
Growing Triples on Trees: an XML-RDF Hybrid Model

for Annotated Documents

François Goasdoué, Konstantinos Karanasos, Yannis Katsis, Julien Leblay,

Ioana Manolescu, Stamatis Zampetakis

To cite this version:

François Goasdoué, Konstantinos Karanasos, Yannis Katsis, Julien Leblay, Ioana Manolescu,
et al.. Growing Triples on Trees: an XML-RDF Hybrid Model for Annotated Documents.
VLDB Journal, Springer Verlag (Germany), 2013, Special Issue on Structured, Social and
Crowd-sourced Data on the Web, 22 (5), pp.589-613. <hal-00828906>

HAL Id: hal-00828906

https://hal.inria.fr/hal-00828906

Submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00828906

Noname manuscript No.
(will be inserted by the editor)

Growing Triples on Trees: an XML-RDF Hybrid Model
for Annotated Documents

François Goasdoué · Konstantinos Karanasos · Yannis Katsis ·
Julien Leblay · Ioana Manolescu · Stamatis Zampetakis

Received: date / Accepted: date

Abstract Since the beginning of the Semantic Web

initiative, significant efforts have been invested in find-

ing efficient ways to publish, store and query metadata

on the Web. RDF and SPARQL have become the stan-

dard data model and query language, respectively, to

describe resources on the Web. Large amounts of RDF

data are now available either as stand-alone datasets

or as metadata over semi-structured (typically XML)

documents. The ability to apply RDF annotations over

XML data emphasizes the need to represent and query

data and metadata simultaneously.

We propose XR, a novel hybrid data model cap-

turing the structural aspects of XML data and the

semantics of RDF, also enabling us to reason about

XML data. Our model is general enough to describe

pure XML or RDF datasets, as well as RDF-annotated

XML data, where any XML node can act as a re-

source. This data model comes with the XRQ query

language that combines features of both XQuery and

SPARQL. To demonstrate the feasibility of this hybrid

XML-RDF data management setting, and to validate

its interest, we have developed an XR platform on top

of well-known data management systems for XML and

RDF. In particular, the platform features several XRQ

query processing algorithms, whose performance is ex-

perimentally compared.

F. Goasdoué, J. Leblay, I. Manolescu, S. Zampetakis
INRIA Saclay & Univ. Paris Sud, Orsay, France
E-mail: firstname.lastname@inria.fr

K. Karanasos
Almaden Research Center, San Jose, CA
E-mail: kkarana@us.ibm.com
This work was done while the author was at Inria Saclay.

Y. Katsis
UC San Diego, San Diego, CA
E-mail: ikatsis@cs.ucsd.edu
This work was done while the author was at Inria Saclay
and ENS Cachan.

1 Introduction

The XML format [1] is by now universally used to rep-

resent structured documents. Initially employed pri-

marily for Web pages, it soon became the standard for

text documents produced by major office suites, and

the go-to solution for most structured documents at

large, be it bills, bank account data, contracts, content

produced and shared in the workspace, social network

and blog data, etc.

In parallel, W3C’s Resource Description Frame-

work (RDF, in short) [2] is becoming the de facto

standard for describing data rich in semantics. Its pro-

visions (embodied in the RDF Schema language [3])

for defining semantic relationships (e.g., subsumption

relations or typing), which are used for reasoning over

the data and deriving new knowledge, make it an ideal

candidate for representing such data. RDF adoption

has recently registered an additional boost due to the

Linked Open Data (LOD)1 movement. Under the LOD

vision, users independently author and share informa-

tion, which they can then link to already existing data

published by others. Linking the data is facilitated

by assigning each data item a unique identifier, a.k.a.

URI [4], which is one of the cornerstones of the RDF

data model. Representative examples are government-

issued open data portals, such as http://data.gov

in USA, http://data.gov.uk in the UK and http:

//data.gouv.fr in France. Another famous source of

RDF linked open data is DBPedia [5], a corpus of facts

extracted from Wikipedia.

While XML and RDF are primarily aimed at dif-

ferent types of data (the first at structurally rich data

and the second at semantically rich data), there are

emerging applications at their juncture that need for-

mal models and semantics. The main objective of this

work is to show that combining XML and RDF yields

more than the juxtaposition thereof. Recent initiatives

such as the Open Annotation Collaboration2 show

1 http://linkeddata.org
2 http://openannotation.org

http://data.gov
http://data.gov.uk
http://data.gouv.fr
http://data.gouv.fr
http://linkeddata.org
http://openannotation.org

2 François Goasdoué et al.

that using RDF to compensate for the lack of se-

mantics in XML is a promising research direction. Al-

though, in theory, one could simply convert RDF into

XML or vice-versa, the tremendous amount of data

available on the Web and the frequency at which it

is updated plead for efficient techniques for manag-

ing this data in its native formats. Moreover, convert-

ing RDF to XML (or XML to RDF) would lose the

opportunity to exploit existing research and systems

on efficiently storing and querying RDF (resp., XML)

data. Below we present three scenarios that highlight

the interest of combining XML with RDF data.

Scenario 1: semi-automated fact-checker

The internet has reshaped journalism in important

ways, one of the most important being the instant dis-

semination capabilities of the Web. Moreover, journal-

ists have suddenly had to compete with bloggers, ac-

tivists and other concerned citizens, establishing them-

selves as alternative sources of information, and reach-

ing out, collectively, to a far wider reality on the ground

than a news agency (let alone a single journalist) could

hope to have access to. This has led to the emergence

of new professionals, called data-journalists, and on-

line fact-checkers. These specialists are trained to ex-

amine and aggregate data from many sources (“offi-

cial” or not, such as Data.gov or WikiLeaks3) and use

online services (such as Twitter4 or Google Maps5) to

integrate and corroborate facts found online. Journal-

ists have become data publishers themselves as wit-

nessed in sites such as The Guardian6, FactCheck7,

and Politifact8. However, as skilful as these profession-

als may be, their work is still very manual as demon-

strated by Storyful9 founder in a recent presentation10

and, as of today, they lack powerful tools for analyz-

ing, consuming and producing data.

As a concrete example, consider an election cam-

paign, where candidate :Joe publishes on his Web site

transcripts of his speeches, expressing his opinions on

the situation in :Turkey or :Japan, or the local econ-

omy, citing a :MonthlyUnemploymentRate for

:July2012 as being “8%” 11. Using an officially-issued

database such as http://data.gov, one can automat-

ically check whether the cited number is correct. More-

over, archiving the candidate’s speeches allows find-

ing, e.g, “the earliest and latest date at which his

3 http://wikileak.org
4 http://twitter.com
5 http://maps.google.com
6 http://guardian.co.uk/data
7 http://www.factcheck.org
8 http://www.politifact.org
9 http://storyful.com

10 http://on.ted.com/MarkhamNolan
11 Here and subsequently in this paper, we make the con-
vention that strings starting with : are URIs. Formally, URIs
consist of two parts: a namespace, and a local name [4], sepa-
rated by the : symbol. A URI without a specified namespace
is of the form :LocalName, and is interpreted to refer to a
default namespace.

discourses mentioned an Asian country”, or (if the

candidate’s official agenda is also added to the anal-

ysis) “for each foreign country, the visits the candi-

date received from or made to that country, and the

mentions he subsequently made of the country in his

speeches”. Although such queries are too ambiguous

to yield any valuable results if posed in natural lan-

guage, with proper knowledge of the datasets in hand

and their semantics, an expert should be able to ex-

press them in a structured language through a single

query or some composition of queries.

Scenario 2: focused Web warehouse

The ACME company wants to keep up with the im-

age of its products as reflected by content published on

the Web (on news sites, blogs, social networks etc.). To

this end, it sets up a set of specialized feeders, one from

each source of content (e.g., one for crawling open Web

content, others as subscriptions to specific Twitter

hashtags etc.), and archives the XML results brought

by these feeders in a database. The documents are

then parsed, analyzed, and compared with ACME’s

RDF knowledge database containing brands, models,

clients, sales, information about ongoing marketing

campaigns, etc. The warehoused XML content is thus

connected to the objects and contents of the knowl-

edge base, and can be subsequently exploited by ask-

ing, e.g., for “the authors and affiliation (if any) of all

blog posts from July 2012, mentioning ACME :Prod1

products (regardless of their model)”. This query in-

volves reasoning through an RDF Schema to under-

stand that :Prod1v1 and :Prod1v2 are all versions

of ACME’s :Prod1, querying the XML warehouse for

blog posts mentioning :Prod1, :Prod1v1 or :Prod1v2,

and returning the desired blog author affiliation. Ob-

serve that if the authors’ affiliations (e.g., organiza-

tions they work for) are also recognized in the RDF

database, one may refine the query result by further

exploring their links in this database, finding, for in-

stance, in which country each organization is located

or how many employees it has.

Scenario 3: patient records

Another use case for annotated documents is in the

area of electronic patient records (EPR). French hospi-

tals seeking more interoperability among their respec-

tive patient files (partly paper-based, and partly elec-

tronic), set up systems where paper-based records are

scanned and then subjected to text recognition. Subse-

quently, they apply natural language processing tech-

niques on these electronic files, annotate them with

entities (diseases, symptoms etc.) recognized from a

domain ontology, and index them accordingly. Physi-

cians can then more easily find “admission dates of

female patients with heart problems” or “the list of

drugs targeting eating disorders that have been ad-

ministered to patients diagnosed with diabetes”. These

queries typically touch upon data that may exist in

different models.

http://data.gov
http://wikileak.org
http://twitter.com
http://maps.google.com
http://guardian.co.uk/data
http://www.factcheck.org
http://www.politifact.org
http://storyful.com
http://on.ted.com/MarkhamNolan

Growing Triples on Trees 3

This work aims at enabling such scenarios, by

proposing a unified model allowing the combination

of XML data with RDF data into a single instance.

We have designed the model and the corresponding

query language and implemented a system for stor-

ing and querying instances of the proposed model.

Moreover, we showcase optimizations that are possi-

ble when XML and RDF are combined in the same

instance.

A separate class of applications that calls for a

combination of XML and RDF, e.g., [6], focuses on

extracting data and semantics (which can be encoded

in RDF) from structured XML documents. Such ap-

plications typically adhere to the following workflow:

the text (and possibly the structure) of an XML doc-

ument are analyzed with the help of natural language

processing tools, named entities are recognized and

extracted and phrase patterns are matched to convert

the information in an XML document to RDF facts.

For instance, the text “Einstein was born in Ulm”

would be translated into an RDF statement of the

form (:AlbertEinstein, :birthPlace, :Ulm).

This work makes the following contributions:

Data Model for Annotated XML Documents.

Our data model naturally allows the representation

of XML data, RDF data and the union thereof, but

more importantly it also allows for instances where

XML and RDF are interconnected (e.g., where an

RDF triple refers to an XML node).

Query Language. To allow existing users of XML

and RDF platforms to easily transition to our com-

bined platform, we designed a query language that not

only allows querying inter-connected XML and RDF

instances, but does so by staying close to the standard

query languages employed for each of the data models

in isolation.

Implementation & Optimizations. As a first cut,

we implemented a system for annotated XML docu-

ments by leveraging existing XML and RDF engines.

However, as we will explain, there are multiple ways

in which a query over a combined XML and RDF

instance could be decomposed into separate queries

that are shipped to the XML and RDF engine. In this

work, we explore this space of possible query evalua-

tion strategies and present optimizations to speed up

query processing.

Experimental Results. Our experiments highlight

classes of query evaluation strategies that are very in-

efficient and some that provide better performance

and scale linearly on datasets of an overall size of

17 GB, intelligently exploiting pre-existing XML and

RDF engines. We study the impact of our proposed

optimizations and identify the classes of problems

where they have the biggest impact. It is worth not-

ing that among similar works focusing on the com-

bined querying of XML and RDF, very few provide

experimental results, and those that do [7] present

query evaluation strategies that do not scale beyond

100 MB. Thus, our experiments validate the interest

of our techniques for large-scale querying of annotated

documents.

The paper is structured as follows. Sections 2 and

3 describe the data model and query language, respec-

tively. We discuss query evaluation strategies in Sec-

tion 4, outline our implemented platform in Section 5,

and present the experimental results in Section 6. Sec-

tion 7 describes related work and Section 8 concludes

the paper.

2 The XR Data Model

To represent annotated documents, we introduce the

XR data model. In keeping with the widely accepted

standards for representing semi-structured data (i.e.,

XML) and semantic relationships (i.e., RDF), an in-

stance of the XR data model comprises two sub-inst-

ances: an XML sub-instance, consisting of a set of

XML trees, and an RDF sub-instance, consisting of

a set of RDF triples. The connection between the two

sub-instances is achieved by assigning to each XML

node a unique Uniform Resource Identifier (URI),

which can then be referred to from an RDF triple,

as we will explain below.

Next, we formally define XR sub-instances. We

rely on a set U of URIs as defined in [4], and a subset

I ⊆ U of document URIs acting as document identi-

fiers. We denote by L the set of literals [8] (which for

simplicity can be seen as the set of all strings). N is

the set of possible XML element and attribute names,

to which we add the empty name ε. Finally, B is a

set of blank nodes (accounting for unknown literals or

URIs, as we will explain later on). An XML tree is

defined as usual:

Definition 1 (XML Tree) An XML tree is a fi-

nite, unranked, ordered, labeled tree T = (N,E) with

nodes N and edges E, where each node n ∈ N is as-

signed a label λ(n) ∈ N and a type τ(n) ∈
{document, attribute, element, text}. An attribute

node must be the child of an element node, it has

a value belonging to L and it does not have any chil-

dren. A text node can only appear as a leaf. Finally,

an XML tree can have at most one document node.

The document node can only appear as the root of the

tree, has exactly one child and has the empty name ε.

Most frequently, we are concerned with trees that

are also documents, i.e., those rooted in document

nodes. However, we may also consider trees rooted at

simple XML elements, for instance, when XML trees

are passed from the output of one query to the input

of another, without being permanently stored within

a document. A set of XML trees forms an XML in-

stance:

Definition 2 (XML Instance) An XML instance

IX is a finite set of XML trees.

4 François Goasdoué et al.

We assume available a function assigning a unique

URI to each node in an XML instance. Notably, the

URIs assigned to document nodes correspond to the

aforementioned document URIs. The URI assignment

function is crucial for interconnecting the XML and

RDF sub-instances, since the URIs assigned to the

nodes allow the RDF sub-instance to refer to nodes

of the XML sub-instance. While discussing our sys-

tem implementation in Section 5, we present such a

URI assignment function that can be used in practice.

However, for the purpose of the definitions, it suffices

to consider any URI assignment function acting like a

Skolem function, i.e., returning a new (“fresh”) value

every time it is called for the first time with a given

input, and consistently returning that value to any

subsequent call with the same input.

The RDF sub-instance is defined as a set of triples,

which can among others refer to the URIs of XML

nodes:

Definition 3 (RDF Instance) An RDF instance

IR is a set of triples of the form (s, p, o), where s ∈
(U ∪ B), p ∈ U , and o ∈ (L ∪ U ∪ B).

Following the common nomenclature, the compo-

nents of a triple (s, p, o) are referred to from left to

right as its subject, property and object, respectively.

As defined above, the subject or the object of the

triple can be bound to a so-called blank node. Blank

nodes are used in RDF [2] to denote unknown URIs

or literals, similarly to labelled nulls in the database

literature [9]. For instance, one can use a blank node

b1 in the triple (b1, country, “France”) to state that

the country of b1 is France, without using a concrete

URI. Blank nodes can be repeated in an RDF in-

stance, thus allowing multiple triples to refer to the

same unknown URI or literal. For example, a second
triple (b1, city, “Paris”) could specify that the city of

the same b1 is Paris. Finally, multiple blank nodes can

co-exist in a data set, thus allowing the representation

of several unknown URIs or literals. For example, one

may also state that the country of some other unknown

URI b2 is Japan, while its population is an unspecified

literal b3.

Furthermore, RDF does not only model explicit

triples, but also implicit (a.k.a. entailed) triples. The

latter can be derived from the former based on a set of

entailment rules. More details on this process, known

as RDF entailment, can be found in [10]. For the pur-

poses of our discussion though, it suffices to be aware

of the following: Given an RDF instance IR, its se-

mantics is the RDF instance I∞R , called the saturation

(or closure) of IR, consisting of IR plus all the im-

plicit triples derived from IR through RDF entailment.

RDF entailment is central to RDF query answering,

and thus to XR (as discussed in Section 3.2), since we

need to take into account the implicit answers in or-

der to guarantee the completeness of query answers.

The interconnection between XML and RDF opens

the way to cross-model inference, by allowing one to

query intensional XML data, derived by combining ex-

tensional XR data with entailment rules. We believe

this is a novel perspective on XML data management

that deserves to be further explored in future works.

We can now define an XR instance as follows:

Definition 4 (XR Instance) An XR instance is a

pair (IX , IR), where IX and IR are an XML and an

RDF instance, respectively, built upon the same set of

URIs.

It is important to note that the XML and the RDF

sub-instances are defined over the same set U of URIs,

thus allowing RDF triples to annotate nodes of XML

trees. The following example illustrates such an inter-

connected XR instance.

Example. Figure 1 shows a sample XR instance cor-

responding to a political news scenario, which we will

use hereafter as our running example. The RDF sub-

instance is shown on the top part of the figure, while

the XML sub-instance is shown at the bottom. The

instance consists of three XML trees linked through

RDF annotations. The first XML tree includes a post

on a blog concerning a campaigning politician named

:Charlie. The second XML tree is :Charlie’s micro-

blogging site, whereas the third is an article in an

online newspaper. XML node URIs are shown as sub-

scripts next to each node. The dashed edges in the

XML tree denote some levels of XML hierarchy omit-

ted for simplicity.

URIs are used to allow the RDF triples to anno-

tate the XML trees. For instance, the first two triples,

coming from a social site, specify that :Alice worked

with :Bob in the past and that :Bob follows :Charlie’s

micro-blog. The next three triples state that :Charlie

posted an entry on his blog at 12pm on Sept. 5, 2012.

Note that a blank node (denoted :x) is used here as a

means of gathering facts around a single concept; we

follow the usual convention of denoting blank nodes

by :-prefixed names.

The triple (:x, owl:sameAs, #205) states that the

blank node :x and the XML node #205 of the blog

stream are the same (the owl:sameAs property is fre-

quently used for encoding such statements in RDF [11]).

The RDF sub-instance further states that :Alice posted

the blog entry found on the node #106 of the leftmost

document, and that :Bob is the author of the entry

#305 on the newspaper page. The two following triples

specify that :Alice’s blog post (#106) refers to :Bob’s

article for further information, using the :about prop-

erty. Similarly, :Bob’s article links to :Charlie’s post,

as one source of his report. The RDF instance also

states that :Charlie’s attendance of Congress sessions

is rather low.

Finally, the triples in gray do not appear explicitly

in the instance. They can be inferred from an RDF

Schema (RDFS) characterizing this application (the

RDFS is not shown in the figure), and stating that:

Growing Triples on Trees 5

(:Alice, :workedWith, :Bob), (:Bob, :follows, :Charlie), (:Charlie, :authorOf, :x), (:x, :date, “Sep. 5, 2012, 12pm”),
(:x, rdf:type, :MicroBlogPost), (:x, owl:sameAs, #205), (:Alice, :authorOf, #106), (:Bob, :authorOf, #305)),

(#106, :about, #305), (#305, :about, #205), (#305, rdf:type, :Story), (#205, rdf:type, :Story),
(:Charlie, :congressAttendance, :Low), (:Alice, :knows, :Bob), (:Charlie, rdf:type, :MemberOfCongress)

doc#100

html#101

div#102

. . .

div#103

h2#104

“The problem with Charlie”#105

div#106

“According ...”#107

doc#200

microblog#201

blogtitle#203 message#202

“Charlie’s campaign”#204 body#205

“Visiting Iowa today”#206

doc#300

html#301

div#302

h2#303

“Charlie’s campaign”#304

div#305

“. . . ”

div#306

“Comments”#307

Fig. 1: XR instance representing annotated documents.

(i) if a resource A is about another resource B, then B

is a story, (ii) if a person A worked with a person B,

then necessarily A knows B, and (iii) someone whose

:congressAttendance property is defined is a member

of the Congress.

3 The XRQ Query Language

XRQ allows querying an XR instance w.r.t. both its

structure (described in the XML sub-instance) and

its semantic annotations (modelled in the RDF sub-

instance). We introduce XRQ’s constructs in Section 3.1

and then we give its semantics in Section 3.2.

3.1 XRQ syntax

XRQ allows querying an XR instance based on com-

monly used primitives: XML tree pattern queries, in-

troduced, e.g., in [12], and the Basic Graph Pattern

queries (or BGPs, in short) for RDF [13]. Tree pat-

terns express structural constraints on the expected

trees in the XML sub-instance, while BGPs (a frag-

ment of SPARQL) allow constraining the expected

triples of the RDF sub-instance.

Definition 5 (Tree Pattern) A tree pattern is a

finite, unordered, unranked, N -labelled tree with two

types of edges, namely child and descendant edges. We

may attach to each node at most one uri variable, one

val variable and one cont variable. We may also attach

to a node one equality predicate of the form [val=c]

for c ∈ L, denoting a selection on the val variable,

i.e., it must be bound to c.

A tree pattern may also have at most one ‘special’

document node. This node can only appear as the root

of the tree, has exactly one child, and has a uri vari-

able constrained by an equality predicate of the form

[uri=u] for u ∈ I, denoting that the tree pattern must

be evaluated against the XML document of URI u.

Such variable-annotated patterns have been previ-

ously used, e.g., in [14,15] to represent XML queries

and/or materialized views. The variables attached to

nodes serve three purposes: (i) to denote data items

that are returned by the query (in the style of dis-

tinguished variables in conjunctive queries), (ii) to

express selections on the document to query or on

node values, and (iii) to express joins between tree

(or triple) patterns. The variable type specifies the

exact information item from an XML node, to which

the variable will be bound. When a node nt of a tree

pattern is matched against a node nd of an XML tree,

the variables attached to the node nt will be bound as

follows, according to the variable’s type. First, a uri

variable is bound to the URI of nd. If nd is a docu-

ment or element node, a val variable is bound to the

concatenation of all text descendants of nd; if nd is an

attribute node, a val variable is bound to the attribute

value; if nd is a text node, a val variable is bound to

nd’s text value. Finally, a cont variable is bound to the

serialization of the subtree rooted at nd. The seman-

tics of val variables are copied from the XPath (and

XQuery) specification. Indeed, an XPath snippet of

the form $x=‘‘Paris’’, where $x is bound to some

XML element, is interpreted as: check if the concate-

nation of all text descendants of that element equals

“Paris”. We represent such predicates by annotating

a tree pattern node with [val=“Paris”]. Similarly, a

comparison of the form where $x=$y is interpreted

as: the value of $x (as we defined it above) is equal

to the value of $y. Our queries also allow expressing

such comparisons, as we will explain later on.

Example. The bottom part of Figure 2 shows two

tree patterns for our running example. As usual, single

(double) edges correspond to parent-child (ancestor-

descendant, resp.) relationships. For instance, the tree

pattern on the left looks for a message node with a

descendant body node. For each match of the pattern

against the tree, $A will be bound to the URI of the

matched body node, while $CA will be bound to the

serialization of the node itself and its entire subtree.

A Basic Graph Pattern query is a conjunction of

triple patterns.

6 François Goasdoué et al.

〈$CA, $X〉 : −

Q1
R Q2

R Q3
R Q4

R
($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, :about, $A), ($X, rdf:type, :MemberOfCongress)

microblog

blogtitle

$VC: val

message

body
$A: uri

$CA: cont

Q1
X

html

div

h2
$C: uri

$VC: val

div
$B: uri

Q2
X

Fig. 2: Sample XRQ query

Definition 6 (Triple Pattern) A triple pattern is a

triple (s, p, o), where s, p are URIs or variables, whereas

o is a URI, a literal, or a variable.

Example. The top part of Figure 2 depicts four triple

patterns. For instance, the left-most triple pattern finds

all pairs of resources connected via the property :au-

thorOf.

By combining tree and triple patterns and endow-

ing them with a set of projected (head) variables, we

obtain an XRQ query:

Definition 7 (XRQ Query) An XRQ query con-

sists of a head and a body. The body is a set QX of

tree and a set QR of triple patterns built over the same

set of variables, whereas the head h is an ordered list

of variables appearing also in the body. We denote

such a query by Q = (h,QX , QR).

Note that by using variables in multiple places

within the query, one can express joins. In general,

three types of joins are possible: (i) between tree pat-

terns; (ii) between triple patterns; (iii) between tree

patterns and triple patterns. In particular, the latter

type of joins allow correlating structural and seman-

tic constraints within queries. The following example

illustrates the expressivity of XRQ.

Example. Figure 2 shows an XRQ query, whose body

(shown on the right) comprises four triple patterns

(shown on the top) and two tree patterns (shown at

the bottom). It asks for all authors of some resource

(first triple pattern) that is known to be the same

(second triple pattern) as the body of a message from

the micro-blog stream (first tree pattern). In turn, the

query filters html pages containing a div node, with a

header (h2 node) equal to the title of the micro-blog’s

stream, and retrieves the div node containing the ar-

ticle body (second tree pattern). The selected micro-

blog posts must be referred by the article (third triple

pattern) and their authors must be congress members.

To sum up, the query returns the member of the

congress who authored micro-blog posts referred by

articles of the same title, as well as the posts contents.

Note the use of variables for expressing joins. Three

types of joins are illustrated in Figure 2: between two

tree patterns (through variable $V C), between two

triple patterns (through variables $A, $X and $Y) and

between a tree pattern and a triple pattern (through
variables $A and $B).

3.2 XRQ semantics

We now define the semantics of XRQ. To this end, we

first define the notion of matches and variable bind-

ings for each of its components (i.e., tree patterns and

triple patterns).

A match of a tree pattern against an XML instance

is defined as usual through tree embeddings [12]:

Definition 8 (Match of a tree pattern against

an XML instance) Let Q be a tree pattern and

IX an XML instance. A match of Q against IX is a

mapping φ from the nodes of Q to the nodes of IX that

preserves (i) node labels, i.e., for every node n ∈ Q,

φ(n) ∈ IX has the same label as n, and (ii) structural

relationships, that is: if n1 is a /-child of n2 in Q, then

φ(n1) is a child of φ(n2), while if n1 is a //-child of

n2, then φ(n1) must be a descendant of φ(n2).

Moreover, φ satisfies the equality predicates as fol-

lows: (i) if n is a document node constrained with the

predicate [uri=u], then φ(n) is the document node of

the XML document whose URI is u and (ii) if n is

any node constrained with the predicate [val=c], then

the value of φ(n) equals to c.

A match of a tree pattern Q against an XML in-

stance IX defines the mapping of nodes of Q to nodes

of IX . However, recall that a tree pattern, apart from

nodes, contains also variables for expressing selections

on values or joins, which have to be bound to objects.

This mapping of such variables to objects, referred to

as variable binding is formally defined below:

Definition 9 (Variable binding of a tree pattern

against an XML instance) Let φ be a match of a

tree pattern Q against an XML instance IX and V

the set of variables in Q. Let v ∈ V be a variable

associated with a node n. Then the variable binding

f of Q against IX corresponding to φ is a function

over V such that: (i) if v is a uri variable, then f(v) is

the URI of φ(n) in IX , (ii) if v is a val variable, then

f(v) is the value of φ(n) ∈ IX , and (iii) if v is a cont

variable, then f(v) is the serialization of the subtree

of IX rooted at φ(n).

As explained above, a variable binding f of a tree

pattern Q against IX is associated with a match φ of

Q against IX . For simplicity however, in the following

we will assume the existence of a match and refer to

f simply as a variable binding of Q against IX .

Growing Triples on Trees 7

Similarly, we also define matches and variable bind-

ings for triple patterns:

Definition 10 (Match of a triple pattern against

an RDF instance) Let Q be a triple pattern (s, p, o),

IR an RDF instance and I∞R the saturation of IR. A

match of Q against IR is a mapping from {s, p, o} to

the components of a single triple tφ = (sφ, pφ, oφ) ∈
I∞R , such that φ(s) = sφ, φ(p) = pφ and φ(o) = oφ,

and for any URI or literal ul appearing in s, p or o,

we have φ(ul) = ul (φ maps any URI or literal only

to itself).

It is important to note that in accordance with the

RDF semantics as specified by the W3C, a triple pat-

tern is matched not against an RDF instance IR, but

against the saturation of IR, denoted I∞R . As defined

in Section 2, I∞R contains in addition to the explicit

triples of IR, a set of implicit triples.

We recall the notion of restriction of a function to

a subset of its domain. Let f be a function over a set A.

The restriction of f to a subdomain A′ ⊆ A, denoted

by f |A′ , is a function f ′ over A′, s.t. f ′(x) = f(x),∀x ∈
A′. Based on this, we can define the variable binding

of a triple pattern as follows:

Definition 11 (Variable binding of a triple pat-

tern against an RDF instance) Let φ be a match of

a triple pattern Q against an RDF instance IR. Then

the variable binding of Q against IR corresponding to

φ is the function φ|V , where V is the set of variables

in Q.

We now provide the semantics of an XRQ query:

Definition 12 (XRQ Semantics) LetQ be an XRQ

query, V its set of variables, and 〈v1, v2, . . . , vn〉 the

head variables of Q. Let I = (IX , IR) be an XR in-

stance.

A variable binding f of Q against I is a function

over V , such that for every tree (resp., triple) pattern

P ∈ Q whose variables we denote VP , where VP ⊆ V ,

f |VP
is a variable binding of P against IX (resp., IR).

The result of Q over I, denoted Q(I), is the set of

tuples:

{〈f(v1), f(v2), ..., f(vn)〉 | f is a variable binding of Q

against I}

In case of a boolean query, the singleton set {〈〉} con-

taining the empty tuple corresponds to true and the

empty set of tuples {} to false.

The definition combines in the intuitive fashion the

notion of variable bindings in the RDF and XML sub-

instances. When a variable is shared by a tree pattern

and a triple pattern, the XRQ semantics ensures that

it is bound to the same value (URI or literal) within

the XML trees in IX and the RDF triples in IR.

Example. Applying the XRQ query of Figure 2 to

the XR instance of Figure 1 yields the result: ($CA=

〈body〉Visiting Iowa today〈/body〉, $X= Charlie).

Figure 3 shows the match found for each tree/triple

pattern and the variable binding for the entire XRQ

query.

All joins allowed. We stress that XRQ queries may

feature all the types of joins one may encounter within

a conjunctive RDF query or within an XML query, in

addition to the aforementioned joins across the RDF

and XML sub-instances (by sharing variables within

tree and triple patterns of an XR query). It is worth

noticing that join variables may be used in places hav-

ing disjoint types. For instance, a variable may appear

in the subject of a triple pattern (denoting a URI

value) and as the val of a tree pattern’s node (denoting

a literal). Rather than considering type mismatches as

errors in queries, we adopt the permissive approach of

converting all variable bindings to literals and com-

paring their string representations.

Cartesian products. XRQ enables users to spec-

ify queries comprising Cartesian products. The latter

occurs when some tree (or triple) pattern(s) do not

share any variable with some other tree (or triple)

pattern(s). At the same time, even when an XR query

does not feature such Cartesian products, the sub-

query consisting only of its XML (or RDF) patterns

may have Cartesian products. For instance, consider

a query Q consisting of two XML tree patterns tx and

ty and a triple pattern px,y, such that a variable $X

is shared by tx and px,y, a variable $Y is shared by

px,y and ty, while tx and ty share no variable. In this

case, the restriction of Q to its XML sub-expression

is tx × ty. This aspect requires some extra care when

evaluating XRQ queries, as we will discuss in the next

section.

Finally, for the clarity of the query evaluation dis-

cussion in the next section, we also define the result

of a set of tree patterns (resp., triple patterns) in iso-

lation over an XML (resp., RDF) instance. Let QX be

a set of tree patterns and IX an XML instance. Then

the result QX over IX , denoted QX(IX), intuitively

corresponds to evaluating the set QX of tree patterns

against the XML instance IX and returning tuples of

bindings for all variables appearing in QX . Formally,

QX(IX) equals to Q′(I ′), where Q′ = (hX , QX , ∅) is

an XRQ query that contains in its body only the set

QX of tree patterns and in its head hX all variables

appearing in QX and I ′ = (IX , ∅) is an XR instance

having IX as its XML sub-instance and the empty in-

stance as its RDF sub-instance. The result QR(IR) of

a set of triple patterns QR over an RDF instance IR
can be defined in a similar way.

4 XRQ Query Evaluation

This section discusses evaluation strategies for XRQ

queries. Since there are by now many platforms for

8 François Goasdoué et al.

QR Q1
X Q2

X

Patterns

($X, :authorOf, $Y),
($Y, owl:sameAs, $A),
($B, rdfs:seeAlso, $A),
($X, rdf:type, :MemberOfCongress)

microblog

blogtitle

$VC: val

message

body
$A: uri

$CA: cont

html

div

h2
$C: uri

$VC: val

div
$B: uri

Matches

(:Charlie, :authorOf, :x),
(:x, owl:sameAs, #205),
(#305, rdfs:seeAlso, #205),
(:Charlie, rdf:type, :MemberOfCongress)

doc(#200)

microblog

blogtitle
#203

#201

message
#202

body
#205

doc(#300)

div
#302

h2
#303

div
#305

Variable {$A=#205, $CA=〈body〉Visiting Iowa today.〈/body〉, $B=#305, $C=#303, $VC=“Charlie’s campaign”,
bindings $X=:Charlie, $Y= :x}

Fig. 3: Pattern matches and variable bindings of the query of Figure 2 on the XR instance of Figure 1.

handling XML and RDF separately, we aimed, when-

ever possible, to reuse the functionalities developed by

such platforms and develop our XRQ processor as a

layer on top. In the following, Section 4.1 introduces

some preliminary notions which will help us present

various query evaluation strategies. The remainder of

the section presents the set of strategies of this study.

4.1 Preliminaries

We introduce a set of useful notions before presenting

concrete query evaluation algorithms.

XDM stands for an XML data management platform,

i.e., any XML data management system supporting

tree pattern queries. Such queries can be expressed in

XQuery, thus any XQuery engine falls into this cat-

egory. We denote by XEval(Q, I) a function provided

by the XDM, which returns the result of the XML

query Q, consisting of a set of tree patterns possibly

connected through joins, over the XML instance I.

RDM stands for an arbitrary RDF data manage-

ment platform, i.e., any RDF data management sys-

tem supporting at least (unions of) Basic Graph Pat-

tern queries of SPARQL. Similarly, we denote by

REval(Q, I) a function provided by the RDM, which

computes the result of the RDF query Q (that is, a

set of triple patterns) over the RDF instance I.

XURI denotes URIs [4] of XML nodes. A determin-

istic method assigning an XURI to every node from a

given document is termed a labelling scheme.

QX and QR are the XML and RDF sub-queries, re-

spectively, of a given XR query Q. Let |QX | be the

number of tree patterns in QX and |QR| the number

of triple patterns in QR. We will denote the XML tree

patterns in Q by Q1
X , Q2

X , . . ., Q
|QX |
X and, similarly,

the triple patterns of Q by Q1
R, Q2

R, . . ., Q
|QR|
R .

IX and IR are the XML and RDF sub-instances,

respectively, of an XR instance I.

XURI hypotheses. To facilitate the integration of

any XML or RDF data management system in our XR

platform, we should interface with the XDM/RDM at

the level of standardized data declaration and data

manipulation languages, such as XQuery and SPARQL,

avoiding more specific assumptions regarding their im-

plementation. One crucial issue that is specific to XR,

however, is the support for XURIs within the XDM.

While URIs are explicit in RDF data, in the XML

data model [16], the closest notion to XURIs is that

of node identity, which by default is implicit12. Most

XDMs [18,19] (including recent ones [20]) use inter-

nal node IDs, which can easily be mapped to XURIs

as soon as one gains access to the system internals.

For the purpose of evaluating XR queries, we identify

two important properties that an XDM may have (or,

alternatively, hypotheses which may or may not hold

about XEval):

XURI-out: the outputs of XEval include the XURI of

each XML node participating in this result.

XURI-in: given an XURI as input, XEval is capable

of recognizing the (unique) XML node having this

XURI. In other words, XEval can perform selections

on XURI values, thus XEval understands the special

semantics of XURIs.

These hypotheses are independent, i.e., an XDM

may adhere to one, the other, none or both. Concrete

ways of implementing them will be discussed in Sec-

tion 5. The algorithms we present next have specific

requirements in terms of XDM hypotheses, as we ex-

plain in each case.

12 The W3C’s xml:id recommendation [17] makes node
identity explicit as an xml:id attribute, however, this has
not been widely adopted. We explore the xml:id idea as one
option in our implementation (see Section 5).

Growing Triples on Trees 9

What to delegate? The XRQ processor delegates

sub-queries for evaluation to the underlying XML, re-

spectively, RDF engines. As explained in Section 3.2,

if we decide, e.g., to send QX as such to the XDM,

this may introduce Cartesian products whose evalua-

tion may be very inefficient.

An alternative consists in sending to the XDM the

connected components of QX , if one considers QX as

an undirected graph where (i) each tree pattern is a

node; (ii) there is an edge between two nodes if the

corresponding tree patterns share some variable(s), in

the spirit of the classical Query Graph Model [21].

Each connected component thus obtained is an XML

query without Cartesian products, and is indepen-

dently sent to XEval. Clearly, the symmetric discussion

holds regarding QR.

Going one step further, one could question the dis-

tribution of join operations between XEval, REval and

the XR platform itself. Intuitively, the native XDM

engine should be able to best optimize the computa-

tion of tree pattern queries, that is, if QX is of the

form tx1 ./$X tx2, we could send QX as such to XEval.

However, it turns out that XML queries with numer-

ous value joins are still challenging for current XML

query processors, as was initially noted in [22]. There-

fore, it may be more efficient to send tx1 and tx2 to

XEval, and join the results outside the XDM, within

the XR platform.

To mitigate such issues, we adopt the following

approach. Whenever QX (respectively, QR) must be

delegated to XEval (respectively, REval), a specific op-

timizer is invoked to determine which fragments of

these queries to actually delegate; the remaining joins

are handled in the XR platform. This decomposition

is achieved based on (i) heuristics (e.g., never push un-

necessary Cartesian products), (ii) query cardinality

estimations, and (iii) some empirical calibration tests

to gauge how the XDM (respectively, RDM) perfor-

mance compares with XR’s own execution engine.

In the sequel, to simplify the presentation, we will

just write XEval(· · ·), respectively REval(· · ·), to denote:

find out the best way to decompose the respective

query between the XDM (resp. RDM) and XR, and

execute it according to that decomposition of work.

4.2 Independent executions

The simplest approach for evaluating an XRQ query

consists in evaluating independently QX and QR, and

then evaluating any remaining joins (on XURIs or

values) outside the XML and RDF engines. We de-

note this approach XML||RDF, for “independent evalu-

ation of QX and QR”. To enable the join on XURIs

outside the XDM, this approach requires hypothesis

XURI-out. Moreover, to the extent that XEval and

REval can run in parallel, this method has a good po-

tential for parallelization. Algorithm 1 outlines the

XML||RDF strategy.

Algorithm 1: XML||RDF

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TX ← XEval(QX , IX);TR ← REval(QR, IR)
2 TXR ← πh(TX ./ TR)

Algorithm 2: XML→RDF

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TX ← XEval(QX , IX)
2 UCQ← ∅
3 foreach tuple tX ∈ TX do

4 UCQ← UCQ ∪ PushJoins(tX , QR)

5 TXR ← πh(REval(UCQ, IR))

Example. Recall the query in Figure 2, and assume

we send the whole QX and QR, respectively, for inde-

pendent evaluation. XEval(QX , IX) produces two tu-

ples of bindings:

($A = #205, $B = #305, $C = #303,

$CA = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”),

($A = #205, $B = #306, $C = #303,

$CA = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”)

Moreover, REval(QR, IR) returns the following tuple:

($X =:Charlie, $Y = :x, $A = #205, $B = #305)

Combining the two binding tuple sets through a

natural join on $A, $B and projecting on the head

attributes of the query results in the single tuple:

($CA = 〈body〉Visiting Iowa today〈/body〉,
$X =:Charlie)

4.3 Bind XML, then RDF

The second approach consists in evaluating tree pat-

terns first and, assuming XURI-out, pushing the re-

sulting variable bindings intoQR which is then handed

to the RDM.

Algorithm 2, named XML→RDF, details the pro-

cess. First, QX is evaluated, then for each resulting

tuple of variable bindings, the QR variables on which

QR and QX join are bound to the respective values

(XURIs and literals). This substitution is achieved

by the function PushJoins. If there are several tuples

in the result of QX , this substitution transforms QR
into a union of conjunctive queries (UCQ in the algo-

rithm), one for each tuple retrieved by QX .

Example. Pushing the result of XEval(QX , IX) into

QR results in the following union:

10 François Goasdoué et al.

QR($X, $Y,“Visiting Iowa today”) :-

($X, :authorOf, $Y),

($Y, owl:sameAs,#205),

(#305, rdfs:seeAlso,#205),

($X, rdf:type, :MemberOfCongress) ∪
QR($X, $Y,“Visiting Iowa today”) :-

($X, :authorOf, $Y),

($Y, owl:sameAs,#205),

(#306, rdfs:seeAlso,#205),

($X, rdf:type, :MemberOfCongress)

whose evaluation is then delegated to the RDM.13

Note that the SPARQL 1.1 recommendation [23]

introduced the BIND and VALUES operators to pass

inline one or more sets of bindings to a SPARQL

query. The union of conjunctive queries described above

can easily be rewritten using this new syntax. How-

ever, the way such queries are evaluated and optimized

remains platform-dependent.

4.4 Bind RDF, then XML

The main idea of this approach is to evaluate QR first

and inject the bindings thus obtained into XEval. When

considering concrete algorithms for implementing this

approach, two independent choices can be made, lead-

ing to a total of four possible algorithms. We explain

these choices first and then present the resulting four

algorithms.

Does XURI-in hold? Observe that the bindings re-

turned by QR may include XURIs. To exploit these

bindings in XEval we need the XURI-in assumption,

that is, the engine must be capable of retrieving an

element having a specific XURI; this is generally not

possible with an off-the-shelf XDM, since the implicit

XML node IDs are not visible in the XML data and

thus are not accessible to the XML queries.

When XURI-in does not hold, we may still ex-

ploit XURI bindings brought by QR as follows.

We term dereferencing the process of obtaining

from a node XURI, the URI of its XML document,

as well as the (unique) linear parent-child XPath ex-

pression (possibly with positional predicates) from the

root of the document, down to the node itself. For

instance, dereferencing the XURI #305 leads to the

document URI “doc200.xml” and the linear XPath

/microblog/message[12]/body[1]. Dereferencing is

easily supported if XURIs are implemented using some

Dewey-style XML node identifiers, of which [24] is

a recent representative. Alternatively, an XURI-to-

XPath index can be materialized to support derefer-

encing through a look-up by the XURI.

13 As can be seen in the example, in practice PushJoins

also extends the projection list of QR to include the bind-
ings for the variables of QX that exist in Q’s head but do
not exist in QR (e.g., the binding for variable $CA in this
example). However, to keep the presentation simple, this
detail is omitted from the algorithm’s pseudocode.

Algorithm 3: RDF⇒XML-URI

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TR ← REval(QR, IR)
2 TXR ← ∅
3 foreach tR ∈ TR do
4 q ← PushJoins(tR, QX)
5 TXR ← TXR ∪ πh(XEval(q, IX))

When dereferencing is available, the RDF-then-

XML approach can be implemented by:

1. evaluating QR;

2. dereferencing any resulting XURIs to linear parent-

child XPaths (XURIs correspond to the bindings

of the variables in QR that also appear as uri vari-

ables in QX);

3. composing these XPaths with QX and sending the

result to XEval.

One or several XML queries? A second dimen-

sion of choice concerns the way in which we handle

multiple tuples of bindings returned by the RDM. We

could send several XML queries to the XDM, one for

each tuple of bindings (this approach can be seen as

a union of multiple queries); or, we could gather all

these tuples in a collection (i.e., use the union of these

tuples) and issue a single query to the XDM, involving

this collection.

The difference between these options basically boils

down to the relative order between a union and a join.

One would expect the XDM to transparently pick the

best evaluation order, regardless of the query syntax

used. In practice, however, we experienced significant

differences in performance, with the single XML query

solution being much more efficient.

Algorithms. Based on the above analysis, we have

devised four concrete algorithms:

– Algorithm RDF⇒XML-URI assumes XURI-in (i.e.,

pushes XURIs into the XDM) and sends one XML

query per tuple of bindings from QR;

– Algorithm RDF⇒XML-XPath uses dereferencing

(i.e., pushes linear XPaths into the XDM) and

sends one XML query per tuple of bindings

from QR;

– Algorithm RDF→XML-URI assumes XURI-in and

sends a single query to the XDM;

– Algorithm RDF→XML-XPath uses dereferencing

and sends a single query sent to the XDM.

Algorithm 3 details the RDF⇒XML-URI procedure.

Here, the function PushJoins propagates to QX val-

ues (XURIs and literals) from the tuples of bindings

resulting from QR.

Example (RDF⇒XML-URI). Recall the XR query from

Figure 2, where for simplicity we only consider the first

Growing Triples on Trees 11

Algorithm 4: RDF⇒XML-XPath

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TR ← REval(QR, IR)
2 TXR ← ∅
3 foreach tuple tR ∈ TR do
4 t′R ← Deref(tR)
5 q ← PushJoins(t′R, QX)
6 TXR ← TXR ∪ πh(XEval(q, IX))

XML tree pattern Q1
X , and the full QR. An XQuery

serialization of Q1
X is:

for $x1 in collection("XMLDB")//microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message,

$x4 in $x3//body

return ($x2/text(), $x4)

Suppose that the evaluation of QR(IR) has led

to the tuple of bindings with $A=#205, and assume

XURI-in holds. Then, Algorithm RDF⇒XML-URI pushes

this XURI into Q1
X , which turns into:

for $x1 in collection("XMLDB")//microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message,

$x4 in $x3//body

where XURI($x4)="#205"

return ($x2/text(), $x4)

where the function XURI($x4) is assumed to return

the XURI of the node to which $x4 is bound.

Algorithm 4 outlines RDF⇒XML-XPath. Here, the

function PushJoins is slightly modified w.r.t. Algo-

rithm 3: it adds where clause conditions toQX , stating

that every node labeled with a URI variable inQX and
participating in a join between QX and QR, should be

on the path obtained by dereferencing the respective

URI retrieved by QR. Dereferencing is achieved in Al-

gorithm 4 by the Deref function.

Example (RDF⇒XML-XPath). Continuing on the last

example above, assume now that XURI-in does not

hold, and that dereferencing #205 has led to the doc-

ument URI doc200.xml and the XPath /microblog/

message[12]/body[1]. Algorithm RDF⇒XML-XPath in-

jects this XPath into Q1
X transforming it into:

for $x1 in collection("XMLDB")//microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message,

$x4 in $x3//body

where $x4 is doc("doc200.xml")/microblog/

message[12]/body[1]

return ($x2/text(), $x4)

where we used the XQuery predicate is to ensure that

$x4 element is the one having the XURI #205. Clearly,

the query could have been written in a more compact

manner as:

Algorithm 5: RDF→XML-URI

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TR ← REval(QR, IR)
2 UCQ← ∅
3 foreach tuple tR ∈ TR do
4 UCQ← UCQ ∪ PushJoins(tR, QX)

5 TXR ← πh(XEval(UCQ, IX))

Algorithm 6: RDF→XML-XPath

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TR ← REval(QR, IR)
2 UCQ← ∅
3 foreach tuple tR ∈ TR do

4 t′R ← Deref(tR)
5 UCQ← UCQ ∪ PushJoins(t′R, QX)

6 TXR ← πh(XEval(UCQ, IX))

for $x1 in doc("doc200.xml")/microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message[12],

$x4 in $x3/body[1]

return ($x2/text(), $x4)

We leave the task of recognizing this equivalence to the

XDM. Algorithms for simplifying such “intersection”

queries (in our example, node $x4 is reached by two

different paths) can be found in [25,26].

Algorithm 5 spells out RDF→XML-URI, which assumes

XURI-in and sends a single XML query to the XDM.

Example (RDF→XML-URI). Based on the previous ex-

ample, assume XURI-in, and that QR returns two

tuples with $A=#205 and $A=#405. In this case,

RDF→XML-URI sends the single XQuery:

let $XURIList:=("#205", "#405")

for $x1 in collection("XMLDB")//microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message,

$x4 in $x3//body

where XURI($x4)=$XURIList

return ($x2/text(), $x4)

in which the existential XQuery semantics of the list

comparison in the where clause, ensures that the URI

of $x4 belongs to the $URIList.

Our example assumed that QR returns bindings

for just one URI variable (namely $A). Along the

same lines, at the cost of more complex XQuery syntax

(which we omit), this single-XQuery approach gener-

alizes to the case where QR returns tuples of bindings

for several URI variables.

Finally, Algorithm 6 describes RDF→XML-XPath, which

uses dereferencing and issues a single XQuery.

Example (RDF→XML-XPath). Consider XURI-in does
not hold, and that QR returns the two tuples with

12 François Goasdoué et al.

Algorithm 7: RDF→XML-Data

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TR ← REval(QR, IR)
2 I′X ←Materialize(TR, IX)
3 Q′

X ← TripleToTreePatterns(Q)
4 TXR ← XEval(Q′

X , I
′
X)

$A=#205 and $A=#405, dereferenced into

/microblog/message[12]/body[1] and /microblog/

message[22]/body[1], respectively. In this case, Al-

gorithm RDF→XML-XPath issues the query:

let $NodeList:=(/microblog/message[12]/body[1],

/microblog/message[22]/body[1])

for $x1 in collection("XMLDB")//microblog,

$x2 in $x1/blogtitle,

$x3 in $x1/message,

$x4 in $x3//body

where XURI($x4)=$NodeList

return ($x2/text(), $x4)

4.5 Materialize RDF, then query XML

Other approaches to query joined XML and RDF data

involve materializing data retrieved from one sub-inst-

ance into a temporary container of the other sub-

instance. In short, these approaches push bindings into

the data itself, rather than pushing them into the

query. Although the materialization step may entail

I/O costs, the advantage is that the query sent to

the target sub-instance does not contain any union

and can be kept small compared with those of the

approaches previously described.

We first turn to the case where QR is evaluated

first. Algorithm 7 details how this join is executed.

After extracting tuples that result from answering QR
over IR (line 1), the Materialize function stores these

bindings into IX , creating a new sub-instance con-

taining the actual data and the newly added tuples

(line 2). This new sub-instance, called I ′X , is tempo-

rary and ceases to exist at the end of the algorithm’s

execution. Then, a new query Q′
X is built (function

TripleToTreePatterns) by turning all triple patterns

in Q to tree patterns (line 3). The last instruction of

the algorithm (line 4) retrieves the final result sim-

ply by evaluating Q′
X over I ′X . There are potentially

many ways to materialize the additional tuples in the

I ′X , and converting triple patterns to tree patterns di-

rectly depends on the representation used. The repre-

sentation we chose is presented in the next example.

Example (RDF→XML-Data) From our running exam-

ple, suppose the bindings returned by QR are:

($X =:Charlie, $Y = :x, $A = #205, $B = #305)

($X =:Charlie, $Y = :x, $A = #205, $B = #306)

constraints

constraint

X
$X: uri

Y
$Y: uri

A

@xuri
$A: val

B

@xuri
$B: val

Fig. 4: Additional tree pattern added to QX

Algorithm 8: XML→RDF-Data

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TX ← XEval(QX , IX)
2 I′R ←Materialize(TX , IR)
3 Q′

R ← TreeToTriplePatterns(Q)
4 TXR ← REval(Q′

R, I
′
R)

These bindings are stored in the XDM as a new

document such as:

<constraints>

<constraint>

<X>:Charlie</X><Y>:x</Y>

<B xuri="#305"/>

</constraint>

<constraint>

<X>:Charlie</X><Y>:x</Y>

<B xuri="#306"/>

</constraint>

</constraints>

Q′
X is obtained by removing all triple patterns

from Q and adding the new tree pattern depicted in

Figure 4. Observe that, once extracted from the RDM,

XURIs cannot be stored strictly as XML node URIs

anymore. If we did so, the XDM would contain distinct

XML nodes with identical URIs, which goes against

our data model. To work around this, we store XURIs

as the value of a reserved attribute. This explains why

URI variables are typed as VAL variables in the newly

added tree pattern.

4.6 Materialize XML, then query RDF

Our last algorithm is the converse of the one presented

above. In this case, QX is evaluated first. The tuples

thus obtained are stored in the RDM, then a single

query made of triple patterns only is answered from

the newly created RDM sub-instance. Algorithm 8 de-

tails the process.

Example (XML→RDF-Data) Assuming the evaluation

of QX over IX returns the following bindings,

($CA = <body>Visiting ..., $A = #205)

Growing Triples on Trees 13

we store them in the RDM sub-instance as a set of

triples, representing a specific tuple of bindings:

(urn:1, urn:val CA, "<body>Visiting ...")

(urn:1, urn:uri A, #205)

...

where urn:1, urn:val CA and urn:uri A are URIs

disjoint from those of the RDF instance. The URIs

and literals stored in object positions are the values

bound to these variables.

The function TreeToTriplePatterns in Algorithm 8

returns a query Q′
R made of the triple patterns of Q

to which we add the following ones:

($binding, urn:val CA, $CA)
($binding, urn:uri A, $X)
...

These patterns feature variables from the query

$CA and $A, in object positions, forming a join with

the original triple patterns of Q. The variable $binding

in subject position joins the additional triple patterns

together ensuring that bindings from the same original

tuple will be considered together.

4.7 Pruning optimizations for RDF-then-XML

We now describe an optimization that can be applied

to the strategies binding first QR and then QX . For

those algorithms that use dereferencing (that is,

RDF→XML-XPath and RDF⇒XML-XPath), one may limit

the amount of work sent to the XDM by pruning some

of the tuples tR as follows:

1. For each tree pattern of QX and tuple of bind-

ings tR ∈ QR(IR), if tR contains multiple variables

bound (in QX) to nodes of the tree pattern, check

the document URIs obtained after dereferencing

these variables’ values from tR. If two such URIs

are not identical, discard tR. The reason is that all

XML nodes matching that QX tree pattern must

belong to the same document. Therefore, QR re-

sult tuples that attempt to bind them in different

documents cannot lead to valid matches.

2. Consider a variable $X, which appears in QX as

an XURI variable, and bound by QR to a URI

which is subsequently dereferenced into an XPath

expression xp. Assume that the path on which $X

appears in QX is incompatible with xp, that is:

for any XML sub-instance DX , we have xp(DX)∩
π$X(QX(DX)) = ∅. Algorithms for statically de-

tecting such query independence are provided, e.g.,

in [27].

Algorithm 9 (RDF⇒XML-XPath-Pr) illustrates how

to extend RDF⇒XML-XPath to account for these two

pruning criteria. Each tuple tR of bindings returned

by QR is checked for validity, according to the two

criteria provided above. First, the XURIs belonging to

tR are dereferenced into a new tuple t′R (line 5). Then,

Algorithm 9: RDF⇒XML-XPath-Pr

Input : an XR instance I = (IX , IR),
an XRQ query Q = (h,QX , QR)

Output: TXR = Q(I), a set of tuples of bindings
1 TXR ← ∅
2 TR ← REval(QR, IR)
3 foreach tuple tR ∈ TR do
4 valid:=true
5 t′R ← Deref(tR)
6 foreach tree pattern txi of QX do

7 Let $V 1
i , $V

2
i , . . . , $V

ki
i be the XURI

variables of txi which are bound in tR to the
XURIs v1i , v

2
i , . . . , v

ki
i , respectively

8 Assume dereferencing returns the document
URI d1i and the linear positional XPath xp1i
for v1i , and similarly (d2i , xp

2
i) for v2i , . . .,

(dki
i , xp

ki
i) for vki

i in tR
9 // Compare document URIs:

10 if d1i = d2i = . . . = d
ki
i then

11 // Check compatibility between the
linear XPaths and paths of the respective
variables in QX :

12 foreach $V j
i , 1 ≤ j ≤ ki do

13 if xpji is incompatible with the path on

which $V j
i appears in txi then

14 valid:=false;

15 if valid then

16 q ← PushJoins(t′R, QX)
17 TXR ← TXR ∪ πh(XEval(q, IX))

the document URIs corresponding to XURI variables

bound to the same tree pattern are checked for equal-

ity, at line 10; then, path compatibility is checked be-

tween the linear XPath of each variable, at line 13.

Only for valid tuples of bindings, that is, those that

pass successfully both pruning criteria, do we push the

joins into XEval as in the previous algorithms (lines 16-

17).

Example (RDF⇒XML-XPath-Pr). Consider an XR query

consisting of: QR as in Figure 2, and the tree pattern

Q2
X of the same figure. Assume for the purpose of

the example, that QR returns a tuple of bindings tR
with $B=#405 and $C=#303. Moreover, assume that

dereferencing returns:

– doc(#400)/html[1]/body[1]/div[1] for #405;

– doc(#300)/html[1]/div[5]/div[3] for #303.

Since the two nodes belong to distinct documents,

tR is not used to solicit XEval.

As an illustration of the second pruning rule, as-

sume that QR returns a tuple with $B=#305 and

$C=#405. In Q2
X , the variable $C is on the path

html//div/div. This path indicates that the parent of

the node to which $C is bound is labeled div, whereas

the XPath resulting from dereferencing #405 indicates

that the parent should be labeled body. Thus, we have

detected an incompatibility between the two, and tR
is discarded.

In a similar way, RDF→XML-URI and RDF→XML-Data

could be extended with the same flavor of pruning,

14 François Goasdoué et al.

Data storage

Query engine

Query optimizer

Evaluation engine

XDM RDM

s p o

BaseX
wrapper

ViP2P
wrapper

RDF-3X
wrapper

Jena
wrapper

Data import

URI managers

Index

Embedder

Reasoner

XML data

RDF data

XRQ query Query result

Wrappers

Fig. 6: Architecture of the XR platform.

leading to the respective variants RDF→XML-XPath-Pr

and RDF→XML-Data-Pr (omitted for brevity).

When both XURI-in and dereferencing are sup-

ported, one may apply the same pruning technique as

presented in Algorithm 9, and push XURIs directly

into the XML sub-queries rather than the derefer-

enced nodes (lines 16 and 17). This variant comes in

two flavours, RDF→XML-URI-Pr and its tuple-at-a-time

counterpart RDF⇒XML-URI-Pr.

Putting it all together. Figure 5 systematizes the

XRQ evaluation algorithms discussed so far.

5 The XR Platform

We implemented the XR platform in Java 1.6 (16.000

lines); Figure 6 depicts its architecture. The XR plat-

form builds on pre-existing data management systems:

one for XML (XDM) and one for RDF (RDM). Such

systems are integrated within through wrappers that

allow delegating them the evaluation of XML, respec-

tively, RDF sub-queries of XR queries. Since XRQ

corresponds to well-established conjunctive subsets of

XQuery and SPARQL, most existing XDM and RDM

may be plugged in our platform.

5.1 Existing wrappers

As RDF query engines, we have experimented with

RDF-3X [28], established as a very efficient RDF query

processor; we used the version 0.3.7. We also imple-

mented a wrapper for Jena 2.6.4, a widely used open

source suite. Our experiments with Jena have shown

that it does not scale beyond a few million triples, thus

our experiments focus on RDF-3X.

Concerning the XML query engine, our experi-

ments use the BaseX platform (http://basex.org),

version 7.3. BaseX is a quite recent XML store which

we found to be competitive w.r.t. QizX and Mon-

etDB, in recent tests that we ran comparing them

on the XMark [29] and XPathMark [30] benchmarks.

We used BaseX “off-the-shelf”, and interacted with it

through its XPath- and XQuery-compliant query in-

terface. Unless otherwise specified, thus, BaseX is our

XDM. It does not satisfy XURI-in nor XURI-out.

Given the importance of XURIs in the XR model,

we also wanted to test the case when we have access to

the XDM’s internals, and in particular to its internal

node IDs, exposed as XURIs. For that purpose, we

used the XML query engine of the ViP2P project [31]

(see also http://vip2p.saclay.inria.fr), which we

had developed in the group. ViP2P supports the XML

tree pattern dialect introduced in Section 3.

The ViP2P XML engine is based on SAX, and eval-

uates tree patterns by traversing the complete docu-

ment, computing and returning node XURIs dynam-

ically as required by the query. Thus, ViP2P satisfies

XURI-out.

ViP2P also satisfies XURI-in, but not very ef-

ficiently: to find the XML element having a given

XURI, it traverses the complete corresponding doc-

ument from the beginning and stops upon encounter-

ing the respective element. To get more efficient sup-

port from ViP2P, we exploited its built-in materialized

view-based rewriting framework [32], and considered

the optimistic case in which when processing a query

Q = (h,QX , QR), each tree pattern in QX is available

as a materialized view. This is obviously not always

guaranteed; therefore, our experiments with ViP2P

are aimed as a “lower bound” of sorts, for the case

when (i) we do have access to the XDM internals and

(ii) we are able to tune the store to a specific work-

load14.

5.2 XR’s own query engine

To combine partial query results, the XR platform

provides its own execution engine, comprising selec-

tions, projections, hash joins etc. It also includes a

generic fetch operator which, depending on the con-

text, performs the function of REval and XEval intro-

duced in Section 4. The platform is currently single-

site, but to exploit the parallelization opportunities

provided by nowadays’ multicores, in our implemen-

tation, all the fetch operators of an execution plan are

launched simultaneously when the plan execution be-

gins (as opposed to letting the implicit iterator-based

scheduling [33] of our operators trigger them). Our

tests have shown that such parallel, eager fetch execu-

tion significantly speeds up the query evaluation. This

14 One could further speed up ViP2P by (i) indexing its
views on the XURI attributes that are passed as bindings
from the RDF query and/or (ii) pushing value joins among
QX tree patterns within the materialized views etc. We did
not pursue these alternatives, as they are rather orthogonal
to the main purpose of this paper.

http://basex.org
http://vip2p.saclay.inria.fr

Growing Triples on Trees 15

Independent execution* Dependent execution

XML || RDF

XML→RDF

XML first*

XML→RDF-Data

RDF first

Push to queryPush to data

XML-in holds

Push to data

* XURI-out holds
** Uses dereferencing for efficiency

RDF→XML-Data-Pr**
RDF→XML-Data

XML-in does not hold

Many queries Single query Many queries Single query

RDF⇒XML-URI-Pr**
RDF⇒XML-URI

Push to query

RDF→XML-XPath-Pr
RDF→XML-Xpath

RDF⇒XML-XPath-Pr
RDF⇒XML-XPath

RDF→XML-URI-Pr**
RDF→XML-URI

Fig. 5: Taxonomy of the proposed XRQ query evaluation algorithms.

is because the fetch operators ship potentially com-

plex sub-queries to the underlying XDM and RDM,

thus their evaluation is a significant part of the over-

all processing time.

5.3 URI management

For URI management (XURI-in, XURI-out and

Deref), we resorted to the following techniques.

When using BaseX, we store within the XML in-

stance, the XURIs of only those XML nodes which

are referred to by the RDF sub-instance. Specifically,

let d be an XML document and n ∈ d a node, and

dURI:lnID be the XURI of n, where dURI is the URI

of d and lnID is the local identifier of n within d.

If dURI:lnID appears within the RDF data instance,

then within d, we add a special attribute to n, of the

form id=’’lnID’’, which the run-time re-assembles

with dURI into n’s full XURI. The module inserting

such IDs is the embedder in Figure 6.

The advantages of this approach are: (i) both

XURI-in and XURI-out can be supported through

trivial XQuery rewritings, and (ii) some underlying

systems can be tuned to index these attributes and

therefore improve the performance of (XR-specific)

joins between the XML and RDF data. One may also

consider leveraging directly the internal ID represen-

tation schemes specific to most XDMs, as we did in a

previous version of this work [34].

For BaseX and ViP2P, to implement the Deref

function, we store in a dedicated index (materialized

in the XR platform but outside the XML data man-

agement platform), for each node URI, the parent-

child XPath query (with positional predicates) lead-

ing from the document root to the respective node.

For instance, this index associates to doc1:node15 the

corresponding node XPath, e.g., /a/b[1]/c[2]/d[1].

Clearly, once stored, these XURI/XPath pairs can be

indexed in one or two ways (e.g., in persistent hash

tables provided by the BerkeleyDB library [35]) so as

to perform the dereferencing in constant time. In our

platform, we indexed the XPaths with the XURIs as

look-up keys. This approach for implementing Deref

is non-intrusive and can be applied on the top of any

existing system.

The XR plan generator takes as input an XR query

and a given query evaluation strategy among those

described in Section 4, and produces an execution

plan implementing the respective strategy for that

query. As explained in Section 4.2, one needs to de-

cide how to group the XML sub-queries sent to XEval,

i.e., whether to delegate value joins among XML tree

patterns to the underlying database or not. To de-

termine this, the XR platform includes a calibration

module which sends to the XML database a set of fixed

queries whose performance it then compares with the

case when value joins among XML tree patterns are

run in the XR platform and these tree patterns are

run independently on the XML database.

Finally, the XR platform includes an XR data gen-

eration module we devised, which we further detail

when presenting our experimental evaluation, in the

next section.

6 Experimental Evaluation

This section presents the findings of our experimental

study. Section 6.1 describes the experimental settings

we used to test our algorithms. Section 6.2 provides an

extensive comparison of all our XR query evaluation

algorithms on a small XR data instance, illustrating

their performance and allowing us to discard the most

inefficient ones. Section 6.3 focuses on the more effi-

cient ones, and studies their scalability with respect

to the size of the data instance. In Section 6.4, we

compare these algorithms based on two quite different

XDMs, then we conclude.

6.1 Experimental settings

Datasets We have used a set of synthetic XR data

sets, generated in two stages as follows.

First, we use the XMark [29] XML document gen-

erator to produce a set of XML documents.

Second, we generate a set of RDF triples, some

of whose subject and object values are URIs of nodes

from the previously generated documents. Specifically,
1/2 of the subjects are URIs of XML nodes, while the

others are synthetic URIs, picked from a fixed pool

using a uniform distribution; 1/3 of the objects are

16 François Goasdoué et al.

Dataset #RDF edges #XML edges
sizes (millions) (millions)

D1
1/3

0.5 1.6

D1
1 1.5 1.6
D1

3 5 1.6
D10

1/3
5 16

D10
1 15 16
D10

3 50 16
D100

1/3
50 167

Table 1: XR datasets used in the experiments

XML node URIs, 1/3 are picked from the fixed pool

of subject URIs, while the last 1/3 are taken from a

distinct (disjoint) URI set. The values of properties in

the RDF data are picked from a set of 1, 185 distinct

properties present in the DBPedia database [5], using

a Zipf distribution.

This data generation approach aims at resembling

actual settings where some RDF triples annotate the

XML nodes with properties from a given vocabulary,

some triples connect the nodes to each other, and fi-

nally some other triples are not related to the docu-

ment nodes (but may still join with those that are).

We moreover controlled:

– The size factor of the XMark XML generator, de-

noted i. We experimented with size factors of 1, 10

and 100, which respectively lead to XML datasets

of 100MB, 1GB and 10 GB.

– The splitting of the XML content across docu-

ments. This parameter matters, because each XML

tree pattern can only match within a single docu-

ment; moreover, XML query processors often per-

form better on smaller documents. Thus, we gen-

erated the XML data: all in a single file; split in

n files where n is the XMark input size factor

(thus, each file is of about 1MB); finally, split in

XML files of approximately 1000 nodes each. Un-

less specified otherwise, in this paper, we report on

this last option, which enabled us to best compare

our algorithms. Results with other XML segmenta-

tion sizes are provided on our online experimental

site [36].

– The ratio between the number of XML nodes and

the number of RDF triples in the instance, denoted

j. We chose size ratios of 1/3, 1 and 3. This param-

eter was introduced in order to control the amount

of connections between the XML and RDF parts

of the data set.

We denote by Dij the dataset obtained by setting

the XMark input size to i and the RDF-to-XML ratio

to j. For instance, D10
1/3 is a dataset generated with size

factor 10 (approximately 1GB and 16M XML nodes),

and 1 RDF triple for 3 XML nodes, i.e., approxi-

mately 5M triples in this case. The size of the datasets

w.r.t. the input size factor are reported in Table 1.

Workloads We hand-crafted four workloads of eight

queries each. Queries are ordered by increasing com-

plexity, from one tree pattern joined with one triple

pattern, to three tree patterns joined with two triple

patterns. On average, a tree pattern has 4.7 nodes.

Each query features joins: between the triple patterns,

between the tree patterns, and between triple and tree

patterns, on node URIs. Query Q7 features a Carte-

sian product in QX , whereas the query as a whole is

Cartesian product-free. Finally, Q8 features a Carte-

sian product among QR triples, although the query is

overall connected through shared variables among QX
and QR.

All workloads share the tree and triple patterns of

the first workload W1. To gauge the impact of the se-

lectivity of each sub-query, we have added selections

in the other workloads as follows. In the workload W2,

selections have been added to the RDF triple patterns

only. In the workload W3, selections have been placed

on XML tree patterns only, while workload W4 fea-

tures the selections of both W2 and W3, on the XML

and RDF patterns.

Encoding URIs for BaseX and consequences for query-

ing As explained in Section 5, BaseX satisfies neither

XURI-in nor XURI-out, and to be able to test all

our algorithms on BaseX, we added xml:id attributes

to only those XML nodes whose XURIs appear in the

RDF sub-instance. With this encoding of XURIs in

the data, BaseX can be considered as satisfying both

XURI-in and XURI-out.

It turns out that this simple encoding improves the

performance of QX evaluation, even for simple strate-

gies such as XML||RDF. The reason is that whenever

XURI-out is assumed, the XQuery syntax of QX in-

volves the xml:id attribute. This attribute is present

only in those nodes which appear as subjects or ob-

jects within the RDF sub-instance. Thus, QX filters

out of the XML instance the XML nodes whose URIs

do not appear in the RDF instance.

6.2 Comparison of all strategies

Our first set of experiments compares all the strate-

gies described in Section 4, on the dataset D1
1 and

on all workloads. In this experiment, we sent to the

RDM the connected components of QR one by one,

whereas to the XDM we sent only isolated tree pat-

terns, and performed all the remaining joins using our

own operators, at the level of the XR engine and out-

side the XDM. Our calibration tests indicated that

these choices allowed us to maximize the performance

of the RDM, respectively, XDM. Figure 7 presents the

running time (limited to our timeout of five minutes)

for workloads W1 to W4 in this setting.

A first remark is that the workload W1, with less

selections in QX and QR, is the hardest, that is, for

each strategy and query Qi, the strategy’s running

Growing Triples on Trees 17

CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:

.!

100.!

200.!

300.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!

Ev
al

ua
tio

n
tim

e [
se

co
nd

s]
! W4!

XML||RDF! XML→RDF! RDF→XML-URI!
RDF→XML-URI-Pr! RDF→XML-XPath! RDF→XML-XPath-Pr!
RDF⇒XML-URI! RDF⇒XML-URI-Pr! RDF⇒XML-XPath!
RDF⇒XML-XPath-Pr! XML→RDF-Data! RDF→XML-Data!
RDF→XML-Data-Pr!

.!

100.!

200.!

300.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!

Ev
al

ua
tio

n
tim

e [
se

co
nd

s]
! W3!

.!

100.!

200.!

300.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!

Ev
al

ua
tio

n
tim

e [
se

co
nd

s]
! W2!

.!

100.!

200.!

300.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!

Ev
al

ua
tio

n
tim

e [
se

co
nd

s]
! W1!

Fig. 7: XR query evaluation strategies compared on workloads W1 −W4 and dataset D1
1.

18 François Goasdoué et al.

time is longest on the Qi from W1. Similarly, W4,

featuring selections both in the XML and RDF sub-

queries, is the easiest. The workloads W2 and W3,

having selections only in the RDF, respectively, the

XML part, are in-between; the “harder” queries (Q5

toQ8) are poorly handled in both workloads, while the

“simpler” queries (Q1 to Q4) are evaluated more effi-

ciently in their W2 versions than in their W3 counter-

parts. This is because a selection has a very significant

impact on the amount of data manipulated by QR,

turning, for instance, a triple of the form ($x, $y, $z)

which matches the whole RDF sub-instance, into one

of the form ($x, :p1, $z) matching only a few triples.

In contrast, a selection added to QX may turn, e.g.,

/site//person into /site//person[age=’’20’’],

still a sizeable reduction in the result size, but not as

dramatic as in the case of RDF.

Our second remark concerns the tuple-at-a-time

strategies from the RDF-to-XML family, those whose

names include RDF⇒XML (and which are shown in

oblique dashed bars in the Figure). Overall, these strate-

gies perform very poorly, for all but a few selective

queries inW2 andW4. Among the worst are RDF⇒XML-

URI (Algorithm 5) and RDF⇒XML-XPath (Algorithm 6),

running out of time for all but seven (respectively, two)

queries. The tuple-at-a-time RDF⇒XML algorithms are

slow because of their numerous calls to the XML en-

gine. Moreover, RDF⇒XML-URI is better than RDF⇒XML-

XPath. This is because RDF⇒XML-URI assumes XURI-

in and thus performs the join between the RDF bind-

ings and the XML database, on the xml:id attribute.

RDF⇒XML-XPath requires evaluating numerous linear

XPath expressions, which slows down executions sig-

nificantly. Finally, tuple-at-a-time strategies with prun-

ing, having names of the form RDF⇒XML*Pr, bring only

marginal performance improvements. Based on these

experiments and many similar others, we decided to

discard the tuple-at-a-time RDF-to-XML strategies

from further tests.

A third remark is that among the remaining strate-

gies, pruning does help. For instance, RDF→XML-XPath-

Pr performs in many cases better than RDF→XML-XPath;

the latter is overall not competitive, thus we will omit

it from further tests. Similarly RDF→XML-URI-Pr is of-

ten better than RDF→XML-URI.

Based on this analysis, in the following, we only

consider the strategies showing acceptable performance

in Figure 7, namely: XML||RDF, XML→RDF, RDF→XML-

URI, RDF→XML-URI-Pr, RDF→XML-XPath-Pr, XML→RDF-

Data, RDF→XML-Data and RDF→XML-Data-Pr.

6.3 Scalability

In this second batch of experiments, we focus on the

scalability of the competitive strategies when the size

of the XR data instance grows. For clarity, we needed

an aggregate measure to characterize the cumulated

size of the XML and RDF sub-instances. We chose

the total number of edges in the data instance, that is:

the number of XML nodes (we can view each of them

as being at the lower end of an edge in the respec-

tive tree) plus the number of RDF triples (each triple

can be seen as an edge between its subject and ob-

ject). We used datasets of various sizes, ranging from

D1
1/3 to D100

1/3 (the exact cardinality characteristics of

these datasets are listed in Table 1). For instance, for

D100
1/3 , 217 M edges correspond to a total of 17 GB

of data (11 GB of XML and 6 GB of RDF). We ran

the queries of workload W4, since its selections both

in the XML and RDF sub-queries made it closest to

real-world scenarios.

Figure 8 shows the variation of the evaluation times

when the dataset (measured in edges) increase. Notice

the logarithmic scale on both axes. As in the previous

experiments, we used a time-out of 5 minutes and did

not plot the runs interrupted at the time-out.

For the less complex queries Q1−Q4, all strategies

scale up to the largest data size and roughly linearly.

The algorithms from the RDF→XML family, namely

RDF→XML-URI, RDF→XML-URI-Pr and RDF→XML-XPath-

Pr perform best for the most selective queries (Q1

to Q4). The advantage of the pruning-based strate-

gies against the plain RDF→XML-URI fades out at large

data scales, since the time spent comparing XURIs

(or XPaths) offsets the benefit of pruning the bind-

ing tuples sent to the XDM. Strategies XML||RDF and

XML→RDF exhibit similar behaviour and also scale

roughly linearly. While the conceptual difference be-

tween independent and dependent execution is impor-

tant, in practice the difference may be smoothed out

by the fact that for both XML||RDF and XML→RDF,

when encoding XURIs as XML attributes, the XQuery

corresponding to QX operates quite some filtering on
the XML sub-instance, even in the absence of passed

XURIs (as we have explained in Section 6.1).

For the more complex queries Q5 − Q8, Figure 8

shows that RDF→XML-XPath-Pr takes longer than the

time limit in most cases. This is because in this strat-

egy, dereferencing entails many individual XPath ex-

pressions packed into the single XQuery sent to the

XDM, which fails to process them. The other strate-

gies fare better; remember that the curves end before

the first point that would cross the time limit. Inter-

estingly, XML||RDF behaves well up to the largest data

size on Q8, the query with a Cartesian product within

QR, thanks to the optimization consisting of sending

to the RDM connected queries only. As an example,

on the smallest data instance, Q8 is evaluated by join-

ing the result of one triple pattern (approximately 150

triples) with the XML tree pattern results (approx.

14.000 tuples), and then with the result of the second

triple pattern (200.000 triples), leading to a result of

1 triple. This demonstrates the interest of carefully

choosing the queries to be delegated to the XDM, re-

spectively, RDM, as discussed in Section 4.1.

Growing Triples on Trees 19

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q7!

XML||RDF! XML→RDF-URI! RDF→XML-URI! RDF→XML-URI-Pr!
RDF→XML-XPath-Pr! XML→RDF-Data! RDF→XML-Data! RDF→ML-Data-Pr!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q8!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q5!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q6!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q3!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q4!

.001!

.01!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q1!

.001!

.01!

.1!

1.!

10.!

100.!

1,000.!

2M! 15M! 150M!

E
va

lu
at

io
n

tim
e

[s
ec

on
ds

]!

Dataset size [# edges]!

Q2!

Fig. 8: Evaluation times for W4 with datasets of increasing sizes.

20 François Goasdoué et al.
CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:CLUSTERE
D:

.!

10.!

20.!

30.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!Ev
al

ua
tio

n
tim

e
[s

ec
on

ds
]! W1!

.!

10.!

20.!

30.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!Ev
al

ua
tio

n
tim

e
[s

ec
on

ds
]! W2!

.!

10.!

20.!

30.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!Ev
al

ua
tio

n
tim

e
[s

ec
on

ds
]! W3!

.!

10.!

20.!

30.!

Q1! Q2! Q3! Q4! Q5! Q6! Q7! Q8!Ev
al

ua
tio

n
tim

e
[s

ec
on

ds
]! W4!

XML||RDF ! XML→RDF! XML||RDF! XML→RDF!
ViP2P! BaseX!

Fig. 9: Evaluation times for workloads W1 to W4 on

dataset D1
1 using ViP2P and, respectively, BaseX.

Each strategy involving data materialization

presents a similar trend with its non-materializing coun-

terpart, but with slightly worse performance. For in-

stance, RDF→XML-Data is generally one order of magni-

tude slower than RDF→XML-URI, while RDF→XML-Data-

Pr tightly follows the performance of RDF→XML-URI-Pr.

This is due to the materialization cost, which involves

disk I/O. The main advantage of those strategies, how-

ever, lies in their robustness. As selectivity decreases,

strategies that pass information at the query level do

not scale, while materialization pays off. Note that

curves do not climb monotonously due to the fact

that each dataset was generated independently. There-

fore larger datasets do not necessarily include smaller

ones. This is particularly obvious in Q7 with strategy

XML→RDF-Data where response time suddenly declines

for the largest dataset. In this case, not only no mate-

rialization takes place, but RDF-3X statically detects

that the final query returns an empty result.

6.4 Experiments using VIP2P

The last experiments we present compare two quite

different XDMs: on one hand BaseX off-the-shelf, and

on the other hand our own ViP2P engine, both of

which were detailed in Section 5.1. We recall that

unlike BaseX, ViP2P natively supports XURI-out,

simplifying the implementation of the XML||RDF and

XML→RDF strategies. Moreover, ViP2P is able to ex-

ploit materialized views, expressed as joins over tree

patterns, to efficiently rewrite queries [32].

To see if the benefits of such view-based techniques

transfer to XR query evaluation, prior to running an

XR query Q, we materialized each tree pattern in QX
as a separate view. This admittedly puts ViP2P at an

advantage compared to engines which do not support

XML materialized views; indeed, the latter are not as

frequently provided as is the case for XML indexes.

Therefore, our motivation for including VIP2P with

this configuration in our tests, was to illustrate the

performance than can be achieved using an appropri-

ately set up XDM; view-based rewriting techniques,

e.g. [15,32], are likely to be gradually included in pop-

ular XML databases as they mature.

Figure 9 depicts the running times of strategies

XML||RDF and XML→RDF on the workload W4, when

the XDM is ViP2P and BaseX respectively (the Ba-

seX times are from Figure 7, re-plotted here as a ref-

erence). Overall, ViP2P performs better than BaseX

for both strategies, in particular more than an order of

magnitude faster for Q6 and Q7. For the other queries,

the times differ by less than one order of magnitude,

and overall the trends are similar - “hard” queries for

a strategy and system tend also to be comparatively

hard for the other system using the same strategy.

This gives some support to the idea that our XRQ

evaluation strategies are not tied to the particulars of

one engine and can accommodate different underlying

systems.

In Figure 9, we stopped execution at 5 minutes.

All runs ended much faster, except for XML→RDF on

ViP2P, on the queries Q2, Q4, Q7 and Q8. We in-

vestigated this and found a surprising explanation. In

these cases, XML→RDF sends to RDF-3X the XURIs

retrieved by ViP2P. Because ViP2P assigns XURIs to

all nodes (whether or not these XURIs appear in the

RDF data), some of the XURIs ViP2P sends to RDF-

3X are not present in the RDF database. For reasons

not yet clarified, RDF-3X is extremely slow on queries

where a variable must belong to a given set of URIs, if

some of these URIs are not in its RDF database. The

difference w.r.t. the same query but using only URIs

from the RDF database is a factor of more than a hun-

dred. We have isolated a small example exhibiting this

problem and contacted the system authors; when the

problem is clarified or solved, we will update the cor-

responding graphs on our online experiment site [36].

Except for these cases, RDF-3X was overall fast and

accurate in our tests, thus we kept it as the RDM of

choice for our experiments.

Interestingly, when XML→RDF times-out on ViP2P,

XML→RDF on BaseX runs typically fast! This is be-

cause, as explained in Section 6.1, the XURIs sent by

Growing Triples on Trees 21

BaseX to the RDM are only those of nodes referred to

by the RDF sub-instance. Therefore, the unexpected

behaviour of RDF-3X is not triggered15.

6.5 Experiments conclusion

Our experiments allow us to establish the following

observations. First, näıve tuple-at-a-time strategies for

passing XURIs from the RDM to the XDM are pro-

hibitively slow, even when applying pruning optimiza-

tions; similar strategies which pass a single query to

the XDM perform much better. Second, XML||RDF and

XML→RDF are clearly the best on small data instances

(Figure 7), and are robust (especially XML||RDF) up

to very large data instances (Figure 8). Thus, if the

XDM supports XURI-out, one can safely choose the

XML||RDF or XML→RDF strategies. This supports the

idea that deploying XR based on an XDM whose in-

ternal node IDs can be exposed as XURIs, leads to

simple yet efficient and robust XRQ evaluation strate-

gies.

For queries and data instances of moderate size,

however, the pruning-based strategies RDF→XML-URI

and RDF→XML-XPath-Pr can be faster by one order of

magnitude than XML||RDF and XML→RDF; RDF→XML-

URI requires XML-in, whereas RDF→XML-XPath-Pr does

not. The advantages of RDF→XML-XPath-Pr are erased

if many XURIs are passed from the RDM to the XDM,

e.g., in Q5 − Q8 in Figure 8, since the evaluation of

numerous linear XPath expressions (to check whether

the nodes from the XML and RDF sub-instances co-

incide) incurs high costs. Strategies involving mate-

rialization, although generally slower than their infor-

mation-passing counterparts, tend to scale well be-

yond them.

Finally, we have shown that improvements to the

performance of the underlying XDM, in particular by

means of storage tuning using VIP2P as the XDM,

translate into respective gains for the overall XR query

performance. This, as well as our XR platform design

which communicates with existing systems through

wrappers, and our design of algorithms depending on

the hypotheses and capabilities of the underlying XDM,

give us confidence that the XR model can be efficiently

deployed in a variety of settings.

7 Related Work

Two major lines of work are closely related to this

paper. The first shares our motivation of annotating

structured data, while the second is related to achiev-

ing interoperability between the XML and RDF data

models.

15 This interaction between XURI encoding and RDF-3X
performance can be reasonably seen as an “implementation
accident”; we only explain it for completeness.

7.1 Standards and tools for annotated documents

Since the emergence of RDF, a set of tools was pro-

posed to exploit the RDF model and enable users to

attach semantic annotations to Web pages. The rep-

resentation of annotations on XML documents has in-

spired many projects focusing on a data model per-

spective [37,38], or an end-user perspective, with tools

to annotate web pages manually [39,40] or in a semi-

automatic fashion [41,42]. A comprehensive overview

of annotation systems can be found in [43]. However,

these works focus solely on the problem of storing and

querying RDF annotations, and they do not consider

the possibility to query simultaneously the structured

documents and the annotations on top of them.

Many applications require smart warehousing of

structured (or simple text) documents, notably on in-

tranets, where one tries to make the most out of the

various documents created by employees on projects

which may be similar to each other. In the French

R&D project WebContent [44], we have worked on

building tools for warehousing semantically annotated

pages gathered from the Web. In WebContent, Web

crawlers gathered pages on specific topics, e.g., spe-

cialized press reviews of aircraft for the Airbus project

partner; such pages were then cleaned of unwanted

banners etc., a natural language analysis was run and

specific entities (such as e.g., “Airbus A320”) were lo-

calized in the text. Accordingly, the documents were

annotated with this named entity, allowing to con-

nect them to specific concepts in the ontology, such

as “passenger airplane”, “EU-manufactured aircraft”

etc. The XR model extends and generalizes the We-

bContent data model by allowing XML nodes to be

referenced in RDF in all places where a URI can ap-

pear as opposed to only subjects, as was the case in

WebContent. The unified language of XR is also novel

and specific to this work. It provides a flexible frame-

work for capturing such semantic annotations at a fine

granularity and processing complex queries on top of

them.

The problem of publishing RDF annotations within

XML documents has been tackled by recent technol-

ogy standards applying in the XHTML context: mi-

croformat [45], eRDF [46] and W3C’s RDFa [47] stan-

dard. The goal of these works is to provide specific

syntax enabling the publisher (author) of a Web page

to embed some semantic annotations in the page it-

self. However, such models can only be used by those

having the right to modify the page, which is quite

restrictive. Moreover, the model does not lend itself

to the situation when one user wishes to keep her an-

notations of a given document private (or share only

specific annotations with specific users).

22 François Goasdoué et al.

7.2 Interoperability between XML and RDF

RDF is a model rather than a language. As such, it

has several serializations, the most popular of which

is actually based on XML. However, any particular

way of encoding triples into trees must somehow ar-

bitrarily pick or create root elements without a clear

RDF meaning, while a central RDF feature, namely,

joins on URIs appearing in several triples, is encoded

by sharing XML attribute values. Processing an RDF

query on such XML-encoded data leads to XML queries

with numerous value joins, whose evaluation is still

challenging for current XML query processors [22], an

observation confirmed also in our previous work [48].

Thus, one can consider the XML serialization of RDF

as helpful for data sharing but not for human con-

sumption, nor for query processing.

In the same vein, there have been several proposed

languages which allow, as described in W3C’s GRDDL

recommendation [49], the transformation of XML data

to RDF and vice versa [50,7]. In the literature, these

are known as lifting and lowering, respectively. Some

of this works consider employing the query language

of one model to query the other (e.g., using XQuery

to query RDF) [51,52] or building hybrid languages

that embed constructs of a query language for one

model (e.g., XPath) into a query language for the

other model (e.g., SPARQL) [53].

To this family also belongs XSPARQL [7], which

allows uniform querying of XML and RDF interleav-

ing the XQuery and SPARQL syntaxes. XSPARQL

queries may be translated either completely into

XQuery, or partially to XQuery with custom func-

tion calls to a SPARQL engine. From this perspec-

tive, the XSPARQL execution engine compares di-

rectly with our current XR engine, since they both del-

egate processing to existing underlying engines. The

evaluation of XSPARQL, based on XMark queries, is

quite comparable with ours, although they do not con-

sider our URI-based connections between the two sub-

instances. Interestingly, they obtain much better per-

formance when translating XSPARQL to finely tuned

XQueries, whereas most queries do not work for 100

MB of data (the size of our smallest data set!) if they

are partially translated into SPARQL. By taking some

of the joins outside the XDM and RDM and intelli-

gently delegating sub-queries, in XR we were able to

scale two orders of magnitudes beyond the XSPARQL

engine. Finally, an interesting work [54] presents a

data model framework rich enough to capture side

by side XML and RDF, however, they do not share

the particularity of XR consisting of considering XML

nodes as resources and injecting them into the world

of RDF statements.

The transformation of XML into RDF so that both

can be queried with SPARQL is studied in [53,55,56].

This conversion brings both models to the level of the
more complex (RDF), which provides sufficient gener-

ality, but loses the performance benefits attained by

current XQuery processors on many types of queries

(and in particular on XPath 1.0 on which many of

them perform quite well). Moreover, this XML-to-RDF

conversion does not envision treating XML nodes as

resources, either.

We have previously outlined the core XR ideas in a

short paper [34] as well as in a longer article presented

in an informal setting (no proceedings) [57]. These

works have introduced the data model and query lan-

guage; the evaluation algorithms at the core of the

current submission are new. Among the related works

referenced above, XR also stands out by having been

implemented in a full platform, and scaling two orders

of magnitude beyond comparable systems [53].

8 Conclusion and Perspectives

Structured text, e.g., Web contents, electronic books

or enterprise documents, is frequently encoded in XML,

and is often valuable in this structured, linear form,

which comprises not only facts (or data), but also a

linear discourse building ideas from paragraphs and

metaphors from words; the original text also serves as

reference and lends its authority, e.g., as a proof or a

citable source. Contemporary means of exploiting and

enriching electronic structured text require the ability

to interconnect it with existing data- and knowledge-

bases, and to do so in a manner as automatic as possi-

ble. A database of documents enriched this way allows

not only to better exploit the text, but also to better

illustrate and connect the resources and concepts of

the database through the documents.

While many works have focused on devising auto-

matic and semi-automatic text annotation tools, draw-

ing on Natural Language Processing capabilities, we

have considered the problem of modelling and effi-

ciently querying such corpora of interconnected docu-

ments, facts and concepts. Our first goal was to re-use

whenever possible, thus we devised the XR data model

that naturally extends the W3C’s existing XML and

RDF model, connecting them on the core idea that

any XML node may have a URI, which in turn may

appear in the RDF database in any place where a

URI is allowed to be. (This may be easily extended

to allow annotations at even finer granularity, e.g., a

word appearing in a text node.) We have accordingly

proposed a core XR query language, combining the

conjunctive cores of XML and RDF standard query

languages, i.e., triples and tree patterns possibly con-

nected through various flavors of joins. We have then

investigated efficient light ways of processing XRQ

queries, relying on existing XML, respectively, RDF

storage and query engines. It turns out that the cen-

tral connection made in the XR model on XML node

URIs requires some care, given that XML node iden-

tity is implicit in the XML model and not necessarily

Growing Triples on Trees 23

explicit. We identified the core hypothesis which the

XDM may or may not satisfy, and accordingly devised

and implemented thirteen XR query evaluation algo-

rithms (Figure 5), some of which exploit some simple

optimizations.

We have built an XR platform which interfaces

with various XML, respectively, RDF systems by means

of wrappers, and experimented with a variety of sys-

tems including Jena, RDF-3X, MonetDB/XQuery,

QizX, BaseX, and our in-house ViP2P XML query

processor. We present the results obtained with the

most stable and efficient platforms, which we found

to be RDF-3X, BaseX, and ViP2P (the latter hand-

tuned for performance). Our experiments demonstrate

that there are wide performance differences between

various strategies, and that the most efficient (XML||RDF

and XML→RDF) scale up well on databases of a total

(XML+RDF) size of up to 17 GB (210 millions edges);

however, in specific cases (moderate-size databases and

simple queries) other strategies, and in particular

RDF→XML-XPath-Pr may be much faster.

Based on these observations, our next task is to

devise a global XR optimizer capable of automatically

selecting the most appropriate strategy for a given XR

instance and XR query. As ingredients to this opti-

mizer, we plan to plug the query cardinality estima-

tion components we have previously built and used in

our prior works for conjunctive RDF queries [58] and

conjunctive tree pattern queries [59].

In a recent work [60], we integrated the XR plat-

form into a rich web browser interface, to enable sce-

narios such as those presented in the Introduction.

We are currently working on an extension of the XR

query language to enable it to return XR instances (as

opposed to tuples of bindings as presented in this pa-

per), continuing our first attempt in this direction [57].

With this language, closed under composition, we en-

vision various new research directions, such as view

composition, view-based query answering, as well as

problems related to data exchange rules. An XR data

instance, combined with a set of rules, would provide

an elegant framework for XML-RDF data exchange,

and permit querying intensional XML data, which is

a little-studied problem.

We believe that in today’s annotated, commented,

shared, and fact-checked Web, annotated documents

will be increasingly adopted. The purpose of this work

was to set up a database foundation for expressively

and efficiently exploiting such interconnected databases

of structured documents, facts, and knowledge.

References

1. Extensible Markup Language (XML) 1.0 (fifth edition).
http://www.w3.org/TR/xml/, 2008.

2. RDF. http://www.w3.org/RDF/, 2004.
3. RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/TR/rdf-schema/, 2004.

4. URIs, URLs, and URNs: Clarifications and Recommen-
dations 1.0. http://www.w3.org/TR/2001/NOTE-uri-
clarification-20010921/, 2001.

5. DBpedia 3.7. http://wiki.dbpedia.org/Downloads37.
6. F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:

A large ontology from Wikipedia and WordNet. J. Web
Sem., 6(3), 2008.

7. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and
A. Polleres. Mapping Between RDF and XML with
XSPARQL. Technical report, DERI, 2011.

8. RDF concepts and abstract syntax.
http://www.w3.org/TR/rdf-concepts/, 2004.

9. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
10. RDF Semantics. http://www.w3.org/TR/rdf-mt/,

2004.
11. OWL 2 web ontology language document overview.

http://www.w3.org/TR/owl2-overview/.
12. S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Sri-

vastava. Minimization of Tree Pattern Queries. In SIG-
MOD, 2001.

13. SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008.

14. A. Arion, V. Benzaken, and I. Manolescu. XML access
modules: Towards physical data independence in XML
databases. In XIME-P, 2005.

15. A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and
H. Pirahesh. A framework for using materialized XPath
views in XML query processing. In VLDB, 2004.

16. XQuery 1.0 and XPath 2.0 data model.
http://www.w3.org/xpath-datamodel/, 2010.

17. xml:id. http://www.w3.org/TR/xml-id, 2005.
18. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasun-

daram, E. Shekita, and C. Zhang. Storing and querying
ordered XML using a relational database system. In
SIGMOD, pages 204–215, New York, NY, USA, 2002.
ACM.

19. M. Rys. XML and relational database management sys-
tems: inside Microsoft SQL Server. In SIGMOD, pages
958–962, New York, NY, USA, 2005. ACM.

20. L. Chen, P. Bernstein, P. Carlin, D. Filipovic, M. Rys,
N. Shamgunov, J. Terwilliger, M. Todic, S. Tomasevic,
and D. Tomic. Mapping XML to a wide sparse table.
In ICDE, pages 630 –641, April 2012.

21. L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pi-
rahesh. Extensible query processing in Starburst. In
SIGMOD, 1989.

22. L. Afanasiev and M. Marx. An analysis of XQuery
benchmarks. Inf. Syst., 33(2):155–181, 2008.

23. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/, 2012.

24. L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: from
Dewey to a fully dynamic XML labeling scheme. In
SIGMOD, 2009.

25. B. Cautis, A. Deutsch, and N. Onose. XPath rewrit-
ing using multiple views: Achieving completeness and
efficiency. In WebDB, 2008.

26. K. Karanasos. View-based techniques for the efficient

management of Web Data. PhD thesis, U. Paris Sud,
2012.

27. J. Hidders. Satisfiability of XPath Expressions. In
DBPL, pages 21–36, 2003.

28. T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J., 19(1):91–
113, 2010.

29. A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for
XML data management. In VLDB, pages 974–985, 2002.

30. M. Franceschet. XPathMark: An XPath benchmark for
the XMark generated data. In XSym, 2005.

31. K. Karanasos, A. Katsifodimos, I. Manolescu, and
S. Zoupanos. ViP2P: Efficient XML management in
DHT networks. In ICWE, 2012.

24 François Goasdoué et al.

32. I. Manolescu, K. Karanasos, V. Vassalos, and
S. Zoupanos. Efficient XQuery rewriting using multi-
ple views. In ICDE, 2011.

33. G. Graefe. Encapsulation of parallelism in the Volcano
query processing system. In SIGMOD, 1990.

34. F. Goasdoué, K. Karanasos, Y. Katsis, J. Leblay,
I. Manolescu, and S. Zampetakis. Growing Triples on
Trees: an XML-RDF Hybrid Model for Annotated Doc-
uments. In M. Brambilla, F. Casati, and S. Ceri, editors,
VLDS, Seattle, United States, 2011.

35. Oracle Berkeley DB Java Edition.
http://oracle.com/technetwork/database/berkeleydb/.

36. Online experiment site.
http://tripleo.saclay.inria.fr/xr/experiments.

37. J. Kahan, M.-R. Koivunen, E. Prud’hommeaux, and
R. R. Swick. Annotea: an open RDF infrastruc-
ture for shared Web annotations. Computer Networks,
39(5):589–608, 2002.

38. B. Haslhofer, R. Simon, R. Sanderson, and H. Van de
Sompel. The Open Annotation Collaboration (OAC)
Model. In Multimedia on the Web (MMWeb), 2011 Work-

shop on, pages 5 –9, sept. 2011.
39. S. Handschuh and S. Staab. Authoring and annotation

of Web pages in CREAM. In WWW, 2002.
40. K.-P. Yee. CritLink: Advanced Hyperlinks Enable Pub-

lic Annotation on the Web. In Computer Supported Co-
operative Work (CSCW), 2002.

41. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins,
J. A. Tomlin, and J. Y. Zien. SemTag and seeker: boot-
strapping the Semantic Web via automated semantic
annotation. In WWW, 2003.

42. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. MnM: Ontology Driven
Semi-automatic and Automatic Support for Semantic
Markup. In EKAW, 2002.

43. L. Reeve and H. Han. Survey of semantic annotation
platforms. In ACM SAC, 2005.

44. S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin,
A. Ghitescu, F. Goasdoué, I. Manolescu, B. Nguyen,
M. Ouazara, A. Somani, N. Travers, G. Vasile, and
S. Zoupanos. WebContent: Efficient P2P Warehousing
of Web Data (demonstration). PVLDB, 2008.

45. Microformats. http://microformats.org/.
46. RDF in HTML. http://research.talis.com/2005/erdf/

wiki/Main/RdfInHtml, 2006.
47. RDFa Primer. http://www.w3.org/TR/xhtml-rdfa-

primer/, 2004.
48. K. Karanasos and S. Zoupanos. Viewing a world of an-

notations through AnnoVIP (demonstration). In ICDE,
2010.

49. GRDDL. http://www.w3.org/TR/grddl/, 2008.
50. W. Akhtar, J. Kopecký, T. Krennwallner, and

A. Polleres. XSPARQL: Traveling between the XML
and RDF Worlds - and Avoiding the XSLT Pilgrim-
age. In S. Bechhofer, M. Hauswirth, J. Hoffmann, and
M. Koubarakis, editors, ESWC, volume 5021 of Lec-

ture Notes in Computer Science, pages 432–447. Springer,
2008.

51. P. Patel-Schneider and J. Siméon. The Yin/Yang web:
XML syntax and RDF semantics. In WWW, 2002.

52. J. Robie, L. M. Garshol, S. Newcomb, M. Biezunski,
M. Fuchs, L. Miller, D. Brickley, V. Christophides, and
G. Karvounarakis. The syntactic web. Markup Lang.,
September 2001.

53. O. Corby, L. Kefi Khelif, H. Cherfi, F. Gandon, and
K. Khelif. Querying the Semantic Web of Data using
SPARQL, RDF and XML. Research Report RR-6847,
INRIA, 2009.

54. T. Furche, F. Bry, and O. Bolzer. Marriages of Con-
venience: Triples and Graphs, RDF and XML in Web
Querying. In Principles and Practice of Semantic Web
Reasoning. Springer Berlin / Heidelberg, 2005.

55. M. Droop, M. Flarer, J. Groppe, S. Groppe, V. Linne-
mann, J. Pinggera, F. Santner, M. Schier, F. Schöpf,
H. Staffler, and S. Zugal. Translating XPath queries
into SPARQL queries. In OTM, 2007.

56. M. Droop, M. Flarer, J. Groppe, S. Groppe, V. Lin-
nemann, J. Pinggera, F. Santner, M. Schier, F. Schöpf,
H. Staffler, and S. Zugal. Bringing the XML and Seman-
tic Web Worlds Closer: Transforming XML into RDF
and Embedding XPath into SPARQL. In Enterprise In-

formation Systems. Springer Berlin Heidelberg, 2009.
57. F. Goasdoué, K. Karanasos, Y. Katsis, J. Leblay,

I. Manolescu, and S. Zampetakis. Growing Triples on
Trees: an XML-RDF Hybrid Model for Annotated Doc-
uments. In BDA (Informal proceedings), Rabat, Morocco,
2011.

58. F. Goasdoué, K. Karanasos, J. Leblay, and
I. Manolescu. View Selection in Semantic Web
Databases. PVLDB, 5(2), Oct. 2011.

59. A. Katsifodimos, I. Manolescu, and V. Vassalos. Mate-
rialized view selection for XQuery workloads. In SIG-

MOD, 2012.
60. F. Goasdoué, K. Karanasos, Y. Katsis, J. Leblay,

I. Manolescu, and S. Zampetakis. Fact-checking and
analysing the Web (demonstration). In SIGMOD, New
York, NY, USA, 2013.

	Introduction
	The XR Data Model
	The XRQ Query Language
	XRQ Query Evaluation
	The XR Platform
	Experimental Evaluation
	Related Work
	Conclusion and Perspectives

