

SURVEYING THE ANCIENT WORLD
Student Name:_____________________________________________ Date:_____________________

(Actual) Distance from 
“Mountain”

(Actual) Height of 
“Mountain” Angle Found

What kinds of
measurements do you think

ancient surveyors could
obtain?  What other types 
of tools do you think they

could use?
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4. It is often helpful in modeling to consider the problem on a smaller scale.  Draw and examine a scaled-
down version of the situation using the distance from the mountain and angles found to guide you.  Do
you notice the same patterns?

5. Can you create a mathematical model to describe how to find the
unknown height of a mountain?

6. Try experimenting using different distances from the mountaintops with known heights.  Does your
model still work?  If not, try to modify your model so that it works in all cases.

SURVEYING THE ANCIENT WORLD
Student Name:_____________________________________________ Date:_____________________

Distance from 
Mountain Angle Drawn Height of 

Mountain

How can you use your
knowledge of similar triangles

to help you create a model?
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7. You may have noticed that a major problem with using an astrolabe to determine heights is that differ-
ent people will often find different angles to the top of an object even though they were standing at the
same point.  Why might that happen?  How can the problem be fixed?

Trigonometric ratios help determine the lengths of the sides of a right triangle.  The ratios of the lengths of
adjacent sides in each of two similar triangles are equal.  Tangent relates the lengths of the leg opposite an
angle to the length of the leg adjacent to that angle.

8. How can the tangent of an angle be used to determine unknown heights?  Describe the model you think
ancient surveyors used.  Is it similar to the model you created in question 5?

9. It is usually difficult to determine the exact horizontal distance from a person using an astrolabe to a
point directly below the highest peak (or other highest entity) because that point is usually inaccessi-
ble within the object being measured.  For example, in the picture below, the point that you’d need to
measure from is inside the volcano!  Do you think it is possible to use two measurements to determine
the height of the peak of the volcano?  Modify your model to describe how this could be done.

SURVEYING THE ANCIENT WORLD
Student Name:_____________________________________________ Date:_____________________
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10. Construction of the Leaning Tower of Pisa began in 1173.  It began to lean because it was built on very
soft ground and one side began to sink.  It is very important to take accurate measurements to monitor
the tower and ensure that it doesn’t topple!  How could Pisans in pre-Renaissance Italy use your model
from question 9 to monitor the tower?

11. An important part of the modeling process is determining where else your model can be used.  For
example, if you knew the height of something you were approaching that was far into the distance,
could you use your model to determine anything important?  If so, how?

SURVEYING THE ANCIENT WORLD
Student Name:_____________________________________________ Date:_____________________



SURVEYING THE ANCIENT WORLD
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods.  Please evaluate students’
solution methods on the basis of mathematical validity.

1. Knowing an angle along with one other side helps to determine heights
because similar triangles always have the same angles.  The side with known
length can be used to determine the “scale” of the length of the side that is
unknown.  The length of at least one other side needs to be known; usually the
distance from the object in question to a person with an astrolabe is sufficient.
The variables in question are h, the height of the object to be determined, d, the horizontal distance
from the person measuring to a point directly below the top of the object, and θ, the angle measured
between the horizontal and the top of the object.

2.     

3. Peaks of taller mountains make larger angles from the same distance away.
4. The pattern found here is similar:  Larger angles yield larger heights.  An astute student will notice that

the ratio of the heights to the distances will be the same for the same angles in questions 2 and 4.
5. Without knowledge of trigonometric ratios, a student might choose to use the measurements found on

the scaled version of a triangle and then multiply by the correct factor to “scale up”.  Thus, if the actual
distance is d, the angle found between the horizontal and the mountaintop is θ, and the height to be
determined is h, and the scaled triangle has base d1, an angle between the base and the top of the scaled
object θ, and height h1 (found using a ruler), and d = kd1, where k is some constant, then h = k×(h1/d1).

6. The model given works in all cases.
7. People with different heights will measure different angles.  This can be adjusted by measuring the dis-

tance from the ground to the person’s eye and adding it to the distance computed.
8. dtanθ = h.  Since tangents are the same for any right triangle with angle θ, then tangent tables can be

used and only simple calculations are needed.  Ancient people would only need to find the tangent of
each angle once and then the results could be stored in a table and this table could be used instead of
computing the necessary ratio each time.  This is essentially the model described in question 5 since
h1/d1 = tanθ.
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Distance from 
“Mountain”

Height of
“Mountain”

Angle
Found

3 m 0.80 m 15°

3 m 1.73 m 30°

3 m 3.00 m 45°

3 m 5.20 m 60°

3 m 11.20 m 75°

Distance from
Mountain Angle Drawn Height of 

Mountain

9 cm 15° 2.4 cm

9 cm 30° 5.2 cm

9 cm 45° 9.6 cm

9 cm 60° 15.6 cm

9 cm 75° 33.6 cm



SURVEYING THE ANCIENT WORLD
Teacher’s Guide — Possible Solutions

9. Two measurements can be taken from a known distance apart, for example, 500 feet.  Let the first
measurements taken be d1 and θ1 and the second measurements taken (500 feet back) be d2 and θ2.  We
know d2 = d1 + 500.  Then since the height, h, is the same for both measurements, we can find d1 by the
algebraic reasoning d1tanθ1 = d2tanθ2 = h, which implies d1tanθ1 = (d1 + 500)tanθ2.  Solving for d1 and
then replacing it in the equation d1tanθ1 = h gives the final solution.  This solution can be shortened by
using cotangents of the same angles if students are comfortable with the reciprocal trigonometric func-
tions.

10. The same model from above could be used at different times, perhaps yearly.  Even a slightly lower
height found could indicate that the tower is sinking.

11 In this case, the height remains constant but the distance from the object is changing.  Two measure-
ments taken over a specified amount of time could help determine both the distance traveled as well as
average speed.  Immigrants arriving by boat to Ellis Island may have found it entertaining to determine
how far they were and how quickly they would be arriving in their new home by using the height of the
Statue of Liberty, for example.  They would have to make further calculations based on the distance
between Liberty Island and Ellis Island and the angles between the two islands and the boat.

190
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In the applications of trigonometry to surveying, measurement error is a major concern.  Neither distances
nor angles can be measured with perfect accuracy.  Is there anything you can do to give you some protection
against the effects of measurement inaccuracy?  It turns out that the geometry of the relative positions of
the measurement devices and the to-be-measured quantities can affect how sensitive the results will be to
the accuracy of the measurements.

An example of this shows up when you think further about question 9, computing the height h of a volcano
peak P without having to get close to it.  The question assumes you have a base camp at A from which you
have a clear view of P.  You now look for a second location B with a clear view of P such that the line joining
A and B is horizontal and the plane containing A, B, and P is vertical.

Let X be the projection of P onto the line containing A and B.  Let θ1 be the degree measure of angle PAX, θ2

the degree measure of angle PBA, d the distance between A and X, and L the distance between B and A.  (See
the picture below, not drawn to scale.)  We can measure the two angles θ1 and θ2 and the distance L, we can-
not measure the distance d, and we expect to compute the height h.  The location of A determines θ1, the
location of B determines L and θ2, and we use L, θ1, and θ2 to compute h.  Given the location of the base
camp A, which determines θ1, we will see that there is a unique value of L so that the computation of h is
least sensitive to the accuracy with which θ2 is measured.

Let us first try a numerical example.  Let θ1 be exactly 30° and let L be exactly 500 feet.  Suppose that the
true θ2 is 14.85°.  Our formulas are

cot θ1 = and cot θ2 = .

We subtract the first formula from the second, rewrite, and obtain 

h =  . (*)

This simple formula for h can be rewritten as 

h = L = L . (**)

We obtain that h is 245.2 feet.
What if there is an error of  ± 1°  in our value of θ2?  If θ2 is 13.85°, then h becomes 215.2 feet, and if θ2 is
15.85°, then h becomes 279.3 feet.  

d
h

+L d
h

θ θ−

L
cot cot2 1

θ θ

θ θ−

sin sin
sin( )

1 2

1 2

θ θ

θ θ θ θ−

sin sin
sin cos sin cos

1 2

1 2 2 1

SURVEYING THE ANCIENT WORLD
Teacher’s Guide — Extending the Model
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If we use a smaller value of L, for example L = 200 feet, then the correct θ2 would be 21.43° in order to pro-
duce the previous value of h.  If this value of θ2 were in error of  ± 1°, then the values of h would become
210.0 feet and 289.6 feet, respectively.  If we use a larger value of L, for example L = 1250 feet, then the cor-
rect θ2 would be 8.33° in order to produce the previous value of h.  If this value of θ2 were in error of 
± 1°, then the values of h would become 206.9 feet and 287.1 feet, respectively.

The changes in sensitivity when L goes from 200 to 500 to 1250 feet are not spectacular, but they are not
monotone either!  The sensitivity is less at L = 500 than at either 200 or 1250 feet!  But why is this so?
We will first give an instinctive reason and then give an analytic one.  Suppose L is small.  Then B is very
close to A, therefore θ2 must be close to θ1, and even a small error in θ2 will cause havoc in the computation.
If, on the other hand, L is very large, then θ2 itself must be very small, and again a small error will destroy
the computation.  So it makes sense that there should be a value of L in between that causes the least 
trouble.

That’s the instinct.  Now let us use calculus and see what we get.  Let’s take the equation (**), find the par-
tial derivative of h with respect to θ2, and then divide by h.  When multiplied by a small change, ∂θ2, this will
give us the corresponding relative change ∂h/h.  We find that 

= (***)

We see that if L is small, so that θ2 is very close to θ1, the denominator is almost 0, and the answer is very
large.  We see that if L is very large, so that θ2 is very close to 0, the denominator is almost 0, and the answer
is very large.  In between, there is a value of θ2 that will maximize the denominator, and that’s the value we
want.  Your instinct will tell you – and calculus will verify it – that this happens when θ2 = θ1 – θ2, that is,
when the angle at B is half the angle at A.  But this means that the triangle is isosceles, namely the length of
BA equals the length of AP.  And this is just about what happens when L = 500 feet!

How do we know?  Well, the problem was made up with θ1 = 30° so its sine is 0.5, and therefore if h is 245
feet, then AP is almost 500 feet.  So it all checks!  Moreover, if you substitute the numbers for L = 500 into
the equation (***) and multiply by a radian value corresponding to dθ2 = 2°, you get dh = 63.6 feet, which is
almost the 64.1 feet we computed above.  Isn’t mathematics wonderful?

∂

∂θh
h1
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θ

θ θ θ−
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sin sin( )
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SURVEYING THE ANCIENT WORLD
Teacher’s Guide — Extending the Model
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PACKERS’ PUZZLE                                                        Kai Chung Tam

Teacher’s Guide — Getting Started                                  Macau, People’s Republic of China

Purpose
In this two-day lesson, students consider ways to estimate the number of spheres that will fit within a con-
tainer.  They also will try to pack as many as possible into differently shaped containers.
The objective of this lesson is to have students use geometric solids so that they can solve basic packing
problems that arise in the real world.

Prerequisites
It is assumed that students are familiar with the calculation of area and volume of various shapes. Other
geometrical concepts related to circles, such as radius, diameter, and tangent lines, are also relevant. Infor-
mal exposition of rigid motions (parallel translation, rotation, and reflection) is preferred.

Materials
Required: Calculator, circular tokens of various sizes (e.g., pennies, bottle caps, checkers), and two-dimen-
sional “containers”. As a preliminary step, teachers need to prepare photocopies of 3 shapes (squares, cir-
cles, and equilateral triangles) of three different sizes each. Be sure to note the measurements (sides and
radii) of each of these shapes and for each token for students to make proper calculations.
Suggested: None.
Optional: Digital scale. A jar of candy or any container of identical objects.

Worksheet 1 Guide
The first four pages of the lesson constitute the first day’s work. Initially students can work on the first two
pages individually, but for the next two pages, they should to be organized into groups. Each group will be
provided tokens and shapes (containers) to model the orange packing situation. By combining different
ideas that the students came up with before they were separated into groups, they can fill out the table pro-
vided on the third page of the lesson and answer the questions that follow.

Worksheet 2 Guide
The fifth and sixth pages of the lesson constitute the second day’s work in which students should realize
that a dense packing is wanted. After a discussion of the density and the unit of a regular arrangement in
the plane, students will calculate the theoretical density of rectangular and hexagonal arrangement and
compare the result with the first worksheet. Finally, students will think about the extension to three dimen-
sions.

CCSSM Addressed
G-GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
G-MG.1: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a
tree trunk or a human torso as a cylinder).
G-MG.2: Apply concepts of density based on area and volume in modeling situations (e.g., persons per
square mile, BTUs per cubic foot).
G-MG.3: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy
physical constraints or minimize cost; working with typographic grid systems based on ratios).
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

At the Orange Festival right after a bumper crop, a farmer invites guests from all over the town. He shows
the guests a full box of randomly arranged oranges, stating that anyone who could guess the exact number
of oranges can take home as many oranges as he or she can carry. 

© Wilfred Stanley Sussenbach | Dreamstime.com

Is there a difference between the randomly packed oranges on the left and the regularly arranged oranges
on the right? 

If you cannot just pour out all of the oranges and then count them one by one, what technique would you
use to determine correct the number of oranges in the box?

Leading Question
How can you determine the correct number of oranges that are in the container?
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

  1. Before you can answer the question, you need to make some assumptions to think more effectively.
One assumption you can make is that all the oranges are spheres. What other assumptions could you
make in your model that might not be true in the real world, but are basically useful in creating a math-
ematical model?

  2. Often it is simpler to look at an easier question before trying to
attempt a dif�icult one. In a two-dimensional model, containers
become planar. For example, they can be rectangles or triangles.
Oranges become circles, which cannot intersect with each other or
with the container. What methods might you use to estimate how
many circles can be packed into a box, without direct counting?
Describe how one of your methods works using words and mathemati-
cal notation.

  3. How could you use your knowledge of the area of circles to determine the maximum number of circles
that can �it into your container?
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

With your group, use the containers (shapes) that your teacher has provided and fill them with your
oranges (tokens). Try different size shapes and tokens. For each trial, choose one shape and one type of
token, then try to fit the tokens into the shape. Describe how you fit them in, and fill in one row of the fol-
lowing table. Try to have five unique trials.

Group Names:                                                                                                Shape of Container: 

#

Side or
radius of
container

(cm)

Capacity of
container 

C (cm2)

Radius of
token 
r (cm) 

Area of
token (cm2) 

Maximum
number 

N ′

Actual 
token fit 

N
N ′– N

Density
Nπr2/C

(%) 

1

2

3

4

5

   4. How did you �ill in your tokens in each case?

   5. What accounts for the difference N ′– N?      

   6. How could you improve the estimation N ′, so that N ′– N becomes
smaller? When you propose your way

of estimating N’, think of
question 5.
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

   7. The density column calculates the true total area of the tokens, which is Nπr2, divided by the capacity,
C, of the shape. What kind of arrangement would give you a higher or lower density, a random arrange-
ment or a regular arrangement? Why?

   8. What other ways of calculating the number of oranges might exist?
How do you think the farmer knows the number? Do you think he
actually counted all of them?

   9. Should your answer be a whole number? Explain your reasoning. 

How might measuring the
weight of an orange help you
to determine how many are

there?
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

Recall from the previous lesson that the prize for winning was that you got to take as many oranges as you
could carry. Suppose that you have already won the prize and the farmer offers some boxes to use to pack
oranges. 
A regular arrangement is one that can repeat indefinitely and looks the
same wherever you see it. More precisely, there is a unit of arrange-
ment so that you can do parallel translations to repeat the pattern in
any direction. The figure on the right shows a regular arrangement,
and indicates three copies of the unit. Using just one unit repeatedly,
you can extend the picture as far as you want.

10.  Find and draw a unit in each the following two arrangements.

A: B:

11.  If you have a container, density is the area used divided by the total area of the container. Find the den-
sity of the two units that you have chosen for arrangement A and arrangement B, as if the unit is a con-
tainer.
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PACKERS’ PUZZLE
Student Name:_____________________________________________ Date:_____________________

12. How do the two densities differ? Can you say that the density within one unit represents the overall
density? Why or why not?

13. Compare the results to your classmates’ and look at the unit that they have chosen. Did you choose the
same unit? Did you get the same density?

14. The Arrangement A is a square arrangement, while arrangement B is a hexagonal arrangement. Do you
understand why they are named this way? Why do you think they were named this way

15. If you have enough identical spheres (e.g., oranges, gumballs, baseballs), try to pack them regularly into
a container for which you know the volume. Knowing what you now know about density, what are pos-
sible arrangements? What is the density of each arrangement according to experiment or calculation?
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PACKERS’ PUZZLE

Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution

methods on the basis of mathematical validity.

   1.  Some examples: all oranges are identical objects, all of them are spheres, the spheres and the container

should not overlap each other, and the spheres and the container are rigid.

   2. Any method will do, but good methods will have some form of organization to them. For example,

organize the tokens in rows and stack the second row on top of the first, so the circles are notched

together, and the height is minimal.

   3. Students should use the formula for the area of a circle, A = πr2, and the area of the shape (capacity) to

determine an upper bound for the number of oranges that can fit inside the shape by dividing the

capacity by the area of one token.

   4. See question 2 for an answer. Since the students are now in groups, combinations of methods might

have also been created.

   5. The space not occupied by the circles accounts for the difference. The more unused space there is, the

larger the difference.

   6. If it is a regular arrangement, the denominator can be changed to the area of a “unit containing one cir-

cle”. If it is a random arrangement, it is not very easy to estimate well by this method; however, in three

dimensions there is a way to estimate the volume of the unused space. Use any liquid to fill it up the

container to capacity and then measure the amount of liquid used! These are not advanced methods so

students should be motivated to find one.

   7. Some students might pack tokens into the shape randomly while others might do a regular arrange-

ment, so the “density” will vary. Yet, if we fix one arrangement of packing (random, squared, hexago-

nal), the density has only a little difference. 

   8. One other way to calculate is dividing the total weight by the weight of one orange.

   9. According to our assumption “that all oranges are equal”, the quotient should be exactly the same as the

number of oranges, but in reality, sizes vary.

10–15. 

In a square arrangement, each circle touches four other circles; in a

hexagonal arrangement, each circle touches six others. We use red lines

to draw a unit. On the left, all these rectangles are correct units. Spheres

have diameter equal to 1 cm. In the two squared ones, the total area of a

unit is 1 cm2. The used area is π • (0.5 cm2) therefore the density within

each unit is                                                                                               
78.54%.  The larger rectangle

gives the same density. On the right, the rectangle, parallelogram, and hexagon are all correct “units”.

For the rectangle, total area =(1 cm)•( cm ) ≈ ( cm2), and the used area = area of 

        2 circles = cm2, therefore the density = ≈ 90.69%. Using the parallelogram, the total area

        

becomes (1 cm) • ( cm) = cm2, and the used area equals exactly one circle, therefore the density  

is ÷ = , the same as before. The hexagon also gives the same result.
π

2 3

3

3

2

π

4

3

2

π

2 3

π

2

3

2

3
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PACKERS’ PUZZLE
Teacher’s Guide — Extending the Model

A fascinating and far-reaching extension concerns fruit in a supermarket. The weekly ads often give a size,
like “15-size cantaloupe”. This applies to any fruit that is large enough to buy individually, like grapefruit,
pears, or lemons, but not to fruit like blueberries, cherries, or currants. Students could investigate what
these numbers mean. Is a 12-size cantaloupe smaller or bigger than a 15-size cantaloupe? What do these
numbers have to do with the way cantaloupes are packed and shipped? In fact, you could base a goodly
portion of a geometry course on the desire to understand the answers to such questions.
A quick beginning of an answer is that cantaloupes, for example, most commonly come in one of the follow-
ing sizes: 9, 12, 15, 18, 23, and 30. The smaller the number, the larger the cantaloupe. Why? The numbers
indicate how many will fit into a standard 40-pound case or shipping box, so 9-size is the largest. The
shapes of standard boxes are carefully chosen so that the right number of melons of any one size will fit
comfortably but with very little wasted space into the same standard-size box. Avocado sizes come in all
multiples of 4 from 20 to 40, and then 48, 60, 70, 84, and 96. The most common pear sizes are 70, 100, 150,
and 215. Boxes are marked on the outside with the size numbers of the contents. If you know someone in
the fruit and vegetable department of your supermarket, for example, have a look at the clever shapes of
the boxes which are adaptable to contents of different sizes.
You can begin thinking about boxes for packing fruit by thinking of one layer. Then it becomes, to a reason-
able �irst approximation, a two-dimensional problem such as �inding the minimum size of a square that
holds n2 circles of radius r. What is the density of such an arrangement? This is better than any other rec-
tangular arrangement when n is small, but eventually an arrangement more like B than A of question 10
comes to have a higher density than an arrangement within a square. Or does it? Investigate the smallest
rectangular area into which to pack k circles all of radius r. Will the rectangle of smallest area that holds 7
circles in fact always hold 8?
Continue the previous investigation into three dimensions. What are different regular arrangements of
spheres, and what are their densities? The problem goes back to Kepler and was first solved by Gauss. If
you allow irregular packings, the problem is incredibly difficult and was finally solved only in 1998 by
Thomas Hales with computer assistance. See George Szpiro’s book, Kepler’s Conjecture, for a popular
account of this history. 
A closely related problem is that of the so-called Kissing Number, that is, the largest number of spheres that
can simultaneously touch a single sphere all of the same size. For circles in the plane the answer is 6. In
three dimensions, it was the subject of a famous argument between Newton and Gregory, with a debate
over whether the answer should be 12 or 13. An interesting physical experiment was done in the early 18th
century. Dried peas were placed in a kettle with water and allowed to expand; the result was the peas were
“formed into pretty regular Dodecahedrons” (Hales, 1731). This indicated that, perhaps, the answer should
be 12, which is correct but wasn’t proved until 1874!

References
Hales, S. (1731). Statical essays: Containing vegetable staticks (Vol. 1). London: Printed for W. Innys, T.
Woodward, and J. Peele.
Szpiro, G.G. (2003). Kepler’s conjecture: How some of the greatest minds in history helped solve one of the
oldest math problems in the world. Hoboken, NJ: Wiley.
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FLIPPING FOR A GRADE Michael Cho

Teacher’s Guide — Getting Started Bayside, NY

Purpose
In this two-day lesson, students play different coin-flipping games and try to understand what the out-
comes may be. The objective of this lesson is to understand the meaning of expected value and standard
deviation and why they are so important.

Prerequisites
Students should understand mean, median, mode, and range. 

Materials
Required: Coins and internet access for research.
Suggested: None.
Optional: Graphing calculators.

Worksheet 1 Guide
The first four pages of the lesson constitute the first day’s work. Students are introduced to two different
coin-flipping games. Students become familiar with the rules and how the games work, and then determine
the “typical” (expected value) outcome of each game. Students should be given some time and space to flip
a coin and tally their points. If coins are not available, the students can be shown how to use a graphing cal-
culator to generate random flips. The calculator function randInt (0,1) will randomly generate either a 0 or
1 which can be substituted for heads or tails and can be found under MATH PROB menu on a TI calculator.

Worksheet 2 Guide
The fifth and sixth pages of the lesson constitute the second day’s work. Students continue to analyze and
play with the coin-flipping games. Students try to determine the difference of the “swings” (standard devia-
tions) of the two games and develop the meaning of standard deviation. 

CCSSM Addressed
S-ID.2: Use statistics appropriate to the shape of the data distribution to compare center and spread of two
or more different data sets.
S-MD.3: (+) Develop a probability distribution for a random variable defined for a sample space in which
theoretical probabilities can be calculated; find the expected value.
S-MD.5: (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and find-
ing expected values.
S-MD.7: (+) Analyze decisions and strategies using probability concepts
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FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

Your mathematics teacher has decided that instead of a test, you and your classmates will have the option of
playing a game! Each student has the choice of picking one of two games, both of which involve flipping a
coin ten times. 

Source: U.S. Mint

GAME 1
Flip a coin ten times. For each head, the student
wins 2 points, but for each tail, the student loses 1
point. 

GAME 2
Flip a coin ten times. For each head, the student
wins 100 points, but for each tail, the student
loses 99 points.

Your grade depends on your final score:
• Lower than –10 and you will receive an F.
• Between –10 to 0 and you will receive a D.
• Between 1 to 10 and you will receive a C.
• Between 11 to 99 and you will receive a B.
• Higher than 100 and you will receive an A.

Leading Question
Which game should you pick in order to get the best grade?



205

FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

Analyze Game 1 first.

1. Assume that the coin is perfectly fair. Estimate the total number of points you believe someone will end
up with if they play Game 1. Support your estimation.

2. Play Game 1! Flip a coin ten times and fill in the table below with your results. Sum your results in the
bottom row.

Flip number Heads or Tails Points 

1

2

3

4

5

6

7

8

9

10

TOTAL
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FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

3. Does the estimate that you made in question 1 match your results from question 2? Explain your rea-
soning.

4. Predict how many points you would get if you flipped the coin 100 times. How does this change affect
the outcome? What is your reasoning?

5. Suppose you do flip the coin 100 times but the coin you are given is NOT perfectly fair. Instead, it lands
heads 25% of the time and lands tails 75% of the time. Predict how many points you would receive.
Does your prediction take into consideration the unfairness of the coin? What similarities and differ-
ences does this prediction have with your prediction from question 4?
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FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

Expected value is the weighted average of all the possible values. It is found by multiplying the probability
of an event occurring by its expected outcome.

6. What is the expected value of points for Game 1? What is the expected value of points for Game 2? 
Compare these two values. What determinations about these two games can you make?

7. Find the expected value of flipping a fair coin 100 times where for each head, you win 2 points and for
each tail, you win 1 point. Find the expected value of flipping the same unfair coin from the previous
problem 100 times. Does the expected value match with your predictions in question 4 and 5? Why or
why not?
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FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

Recall the rules for Game 2. Flip a coin ten times. For each heads, win 100 points, but for each tails, lose 99
points.

8. Play Game 2! Flip a coin ten times and fill in the graph below with your results. Sum your results in the
bottom row.

Did you get the same number of points as when you played Game 1? If so, explain why, and if not,
explain what was different with Game 2.

9. Can you create a model (such as a formula) that takes into account how much more “swing” or varia-
tion there is in Game 2 than Game 1? What variables should you incorporate?

Flip number Heads or Tails Points 
1
2
3
4
5
6
7
8
9

10
TOTAL
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FLIPPING FOR A GRADE 
Student Name:_____________________________________________ Date:_____________________

10. Does your model take into account the average amount of variation there is from the mean with each
flip of the coin? How could you incorporate this idea of “mean of the mean” into your model? 

11. Standard deviation is a measurement of variability that has been developed to show how much varia-
tion there is from the mean. It measures the average amount of change from the mean (or expected
value). Research the formula for standard deviation and determine what ideas standard deviation takes
into account.

12. What similarities and differences does standard deviation have with your model? Are there any more
modifications you should make to your model?

13. Looking back at Game 1 and Game 2, what other properties of Game 1 and Game 2 would you incorpo-
rate in a model other than expected value and standard deviation?
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FLIPPING FOR A GRADE 
Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Most students will answer that the number of points they think that they’ll receive is 5. This can be
obtained mathematically by calculating the expected value of one flip [(0.5×2) + (0.5×(–1))] = 0.5 and
multiplying the expected value of one flip by ten to obtain the expected value of ten flips, 0.5 × 10 = 5. 

2. Answers will vary, but most games should give results that are close to the expected value.
3. Answers will vary, but generally, the estimates and results will be similar. Students might be surprised

when the results are not “perfect” in that heads and tails did not each appear exactly half of the time. 
4. Similar to question 1, the expected value will be 100 × [(0.5×2) + (0.5×(–1))] = 50.
5. The expected value is 100 × [(0.25×2) + (0.75×(–1))] = –25.
6. The expected value of Game 1 is 10 × [(0.5×2) + (0.5×(–1))] = 5. The expected value of Game 2 is 10

× [(0.5×100) + (0.5×(–99))] = 5. While the expected values of the two games are the same, students
should point out that the Game 1 and Game 2 are still very different games. Good responses should
have some mention of “swing” or variations.

7. The expected value of 100 flips of a fair coin is 50 and the expected value of 100 flips of the unfair coin
described is –25.

8. Answers will vary. There will be a much larger variation in points in this game.
9. Answers will vary. Responses should include some mention of range, minimum, maximum, or quartiles.

10. Answers will vary. A possible solution for the formula of the mean of the mean is (1/2)[(maximum
value – mean) + (mean – minimum value)].

11. The general formula for standard deviation for discrete random variables is

σ = [(x1 –µ)2 + (x2– µ)2 + ... + (xN – µ)2] where μ = (x1+x2+ … + xN). The formula for standard

deviation takes into account the mean, the difference between each number and the mean, and the
number of numbers.

12. Answers will vary. The modified formula should include more of the ideas that standard deviation
includes.

13. Answers will vary. Most responses should be acceptable as long as they are mathematically accurate or
valid.

1
N

1
N
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FLIPPING FOR A GRADE 
Teacher’s Guide — Extending the Model

It might be interesting to see what the effect of the choice of game has on the actual grade.

Game 1: The chance of getting a grade of:

F = 0;

D = [ ]/210 = 0.172;

C = [ ]/210 = 0.773;  

B = [ ]/210 = 0.055; and

A = 0.

This looks like a somewhat skewed but unimodal distribution which will be well described by a mean and a
standard deviation. Note that it is impossible to get an A or to fail!

Game 2: The chance of getting a grade of:

F =[ ]/210 = 0.377;

D = 0;

C =[ ]/210 = 0.246; 

B = 0;

A = [ ]/210 = 0.377

This looks like a symmetric but far from unimodal distribution! In fact, it is bimodal. The mean is all right,
but a picture makes a far greater contribution to describing this distribution than a standard deviation.  It is
impossible to get a B or a D!
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PRESCIENT GRADING Nazar Rabadi & Andrew Sanfratello

Teacher’s Guide — Getting Started New Rochelle High School & Mohegan Lake, NY
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Purpose
In this two-day lesson, students will learn how to approximate test grades given homework grades.  They
will construct a scatter plot and use the line of best fit to predict grades, as well as examine the effect the
correlation coefficient and the residual have on the predictions.

Prerequisites
Students need to be able to create scatter plots and lines of best fit on their graphing calculators.  Under-
standing of linear equations and awareness of some of their properties such as the y-intercept is necessary.
Familiarity with correlation coefficient is helpful, although it is possible to introduce it in this lesson with
supplemental work.

Materials
Required:  Graphing calculators.
Suggested:  Data sets of homework and test grades from a previously completed class.
Optional:  None.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work in which students are presented with
homework and test grades for a class.  It is suggested that the teacher provide real data for students to use,
but if those are unavailable, fabricated data are provided.  Students examine the data for patterns and con-
sistencies, and then explain their ideas and support their claims using mathematics. 

Worksheet 2 Guide
The fourth through sixth pages of the lesson constitute the second day’s work in which students create a
scatter plot to support their claims.  They then calculate a line of best fit using graphing calculators to pre-
dict test scores from their data.  Correlation coefficients are considered to help determine if the line of best
fit is accurate.  Once the line of best fit is used to predict scores, the residual is calculated to make sure that
the predictions were reasonable.

CCSSM Addressed 
S-ID.7:  Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the con-
text of the data.
S-ID.8:  Compute (using technology) and interpret the correlation coefficient of a linear fit.
S-ID.9:  Distinguish between correlation and causation.
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Teachers always are seeking ways predict the future grades of their students!  Both teachers and students
want grades to improve and to get high marks on tests and report cards. 

Leading Question
Will students benefit from being required to do and hand in homework, how can teachers predict the future
performances of their students, and in what ways can students improve their grades?

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________
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1. Collect the homework and test grades from a previously completed
class.  Focus on one grading period from the data and determine if
there is any relationship between homework and test grades.

2. What mathematics did you use to determine a relationship?  If you used no mathematics, how could
you use some to support your claim?

3. How might the relationship between homework grades and test grades differ if (a) the homework
grade is calculated by what students turn in and is graded by the teacher, versus if (b) the homework
grade is calculated by what students turn in, is graded, and is returned to students with comments.  

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________

If no data are available, use 
the data on the first page.



216

4. How might the relationship between homework grades and test
grades differ between the two grading schemes in question 3, 
versus if (c) the homework grade is calculated only by what is
turned in.

5. What would you use to show a strong relationship or a weak relationship between homework grades
and test grades?

6. With your data, apply the method you devised from question 5.
Does your method have algebraic attributes?  Does it have graphi-
cal attributes?  Explain why you chose your method and how it
might be applied to any random sampling.  How might you use the
data from one grading period to predict the test or homework
grades of a subsequent grading period?

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________

If students just have to
hand in something but the

teacher does not look it 
over, how might that affect the
quality of the work submitted?

If your data are from a
large set, take a small sample 

of that set that is easier to
handle.
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Use the data you collected from the previous class to answer the following questions.  If no data were 
collected, use the data provided on the first page as well as the additional data provided.

7. Construct a scatter plot of the difference between the test grades from one
grading period to the next and the difference in homework grades over the
same two grading periods.  Do you think that the homework grade is a good
way to gauge what a student will score on a test?  Does earning a good home-
work grade indicate anything in terms of test grade?  Justify your answer.  Do
you think that earning good grades on homework caused an increase in the
students’ test grades?  Explain your reasoning. 

8. Using technology, find the line of best fit
for the difference in test grades and
homework grades.  Interpret the y-inter-
cept and the slope of the line in the 
context of the problem.

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________

What is a line of best fit?
What properties should it

have?
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9. Using technology, find the correlation coefficient, r, and describe
what this means. 

10. Using the line of best fit calculated in question 8 and homework grades
from the next grading period, predict the test scores for the next grading
period.  What do you notice about the predictions?  Do they make sense?
What other variables might you use to create a function for calculating 
test scores?

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________

What is a correlation
coefficient?  Research it!
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11. The residual is the actual value minus the predicted value.  Calculate the resid-
uals for your results above.  Do you think it is better to have the absolute 
value of the residual be small and close to 0 or should it be greater?  Explain
your reasoning.

12. Discuss the students’ actual test grades and their predicted test grades.  Now
that all the test scores are in, based on the line of best fit determined earlier,
what can you do to get a better prediction?  Do you think the line of best fit is 
a good one?

13. What kind of an effect, if any, do you think including a new student’s homework
and test scores would have on the line of best fit?  In what other situations
might this method for prediction be used?  Research if you cannot think of any.

PRESCIENT GRADING
Student Name:_____________________________________________ Date:_____________________
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The solutions shown represent only some possible solution methods.  Please evaluate students’ solution 
methods on the basis of mathematical validity.

1. From the artifact data, there is a strong relationship between the homework grade and the test grade
from the first quarter.  If using other data, answers will vary.

2. Scatter plots, lines of best fit, and correlation coefficients are some of the mathematical tools that can
be used to determine the statistical relationships between the scores.

3. If the homework assignments are returned to students with comments, it is expected that students
would learn from their mistakes and perform better on tests.

4. If the homework assignments are only required to be turned in, it is expected that students would not
perform as well as in cases (a) or (b) from question 3.

5. If students used the line of best fit, then if r is closer to 1, a strong positive linear relationship exists
between homework and test grades.  If r is closer to 0, a weak positive linear relationship exists
between homework and test grades.

6. Scatter plots are one way to represent the data graphically.  Lines of best fit are ways to represent the
data algebraically.  Explanations will vary. 

7. A scatter plot is pictured to the side using
the data from the first ten students.  This
data shows a strong positive relationship
between homework score and test score.
Answers for different data will vary.

8. The line of best fit for the first ten stu-
dents is y = 0.6528x – 2.4207.  Earning
the same homework grade in the second
quarter, a student would expect to earn
about 2.5 points fewer on the second
quarter test.  For each point increase in
homework scores, a student would expect
to earn an increase of about 0.65 points
on their test.  Answers for different data
will vary.

9. r = 0.8316.  Since r is near 1, there is a
strong positive, linear relationship
between the increase in homework
grades and the increase in test grades.
Answers for different data will vary.

10. The predicted grades for the first ten students are in the table on the following page.  Answers for dif-
ferent data will vary.

11. The residuals for the first ten students are in the table provided.  Answers for different data will vary.  It
is better to have the absolute value of the residual close to 0, as a small residual indicates a more accu-
rate predicted test score.  
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12. Students whose test scores provided
residuals with a greater absolute value
affected the line of best fit the most.  One
option is to eliminate these students to
create a more accurate line of best fit.

13. If the new student performs near their
predicted score, the absolute value of
their residual will be small, and the sam-
ple will provide a more accurate line of
best fit.
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Student 
Predicted Test

Grade
Quarter 3

Quarter 3 Test
Residuals

Alison 79.1% 5.9

Chase 81.8% 10.2

Michelle 80.2% 12.8

Frank 61.9% 19.1

Juanita 81.3% 3.7

Cho 79.0% -8

Allen 82.8% -2.8

Yolanda 35.1% 10

Mary 71.4% -2.4

George 79.5% -18



PRESCIENT GRADING
Teacher’s Guide — Extending the Model

This particular module contains six tables with thirty­three entries each.  They represent homework and

test grades for each student in a class.  A question that is not part of the usual initial experiences in data

analysis, but might be interesting, is whether these numbers look like they are taken from a real class or

were made up to resemble the kinds of sequences real tests and homework might lead to.  Real grades tend

to have certain regularities, partly from the nature of grading and partly from the accidental patterns that

tend to occur in most sets of numbers with a large random component.  Of course it’s hard to be sure, but

you can look for features that seem a bit unusual.  For example, the table of quarter 1 homework grades

contains seven numbers that appear more than once:  70, 80, 84, 85, 90, 91, and 95.  Together, they repre­

sent half the data!  The fact that there are repetitions is quite realistic.  Should there be that many?  Notice

the quarter 2 test grades have very few repetitions.  On the other hand, something that stands out in the

quarter 2 test grades is that there are 7 multiples of 10, and 2 other multiples of 5.  Fine, but of the remain­

ing numbers, 6 are even, and 18 are odd!  Isn’t that a bit strange?  Would grading tests lead to that kind of

result? There is no certainty in any of this, but it’s interesting to have a look.

The question of the likelihood of an appearance of a random sequence deserves examination.  The simplest

experiment of this nature of which I am aware is to ask students to produce a random sequence of n 0s and

1s, or similarly, heads and tails, or, with respect to question of the grades, evens or odds.  Each student can

do it one of two ways:  the first way is to use a table of random numbers or actually toss a coin, and the sec­

ond way is to make it up oneself to look random.  The professor claims that she will be able to tell just by

looking at a sequence which method the student used!  She can do this because she knows the key fact,

which is that a truly random sequence will have a fair number of accidental regularities that an amateur

trying to make up a random­looking sequence would probably not allow.

Let’s consider one particularly simple phenomenon in a sequence of n 0s and 1s:  Is there a string of 3 or

more consecutive identical digits, that is, 3 0s or 3 1s?  Some students might feel intuitively that such a

string is a little too much regularity for a random sequence.  In fact, by the time n is 13, fewer than 10% of

all binary strings of length 13 have no triple of either all 0s or all 1s consecutively, and that proportion is

down to 1% by the time n is in the low 20s.

How do you compute something like that?  What we want to find is a recursion of An, which we define as the

number of n­bit binary strings that DO NOT contain a triple of either all 0s or all 1s in immediate succes­

sion.  It is useful to check that A3 = 6, A4 = 10, and A5 = 16.  To get a recursion relation, we consider the set of

n­bit strings containing no triples of any kind to be made up of four disjoint subsets, an, bn, cn, and dn.  Define

an, bn, cn, and dn to be the number of n­bit strings that contain neither 3 consecutive 0s nor 3 consecutive 1s

AND whose last 2 bits are 00, 01, 10, and 11, respectively.  So, for example, a4 = 2, b4 = 3, c4 = 3, and d4 = 2,

which add up to A4 = 10, as they should.  Now imagine that you have all the strings that you counted in An

sorted into their last two bits, and now add one more bit at the end of each string.  Of course you must avoid

making any forbidden triples – you cannot add a 0 to a string ending in 00, or a 1 to a string ending in 11.

You will find that an can create only a bn+1, because you can only adjoin a 1 to a terminal 00.  On the other

hand, bn can create both a cn+1 and a dn+1; cn can create both an an+1 and a bn+1, and dn can create only a cn+1.

We get four equations:  an+1 = cn, bn+1 = an + cn, cn+1 = bn + dn, and dn+1 = bn.  This tells you that 

An+1 = An + bn + cn.  But we also have that bn + cn = An–1.  Hence we get a three­term recursion relation, namely

just An+1 = An + An–1.
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But that is the recursion for the Fibonacci numbers!  We see, in fact, that An is equal to 2Fn+1!  You may have

recognized the (6, 10, 16) we had earlier as 2(3, 5, 8).  That’s how we got some of the percentages of all

binary strings that we mentioned before.  We simply had to find 2Fn+1, the number of n­bit strings WITH­

OUT 3 consecutive 0s or 1s, and divide by 2n, the number of all n­bit strings.  Notice the denominator of this

ratio grows much more quickly than the numerator.  What we have seen is that for n­bit strings of length

more than the low teens, the unusual phenomenon will be to have NO triples of the same digit.  So the

moral of the story is if you want your n­strings to look random, don’t avoid the “accidental” consecutive

appearances of the same digit!

PRESCIENT GRADING
Teacher’s Guide — Extending the Model
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PICKING A PAINTING Benjamin Dickman

Teacher’s Guide – Getting Started Brookline, MA

Purpose
In this two-day lesson, students are asked to choose the best possible painting from a group provided to
them. Certain restrictions prevent students from going back to previously viewed paintings, so choosing the
best is not as straightforward as just looking at all of them and deciding.
The objective of this lesson is to use ordering and logical thinking to create probabilistic strategies that have
greater chances of success than just random selection. Conditional probability is also explored as a way to
evaluate the strategies further.

Prerequisites
Knowledge of factorials is helpful but not necessary.

Materials
Required: None.
Suggested: None.
Optional: Playing cards to represent paintings of greater and lesser value.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work. Students are introduced to the problem of
choosing a painting for an art gallery. Shrinking the problem down to a situation in which there are only
two or three paintings helps students to create a strategy for picking the best painting possible. The idea of
conditional probability is introduced near the end of the first day.

Worksheet 2 Guide
The fourth page of the lesson constitutes the second day’s work. Students are urged to create a general for-
mula for conditional probability and then expand their process of picking a painting to larger selections of
paintings.

CCSSM Addressed 
S-CP.1: Describe events as subsets of a sample space (the set of outcomes) using characteristics (or cate-
gories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”).
S-CP.3: Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence
of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the
conditional probability of B given A is the same as the probability of B.
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PICKING A PAINTING
Student Name:_____________________________________________ Date:_____________________

An anonymous donor has decided to give her art collection to various museums. Each museum is allowed to
choose one painting, and, because you have a discerning eye for brushwork, the National Gallery of Art has
requested that you choose on their behalf. Furthermore, because the paintings all are different, you are con-
fident that no two of them are “equally good.”

Time constraints and other museums vying for the paintings force you to follow a few rules:
1. You cannot view any painting before it is shown officially;
2. Paintings will be shown one at a time, in a random order;
3. For each painting, you must either choose it or reject it; 
4. If you choose a painting, you must leave with it;
5. If you reject a painting, you cannot return to it later;
6. The total number of paintings is known ahead of time; and 
7. You know the relative rankings of paintings that were shown and have no external knowledge.

Leading Question
How will you decide which painting to choose if your goal is to pick the best painting possible?

Adolph von Menzel [Public domain], via Wikimedia Commons
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PICKING A PAINTING
Student Name:_____________________________________________ Date:_____________________

1. Is it a good idea always to pick the first painting shown? What about the last one? What other strategies
could you use?

2. Suppose there are only two paintings. What is the chance that the first painting shown is the best one?
What is the chance that the last painting shown is the best?

3. What if there are three paintings? What is the chance that the first painting shown is the best? What is
the chance the second one shown is best? What is the chance the third one shown is best? 

4. For three paintings, there will be the best painting (A), the second
best painting (B), and the worst painting (C). What are the differ-
ent orderings in which the three paintings could be shown? How
many of these orderings are there in all?

The set of all possible
outcomes is known as the

sample space.



228

PICKING A PAINTING
Student Name:_____________________________________________ Date:_____________________

5. A friend has a suggestion. Whatever painting is shown first, reject it! Then, as soon as you see a paint-
ing better than the first one, select it! When will this friend’s suggested strategy be successful in obtain-
ing the best painting? When will it fail? What is the probability that the best painting out of the entire
set will be selected if this strategy is followed?

6. In the cases where C is shown first, what is the probability of choosing the best painting out of the
entire set using the strategy from question 5? What about the cases where B and A are shown first?

7. What if there are four paintings? In how many orders can they be arranged? Create your own strategy
to pick a painting. What is the probability that your strategy will be successful in selecting the best
painting?

8. In the case where the worst painting is shown first (out of four), what is the probability of choosing the
best painting out of the entire set using the strategy from question 5?  What about the cases when other
paintings are shown first?
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PICKING A PAINTING
Student Name:_____________________________________________ Date:_____________________

9. How many orderings are possible for five paintings?  Six? Create and evaluate strategies for when there
are many paintings. What difficulties might emerge?

10. Create a general formula for calculating the probability if you know the quality of the first painting
shown.

11. What if there were 100 paintings? Create a strategy that will help
you pick the best painting at least 1/4 of the time

12. How might you generalize the question of choosing the best painting? What are some related questions
you can ask?

Try first dividing the
paintings into two equal sets,
one of the first 50 paintings

shown, and the other
containing the last 50

paintings shown.
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Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. Always picking the first or last painting will result in the same probability of picking the best painting.
With n paintings, there will be probability 1/n of picking the best.

2. Using the same idea as question 1 where n = 2, P(first shown is the best) = P(last shown is the best) =
1/2.

3. Similar to the last two, P(first shown is the best) = P(second shown is the best) = P(last shown is the
best) = 1/3.

4. Six orderings create the sample space: (A, B, C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), and (C, B, A). 
5. The strategy suggested by a friend is successful for the subset of the sample space (C, A, B), (B, A, C),

and (B, C, A), and fails for the rest. Since it is successful for 3 of the 6 orderings, the probability of the
strategy being successful is P(strategy is successful) = 3/6 = 1/2.

6. When B is shown first, the best, A, is chosen 2/2 times. When A is shown first, the best is chosen 0/2
times, and when C is shown first the best is chosen 1/2 times. 

7. For four paintings, there are 4! = 24 orderings possible. The same strategy as before (reject the first
painting, and pick the next one shown that is better than the first) will be successful with probability
11/24. Another option is to choose to reject the first two paintings, then choose the next one shown
that is better than both of the first two. This will be successful with probability 10/24 = 5/12.

8. If the paintings are ordered A, B, C, and D as in question 4, then if D is shown first, the best, A, is chosen
2/6 times.  When C is shown first the best is chosen 3/6 times.  When B is shown first the best is cho-
sen 6/6 times and when A is shown first the best is chosen 0/6 times.  This total aligns with the answer
to question 7, 11/24.

9. For n paintings, there are n! possible orderings. Thus, for 5 paintings, there are 5! = 120 orderings and
for 6 there are 6! = 720 orderings. Using similar strategies as with the previous problems, students
may choose to view some number, k, of paintings before deciding when to stop viewing and choose a
painting that is better than any of the ones already viewed. As n grows, computations may become very
tedious very quickly.

10. The formula should bear some resemblance to conditional probability (i.e., given two events, X and Y,
then the probability of X occurring given that Y has occurred is P(X given Y) = P(X and Y)/P(Y).

11. Reject any painting shown in the first half, and choose the next painting shown that is better than any
of those shown in first half. This strategy will succeed at least when the second best painting is in the
first half, and the best painting is in the second half. The probability of this is (50/100)(50/99) > 1/4.
(In fact, there are other cases for which this strategy will work that will only increase the probability
that it is successful.)

12. Choosing the best painting is not always possible no matter what strategy is used. The best thing do is
to increase the probability of choosing one of the best paintings (if not the best). Some possible ques-
tions are “For a total of n paintings, how many should you pass on?”, “Are there other kinds of strategies
one could use?”, and “What are the advantages and disadvantages of using a computer program to eval-
uate probabilities of success for different strategies?”



231

PICKING A PAINTING
Teacher’s Guide — Extending the Model

The first extension is to define the optimal strategy for n paintings, and to do most of the proof that it is 
correct.
First, a definition we will need: A candidate is a painting which you rank higher than any you have seen 
previously.
We begin from the fact that the best painting among the n paintings is somewhere in the order in which the
collection is shown. The strategy we will consider, which generalizes one in the lesson, is to examine and to
rank relatively the first p –1 of the paintings shown. What is p? We will show how to find the best p as a
function of n. Then the strategy is to accept the first painting which is a candidate shown after the initial 
p –1 paintings. This means the first painting you see starting at p that is better than all of the first p –1
paintings is the one you choose. You are in a sense using the first p –1 paintings to “get the lay of the land”.
What will this strategy do? If the very best of all the paintings happens to be among the first p –1 that you
looked at, you have missed it and there is nothing you can do about it. In this case, your probability of get-
ting the best painting is 0. This consideration will keep p from getting too large.
If the best painting is later than p –1 in the order of presentation, that is, in the interval (p, …, n), you have a
chance. If the painting presented as p happens to be the overall best, which happens with probability 1/n,
you will get it. Of course, 1/n is the probability of the best painting being at any particular position in the
order. Suppose the overall best painting is at position k, where k �p. Will you get that painting? If and only if
the best painting among the first k –1 paintings is in fact among the first p –1 paintings! What’s the proba-
bility of that? The probability is just (p –1)/(k –1). Thus (p –1)/(k –1) is the probability that you will get
the best painting given that it is at position k in the order. But the probability of that condition, as we have
seen, is just 1/n. Hence the probability that you will get the best painting when it is at position k is 
(p –1)/(n(k –1)). Hence the probability that you get the best overall painting is the sum of these expres-
sions from k = p to k = n. We write it out:
The probability of success for this strategy is 

It remains to find the best p as a function of n. For n = 3 and 4, this was done in the lesson, and it is worth
checking that the above formula gives the best answer. When you vary p with fixed n, the expression begins
small when p = 2, is again small when p = n, and has a maximum in between. You look for the value of p
where it stops increasing and starts decreasing. Let’s also look at this for large n. About how big is that sum
we just defined? For large n and p, it is approximately (p/n)(lnn – lnp). If we set x = n/p, this is (lnx)/x.
This has a maximum at x = e. So the best strategy, if n is at all large, is to pick p/n as close as we can to 1/e.
We said at the beginning that we will do “most of the proof” that this is correct. We have omitted the argu-
ment that the optimal strategy is, in fact, to look at some number p –1 of paintings and then pick the best
thereafter. This is eminently reasonable, but that’s not a proof. The full story can be found, for example, in
Fred Mosteller’s Fifty Challenging Problems in Probability with Solutions.
And now, a second extension: An interesting modeling problem in a very similar spirit is what is sometimes
called the “theater problem”. It concerns finding a parking space when you want to go to the theater. Imag-
ine an infinite road with parking spaces at the integers, most of which are filled as you approach the theater,
which is at a known integer location. The model is actually most workable if you assume an infinite road. 
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You want a space as close to the theater as possible. When you consider a candidate, that is, a space that is
available, you cannot tell what other closer spaces might be available. If you don’t take this candidate, the
space will no longer be there if you later decide you should have taken it. If you don’t take a space by the
time you pass the theater, you will have to take one a long way beyond the theater, and you will be unhappy.
Assuming you know the location of the theater, and the probability that any space will be available, what is
your best strategy? Once you understand this one, you can consider including in the model a (possibly high)
cost of making an illegal U-turn and trying again!

Reference 
Mosteller, F. (1987). Fifty challenging problems in probability with solutions. New York: Dover.
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CHANGING IT UP Heather Gould

Teacher’s Guide — Getting Started Stone Ridge, NY

Purpose
In this two-day lesson, students will examine the United States monetary system and make mathematical
judgments about how to stock a cash register till (the drawer containing the money that “pops out” of the
register). Different situations are modeled, each time refining the initial model.
Introduce the students to the situation to be modeled: a cash register till needs to be stocked with extra
coin rolls. Cashiers want to try to run out of all the types of change at about the same time so they need to
cash in for new change as rarely as possible. Under-stocking doesn’t work because running out of coins too
frequently results in longer waiting times for customers, and supervisors have to supply more change for
the cashier. The till cannot be overstocked with coin rolls because it will be too heavy and will be very slow
to open.

Prerequisites
Students should have a good understanding of algebra and averages. Familiarity with US currency is
required.

Materials
Required: Internet access (for research).
Suggested: US currency manipulatives, a random sample of receipts.
Optional: Spreadsheet software.

Worksheet 1 Guide
The first three pages of the lesson constitute the first day’s work where students determine what is meant
by a “typical” (average) amount of each coin that is handed back in a cash transaction. Students first create
a model of the situation and then refine it for greater accuracy.

Worksheet 2 Guide
The fourth and fifth pages of the lesson constitute the second day’s work where students continue to work
with their model, making further revisions when considering new information. A short time is spent inves-
tigating foreign currencies, and then the data collected is applied to their original model. Expected value is
defined and students are instructed to use expected values to model the coin roll problems and compare it
to their method. If the student initially used expected value in the model, they will try to create another
model and compare it to expected value.

CCSSM Addressed
S-MD.2: (+) Calculate the expected value of a random variable; interpret it as the mean of the probability
distribution.
S-MD.7: (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical test-
ing, pulling a hockey goalie at the end of a game).
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Student Name:_____________________________________________ Date:_____________________

Most cash register tills (drawers) have a space for the cashier to store extra rolls of coins in case they run
out of loose coins. Cashiers like to run out of extra rolls at the same time so they need to restock their
change as infrequently as possible. They also know that having too few extra rolls will slow them down and
irritate both the customers and supervisors; having too many will weigh down the drawer and make it 
difficult to open.

Leading Question
How many rolls of each type of coin should be stocked in the cash register till?

Photo © Comap, Inc.
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Student Name:_____________________________________________ Date:_____________________

1. What type of information do you need to know about this problem? What kinds of data do you need to
collect? What do you already know? Find any information you think you might need.

2. How many of each type of coin do you think you would need to hand back in a typical transaction? Is
there a way to determine this mathematically? If so, what is it?

3. Use your answers from above to determine how many extra rolls of each type you need to stock the till.
What was your reasoning?
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Student Name:_____________________________________________ Date:_____________________

4. Is your answer from question 3 reasonable? Are there other considerations that you left out that would
make it more reasonable? What are they and how do they affect your answer?

5. Seasoned cashiers know that many customers who like to pay in
cash also pay enough pennies so they only get “silver” back. How
might this affect the typical number of coins you would give back
in each transaction? How might it affect how many extra rolls you
would stock in the till?

6. Retail stores often make set “change orders” from banks in order to stock up for the week ahead. If you
were a manager of such a store, how would you determine the number of each type of coin roll to pre-
order?

What is happening to the
number of pennies that you

get and give back? How about
the other coins?
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Student Name:_____________________________________________ Date:_____________________

7. If you worked in an “All for 99¢” store and you knew that most cus-
tomers only pay in cash for transactions that are less than $20
when tax is included, would this affect how you would stock your
extra rolls? If so, how many would you stock and why? If not, why
wouldn’t it affect it?

8. Suppose you still have the same situation as in question 7. After working there for some time, you
notice that transactions whose final totals are less than $10 happen about twice as often as transac-
tions whose final totals are between $10 and $20. Might this affect how you would stock your extra coin
rolls? Explain your reasoning and if it changed, how you would stock extra rolls now?

Determine the sales tax
where you live. How does this

affect your decision?
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9. Many other countries use different denominations for each of their coins than in the US Research one
such country’s monetary system and determine the best way to stock extra rolls of coins in their cash
tills. Make sure to describe the different denominations of coins and why that affects your answer.

10. The expected value of a random variable is a “weighted average” of all the possible values the random
variable can take on and each of their probabilities of occurrence. When all values are equally likely, the
expected value is the same as the arithmetic mean. Did you use expected values in your solutions to the
extra coin roll problems? If so, try to think of another method to solve questions 3 and 8; if not, use
expected value to solve them. Which approach did you prefer? Which one seems best? Why?
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Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution
methods on the basis of mathematical validity.

1. The most important thing to know and collect is how many of each type of coin are handed back in each
possible transaction. Customers will receive 0 to 4 pennies, 0 or 1 nickel, 0 to 2 dimes, and 0 to 3 quar-
ters. Students should note that the frequencies of these possibilities are not evenly distributed, and
thus 1 dime, for example, is not the “average” number of dimes given back.

2. Assume all values of change are equally likely. Then there are 100 possible amounts of change to be
given. In these 100 transactions, a total of 200 pennies (P), 150 quarters (Q), 80 dimes (D), and 40
nickels (N) are given back. This leads to E(P)=2, E(Q)=1.5, E(D)=0.8, and E(N)=0.4.

3. Only whole rolls can be stocked. Using E(N) as a guide and rounding E(Q) to 1.6, we see that we will
need 1 roll of nickels, 2 rolls of dimes, 4 rolls of quarters, and 5 rolls of pennies. This is because
E(D)=2E(N), E(P)=5E(N), and E(Q)≈4E(N).

4. Most cashiers know that the answer to question 3 is unreasonable, although this will not be evident to
students who have never worked with a cash register. There are simply too many rolls; most tills will
not hold such a large number of extra rolls. It would have been more reasonable to use E(D) to compare
expected values. This will result in 1 roll of nickels (round 0.5 up), 1 roll of dimes, 2 rolls of quarters,
and 2-3 rolls of pennies. This is much more reasonable, but still atypically large. Students might also
consider that customers who pay in cash also tend to give the cashier coins, thereby changing the
expected values of coins handed back.

5. Fewer pennies will be handed back and more will be received, so the number of penny rolls may be
slightly reduced. More “silver” (nickels, dimes, and quarters) will be handed back, so more may need to
be stocked.

6. Multiply each expected value by 10 to get whole numbers; multiples of 4 rolls of nickels, 8 rolls of
dimes, 15 rolls of quarters, and 20 rolls of pennies should be ordered. Some students may further con-
sider that there are 40 coins in a standard roll of nickels or quarters ($2 and $10, respectively) while
dimes and pennies have 50 coins in a standard roll ($5 and $0.50, respectively).

7. Answers will vary based on the tax rate of the area. The model is severely affected by the restriction
that there are at most 20 possible different values of change to be handed back. This changes all of the
values assumed in question 3.

8. Answers will vary for the same reasons as in question 7. Regardless of the actual values, students may
choose to “double-count” change values for transactions less than $10 and consider values between
$10 and $20 only once. “Typical” values can be calculated this way.

9. Answers will vary depending on the country chosen. In the United Kingdom, for example, no amount of
change requires giving back more than 2 of any type of coin. (Values are 1p, 2p, 5p, 10p, 20p, 50p, £1,
and £2, where 1p = £0.01.)

10. Answers will vary; students should show appreciation for the utility of expected value.
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Teacher’s Guide — Extending the Model

In light of your problem, would you favor the reintroduction of 50 cent pieces?
The five front compartments of the till are equal in width as well as in depth. This is not the best for the
coins, but the way the tills are made, the width will be same front and back, and the widths for the bills have
to be the same. It would be nice if you could have more space for the nickels because their size is dispropor-
tionate to their importance. You never see $2 bills any more, so the fifth compartment often goes unused or
for larger bills like fifties and hundreds. If you could reinvent the till, what changes would you make to
accommodate extra rolls of coins and only four slots for the bills?
You often spend exactly $3.30 for your favorite lunch. The regular cafeteria cashier, in giving you change,
usually doesn’t hand back 2 dimes and 2 quarters, she gives you 3 dimes, 3 nickels, and one quarter. To her,
the nickels are a nuisance, fill up their compartment too quickly, and she doesn’t want to run out of quar-
ters! An interesting extension might therefore be to decide at what compositions of the till it would be to
the cashier’s advantage to hold on to more quarters and, when there is a choice, use up nickels at the rate of
1Q = 3N + 1D.
Managing the boxes where the coins accumulated in coin phones used to be a really important problem. A
coin-operated phone was designed to quit working when the coin box was full. You don’t want that to hap-
pen, so you schedule emptying of coin boxes. Of course that’s a statistical phenomenon. For x dollars you
could install a prong sticking into the coin box somewhere near the top so that when the coin level reaches
that prong, it sends an alerting signal to the central office so that they can send somebody to collect the
coins. What’s the optimal height for the prong? For what x is that worth it the expenditure? Would it be
cheaper to put a second coin phone next to the first one so that the two boxes would fill more slowly?
Would it be even better to have a public campaign asking people to use more dimes and quarters and fewer
nickels in the coin phones, so they wouldn’t fill up so fast? There’s the problem with the volume of a nickel
again.
Going farther afield: when the government first decided to replace silver dimes and quarters with lami-
nated coins made of cheaper metal they turned to both Bell Labs and the slot machine industry in Nevada,
because of the tests that a coin must pass through when it is used in a coin slot. A coin is tested for size,
weight, and electrical conductivity, among other things. The “sandwich” had to pass the same tests that the
old coins did — so what should the composition be?
At Halloween back in 1963, kids carried little cans to collect money for UNICEF as they went trick-or-treat-
ing. One church’s UNICEF penny collection — 2,642 pennies in all — was used as a huge random sample to
estimate the half-life of a penny. Lincoln Head pennies began to be minted in 1909, but the quantity didn’t
amount to anything until after 1930. Divide the number of pennies you have for any given year by the num-
ber minted in that year. Plot this ratio for every year, in our case from 1963 back to about 1930. Use a loga-
rithmic scale for the ordinate only, keep a linear scale for the years. Then fit a line to the data, and you find a
half-life of about 12 years. Called a log-linear plot, the slope gives you the exponent in the rate of decay. In a
cash register, it would probably take you a long time to get enough pennies for a decent sample. Nowadays,
dimes might be better for estimating the half-life of a coin. There is a natural historical cutoff when the sil-
ver dimes went out of circulation and were replaced by the Roosevelt laminated coins.
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