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Modelling Ontologies with Topic Maps and OWL:
Implementation Challenges and Conceptual Issues

Ontologies provide a promising method of organizing and representing information
and knowledge. Since the presentation of the Semantic Web vision in 2001, which
is based on ontologies acting as “knowledge stores”, significant amount of resarch
work has been done in this field. This thesis deals with ontologies by focusing on the
Topic Maps and OWL standards, which have become the most important formats for
representing knowledge in ontologies.

Despite the relatively broad adoption of ontologies in the research community during
the last years, creating and using ontologies is still no straightforward task. This is
essentially due to the lack of proper tools that are easy enough to use in practice, but
also due to some inherent limitations that apply to ontologies. Most issues related to
ontologies pertain to one of these two groups of problems, which could be described
as “implementation challenges” and “conceptual issues”, respectively.

The thesis first introduces ontologies and related concepts like the Semantic Web and
also presents an in-depth view of the Topic Maps and OWL standards. Three major
topics are identified as being especially challenging when implementing ontologies in
real world applications: providing persistent, scalable storage, performing complex
queries on ontologies, and deducing implicit information by using special inference
engines. Apart from these challenges on the implementation level, a number of crucial
issues at the conceptual level of ontology representation formats are also discussed,
such as the absence of contextual constraints, the inability to properly represent in-
consistencies and the lack of methods for expressing uncertainty in knowledge bases.
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Modellierung von Ontologien mit Topic Maps und OWL:
Implementierungsschwierigkeiten und konzeptionelle Fragen

Ontologien sin ein vielversprechender Ansatz, Informationen und Wissen zu orga-
nisieren und repräsentieren. Durch die Präsentation der Vision des Semantic Web im
Jahre 2001, welches auf Ontologien als “Wissensspeicher” aufbaut, haben diese einigen
Aufschwung innerhalb der wissenschaftlichen Gemeinde erfahren. Diese Diplomarbeit
betrachtet Ontologien im Detail und konzentriert sich dabei auf die Standards Topic
Maps und OWL, welche die beiden wichtigsten Repräsentationsformate für Ontologien
darstellen.

Obwohl Ontologien in den letzten Jahren breite Anwendungsmöglichkeiten gefunden
haben, ist das Erstellen und Verwenden von Ontologien nach wie vor nicht ohne
Detailkenntnisse zu bewältigen. Gründe dafür sind einerseits das Fehlen geeigneter
Software-Werkzeuge, welche in der Praxis einfach eingesetzt werden können, anderer-
seits aber auch einige grundlegende Einschränkungen, denen Ontologien unterliegen.
Die meisten Schwierigkeiten bei der Anwendung von Ontologien können demzufolge auf
mangelnde Unterstützung beim Implementationsprozess als auch auf konzeptionelle
Problematiken zurückgeführt werden.

Die vorliegende Diplomarbeit führt zunächst in die Grundlagen von Ontologien und
verwandter Konzepte wie das Semantic Web ein und stellt die beiden Standards Topic
Maps und OWL im Detail vor. Drei Themenbereiche werden dabei als besonders kri-
tisch für reale Applikationen befunden: die persistente, skalierbare Speicherung von
Ontologien, das Ausführen komplexer Abfragen über die Wissensbasis innerhalb einer
Ontologie sowie das Ableiten impliziter Informationen aus den expliziten Fakten einer
Wissenbasis unter Verwendung einer Inferenzmaschine. Neben diesen Implementa-
tionsschwierigkeiten wird weiters eine Reihe von Problemen aufgezeigt, welche mehr
konzeptioneller Natur sind und dementsprechend kritisch zu bewerten sind. Dazu
zählen vor allem das Nichtvorhandensein von kontextuellen Einschränkungen in On-
tologien, die fehlenden Möglichkeiten zur Erfassung von semantischen Inkonsistenzen
sowie das schwierige Abbilden von unsicherem Wissen.
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Introduction

In recent years, ontologies and related technologies enjoyed ever increasing popularity
among researchers working in various areas usually related to knowledge management
and knowledge representation. Not only theoretical foundations are being actively
developed and investigated, but also a variety of practical applications has been im-
plemented so far. Although ontologies are well known in the Artificial Intelligence
community and thus can not be considered to be conceptually “new” inventions, the
development of ontology-related standards (RDF, RDFS, OWL etc.) and adaption of
existing ones (e.g. ISO Topic Maps) gained significant momentum in the context of
the popular Semantic Web initiative. While the Semantic Web as originally envisioned
is not likely to become reality in the near future (if at all), technologies focusing on
ontologies actually exist and are used by many people in the scientific community. A
large number of official standards and recommendations exists, as well as many tools
ranging from simple ontology editors to advanced frameworks offering platforms for
the development of ontology-centric applications.
Yet it is interesting to note that most of these standards and tools are not primarily
concentrating on the realization of the Semantic Web itself, although they certainly
benefit from the popularity of the term (or “buzzword”, as many critics say). In-
stead, ontologies are commonly regarded as stand-alone technology, which, although
also important for the Semantic Web, allows for many possible fields of application
already on its own (i.e. without the additional components of the Semantic Web, see
Section 1.2.3). For that reason, this thesis also regards ontologies as being conceptu-
ally independent from the Semantic Web, although existing relationships and possible
influences are also investigated.
As mentioned above, the foundations and principles behind ontologies have been well
known for a while. Roughly speaking, the key idea is to create an abstract model of
a certain “domain of interest” by identifying categories and individuals within that
domain as well as possible relationships. The proper connection of all these classes,
instances, relationships and respective types is then said to be an ontology. This
process however is not very different from what happens in the design phase of most
software development projects and can for instance also be observed in the design of
traditional relational databases, which usually represent classes with tables, properties
with fields etc. The difference to the ontological approach is subtle at first sight:
in an ontology, emphasis is clearly put on the explicit representation of arbitrary
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concepts and relationships which has to occurr in a standardized way using a predefined
ontological vocabulary. All implementation details such as performance considerations
etc. are ignored on the level of ontologies, which are considered to be implementation-
independent from a theoretical point of view.
One result from these considerations is that ontologies are not intended for replacing
existing information containers such as databases, but rather form a separate, su-
perimposed level of information representation that will extend the repertoire of tools
for “knowledge workers”: the considerable standardization efforts taken for ontologies,
while assuring technical interoperability on the encoding and interpretation levels, also
increase interoperability of complete “domain abstractions” on the level of human un-
derstanding. This means that creating an ontology can become a very appealing way
for domain experts to exchange and share information about that domain in a concise,
well-defined way. This is definitely not possible to such an extent for instance using
a database and the corresponding EER diagram, because an ontology is inherently
self-describing due to the standardized ontology vocabulary.
An quick and simple way to determine the maturity of any technology is to look at
the real implementations that are used on a daily basis by actual users. For ontologies
it turns out that so far they are quite successfully implemented whenever hierarchical
and heavily interconnected classification schemas are already present “by nature”.
Examples include (public) library systems [Fit02, NZE05], hierarchical structures in
product catalogs and product components [IM04] or systems related to software design
[Bra04,dG03].
While such implementations can be considered to be prime examples for ontology-
centric applications, the question arises to which extent ontologies can be used as
universal, general-purpose containers for representing information and knowledge. A
large part of this thesis will focus on this question by identifying implementation chal-
lenges that are encountered when developing software systems built around ontologies,
presenting existing solutions and analyzing their applicability with real world systems
in mind.
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1 Ontologies and the Semantic Web

1.1 What is an Ontology?

The word “ontology” is being used in a number of different contexts and interpreted
in many different ways. Hence some clarification about its meaning should be given
first. While Section 1.1.1 gives some indications of what an ontology is, Section 1.1.2
confines frequently misinterpreted terms like “metadata”, “taxonomy” or “thesaurus”.

1.1.1 Definitions

The term “Ontology” can refer to two fundamentally different concepts, as for instance
Webster’s Third New International Dictionary states:

“1. A science or study of being: specifically, a branch of metaphysics
relating to the nature and relations of being; a particular system according
to which problems of the nature of being are investigated; first philosophy.

2. a theory concerning the kinds of entities and specifically the kinds of
abstract entities that are to be admitted to a language system.”

While the first sense refers to a certain branch of philosophy, the second sense is used
in Artificial Intelligence and Knowledge Representation and therefore also throughout
this thesis. A more practical definition for “ontology” in this second sense is given by
Tom Gruber:

“An ontology is an explicit specification of a conceptualization. The term
is borrowed from philosophy, where an Ontology is a systematic account of
Existence. For AI systems, what ‘exists’ is that which can be represented.
When the knowledge of a domain is represented in a declarative formalism,
the set of objects that can be represented is called the universe of discourse.
This set of objects, and the describable relationships among them, are re-
flected in the representational vocabulary with which a knowledge-based
program represents knowledge. Thus, in the context of AI, we can describe
the ontology of a program by defining a set of representational terms. In
such an ontology, definitions associate the names of entities in the uni-
verse of discourse (e.g., classes, relations, functions, or other objects) with
human-readable text describing what the names mean, and formal axioms
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1 Ontologies and the Semantic Web

that constrain the interpretation and well-formed use of these terms. For-
mally, an ontology is the statement of a logical theory.” [Gru95]

The term “conceptualization” is described by Gruber as “an abstract, simplified view
of the world that we wish to represent for some purpose” [Gru95].
The definition given above contains two especially important observations: first, that
an ontology usually covers only a certain domain of interest (or universe of discourse);
second, that an ontology is by definition about shared knowledge. While both aspects
seem to be perfectly acceptable, they turn out to be somewhat problematic with
respect to real world applications, as it will be argued in Chapter 5.

1.1.2 Metadata, Taxonomies, Thesauri and Ontologies

In the last years, ontologies and ontology languages gained much attention from people
all over the world, coming from very different branches of science and economy. This
also entailed the imprecise usage of certain related terms, like “metadata”, “taxon-
omy” or “thesaurus”, which are often used incorrectly as synonyms for ”ontology” or
confused with each other. The most important differences are summarized in the fol-
lowing paragraphs; more detailed information can be found in Lars Marius Garshol’s
report “Metadata? Thesauri? Taxonomies? Topic Maps!” [Gar04a].

Metadata

The term metadata is being used for different purposes and signifies “data about
data”. Metadata can be any kind of data that gives additional information about
another set of data. In the past, it was mainly used for describing schema information
(e.g. structures of a relational databases) or administrative information (e.g. access
rights etc.). A somewhat different approach is to enrich resources (documents, pictures
etc.) with additional information like the name of the author of a document or the
title of a picture, and label this “information about resources” metadata: “going meta
does not mean necessarily going to an upper and more abstract structural level, it
may mean going outside, after, before, besides or beyond, that is: in another semantic
layer, to provide a description that is impossible to achieve from inside the reference
layer” [AdMRV02].
A prominent example of metadata vocabulary1 is Dublin Core [WKLW98] which allows
for adding information like author, title, keywords etc. to a document. Dublin Core
does not specify any syntax, nor does it define what the contents of any of the fields
should be (e.g. there is no indication about how an author’s name should be specified,
as ‘Stefan Raffeiner’, ‘S. Raffeiner’ or ‘Raffeiner, Stefan’ etc.).

1A metadata vocabulary is the vocabulary the metadata itself consists of and must not be confused
with the (controlled) vocabulary that may be used to control the contents of the fields defined by
the metadata vocabulary.
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1.1 What is an Ontology?

Controlled Vocabularies and Taxonomies

A controlled vocabulary is basically a predefined list of terms which can be used to
classify resources, e.g. by using Dublin Core metadata. The purpose of such a list is
to prevent authors from choosing terms that are too broad or too narrow for a specific
domain or simply to avoid misspelling of terms.
A taxonomy is an extension of a controlled vocabulary that additionally arranges terms
in a hierarchy. This makes it easier to find appropriate terms or to identify superor-
dinate categories for terms. Except for the information expressed by the hierarchy
itself, no additional information is added to the vocabulary (e.g. which terms are
synonymous, deprecated etc.).
It should be mentioned that controlled vocabularies and taxonomies are not linked
conceptually to metadata, but of course can be (and often are) used for populating
metadata.

Thesauri

Thesauri are in turn extensions of taxonomies and allow for expressing some rela-
tionships between terms by using a small vocabulary. There are two ISO standards
regarding thesauri, ISO 2788 for monolingual and ISO 5964 for multilingual thesauri.
According to these standards, thesauri may state that a term is a broader2 term (i.e.
it is one level higher in the hierarchy), or that a term is a preferred term for another
term, or that a term is related to another term (but not strictly a synonym).
One of the best known thesauri for the English language is WordNet3 which is de-
scribed by its authors as “lexical reference system whose design is inspired by current
psycholinguistic theories of human lexical memory”. WordNet 2.0 contains a total
of 203,145 word-sense-pairs, and allows to relate terms as synonyms4, hypernyms5,
hyponyms6, holonyms7 and meronyms8.

Ontologies

The term ontology is often used to describe hierarchies that in reality are nothing
more than taxonomies or thesauri; however, there is a substantial difference to these
principles.

2This implies of course the existence of the inverse property “narrower term”, which can be expressed
directly by some thesauri.

3See [Wor] for the homepage of the project.
4A word which has the same meaning as another.
5A word that is more generic than a given word.
6A word that is more specific than a given word.
7A concept that has another concept as a part.
8A concept that is part of another concept. All definitions taken from [GLR].
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1 Ontologies and the Semantic Web

In addition to the definitions given in Section 1.1.1 and with respect to the terms
explained above, one can say that an ontology is “a model for describing the world
that consists of a set of types, properties, and relationship types. [. . . ] There is also
generally an expectation that there be a close resemblance between the real world
and the features of the model in a ontology” [Gar04a]. An ontology is therefore an
extension to a thesaurus in a sense that thesauri, while having an open list of possible
terms to classify, have a fixed vocabulary for expressing relationships between terms
(i.e. “broader/narrower”, “preferred” and “related to”); for ontologies, this limitation
does not apply, as ontologies are capable of defining such relationships on their own.
In fact, defining types of relationships between subjects is not different from defining
types of subjects, which can be considered the main purpose of an ontology.
This observation shifts ontologies to a whole new level of expressiveness: an ontol-
ogy is not only able to contain whatever terms seem appropriate, but is also able to
store relationship types between terms that can be defined by the ontology author (see
Section 2.5 for details). This is definitely not possible with thesauri or taxonomies.
From a technical point of view, a thesaurus could be considered a simple ontology
with three predefined relationship types, but in practice, thesauri are not referred to
as ontologies due to their limited descriptive power. On the other hand, it is easy
to represent thesauri with ontologies: e.g. Kal Ahmed designed a simple Topic Map
ontology which is able to reproduce thesauri [Ahm03].

1.1.3 Representation Formats

While an ontology itself is a specification of a certain domain and therefore an abstract
theory, a number of representation formats that can be used by computers to deal with
ontologies has been defined, mainly in the area of Artificial Intelligence. In this context,
the term “representation format” does not refer to a specific serialization format of
an ontology language, but rather to technologies and standards used to represent
ontologies; these standards may then have one or multiple notations for serialization
purposes (see sections 3.1.2 and 3.2.1).
Most of these formats, however, never really left the AI corner and only a handful
experienced wider adoption. Among these are also the following:

KIF: The Knowledge Interchange Format was created to support the transfer of knowl-
edge between legacy knowledge-management languages. A simplified version of
KIF (SUO-KIF) is used by the Standard Upper Ontology (see also Section 2.4.2).

CGIF: The Conceptual Graph Interchange Format is a normative serialization format
of Conceptual Graphs that were introduced by John Sowa in 1976. “Conceptual
graphs (CGs) are a system of logic based on the existential graphs of Charles
Sanders Peirce and the semantic networks of artificial intelligence. Their purpose
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is to express meaning in a form that is logically precise, humanly readable, and
computationally tractable.” [Sow]

All statements that can be expressed by one of the above mentioned formats also can
be expressed with the abstract syntax of the Common Logic Framework [Com] that
has been submitted as a “new work item” to the ISO/IEC in 2001. The CL framework
is a framework for logic-based languages and supports First-Order Logics (FOL).

Another important format for ontology representation is the proprietary language
CycL which the Cyc Ontology (and its upper ontology subset OpenCyc, see Sec-
tion 2.4.2) are formulated in. As its inventors claim, “CycL is a formal language
whose syntax derives from first-order predicate calculus (the language of formal logic)
and from Lisp. In order to express common sense knowledge, however, it goes far
beyond first order logic” [Cyc02b].

With the rise of the World Wide Web, new representation formats built upon URIs
and SGML/XML were considered. Currently, two different representation formats
have experienced wider adoption: the International Standard ISO 13250 Topic Maps
and the W3C Recommendation Resource Description Framework (RDF) with its on-
tological extension Web Ontology Language (OWL). One consideration behind these
new formats was, among others, to keep them rather simple (compared to fully-fledged
FOL languages) and decidable9 (and therefore computationally efficient).

The Topic Maps standard “has its roots in traditional finding aids such as back-of-
book indexes, glossaries and thesauri” [Pep02b] and is usually not directly linked to
ontologies, mainly due to its lack of an advanced ontological vocabulary. Also, Topic
Map advocates claim that Topic Maps are “ontology-agnostic” [Vat03] and are there-
fore suited for representing any ontological vocabulary. The Topic Map standard is
described in Section 3.1. Although there is no broad discussion about the relationship
between Topic Maps and ontologies, some interesting efforts exist to establish Topic
Maps as ontology containers. These considerations may actually be crowned with
success due to some unique features that Topic Maps offer. Section 3.1.10 contains a
in-depth discussion of the relationship between Topic Maps and ontologies.

RDF with OWL, on the other hand, “has its roots in formal logic and mathematical
graph theory” [Pep02b] and has gained much popularity through the Semantic Web
vision statement. A detailed description of the standard is given in Section 3.2.

9This is however not true without restrictions for the Topic Map standard, and also not for the
fully-fledged version of OWL, OWL Full.
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1.2 The Semantic Web

1.2.1 The Vision of the Semantic Web

When in 2001 Tim Berners-Lee published his vision of the Semantic Web [BLHL01], a
lively discussion about the concept arose and is still ongoing. In this vision, Berners-
Lee describes the principles of what he proposes as the successor of the World Wide
Web as we know it today. The main point of the idea is to make the information on
the WWW understandable for computers by creating “semantic annotations” to web
pages in a computer-readable format, in addition to the information that is presented
to the human visitor of a web page. Berners-Lee describes an advanced example of a
personal agent that automatically schedules tasks for his owner based on information
that it retrieves on its own from the Semantic Web, without requiring almost any
human interaction. Berners-Lee gives even some indications about the technologies
used to make such a future web possible, namely XML, RDF (see Section 3.2) and
“the Semantic Web’s unifying language”, which didn’t exist yet at the time of his
writing, but can be assumed to be the Web Ontology Language standard OWL (see
Section 3.2.3) released in 2004.
The main components of the Semantic Web, as presented by Berners-Lee, can be
described as follows:

• Well-structured annotations on web pages (expressed with XML) extend the
traditional WWW and enable agents to capture certain facts, such as information
about people, their e-mail addresses or their phone numbers.

• These facts can be linked to further information contained in ontologies, which
makes it possible to determine the “meaning” of the information and to deduce
further information by using inference rules and inference engines.

• Concepts stored in ontologies can be identified by using URIs as identifiers; these
URIs are used for electronic resources as well as for physical objects or abstract
concepts. URIs also provide a way to create bridges from one ontology to another
by linking certain concepts that exist in both ontologies.

• Agents [AJ01] are computer programs or scripts that act on behalf of a hu-
man (or organization) and are thus usually considered as electronic “personal
assistants”. The most significant properties of an agent, in contrast to other com-
puter programs, are autonomy of action, ability to communicate, adaptiveness,
learning aptitude and mobility10. Agents are prevalently used for retrieval and

10Mobility denotes and agent’s ability to actively move between different computer systems that are
connected by some kind of network; while mobility is a desirable feature, it is often hard to achieve,
not only due to platform differences, and therefore regarded as non-critical for most applications.
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processing of information, knowledge interchange, and executing tasks. More-
over, agents are suited for processing requests (from other agents) and often
work on tasks in a distributed manner (e.g., by specializing on certain fields of
activity). Within the Semantic Web scenario, agents are expected to carry out
tasks by communicating and negotiating with each other, using ontologies and
inference capabilities to establish a common vocabulary that is likely to change
dynamically as needed.

• Finally, the need for trust and encryption is acknowledged, but not described in
detail.

Since the publication of Berner-Lee’s article, a remarkable number of people from dif-
ferent areas of research has been actively working on technologies that facilitate the
creation of Semantic Web pages in many different ways. The World Wide Web Con-
sortium (W3C) has released standards like RDF, RDFS, OWL etc. that the Semantic
Web is built upon. A great number of usage scenarios and interesting ideas have been
outlined, and a plethora of according software tools exist, not only for designing on-
tologies, but also for managing them and providing access to the information contained
inside them. However, apart from a few so called “Semantic Web frameworks” such
as Jena [Jen] and Sesame [BKvH01] which managed to attract a significant number
of users, most tools must either be considered to be in an experimental stadium, or
were intentionally designed as proof-of-concept only; many focus on technically expe-
rienced users such as software developers or Semantic Web researchers. Real world
applications of Semantic Web technologies are scarce, if not inexistent, which leads
to the conclusion that the Semantic Web initiative has not gained much momentum
among “ordinary” users not directly involved in the research process.
Many critics of the Semantic Web refer to the original vision, which is indeed quite
all-embracing and assumes a large number of components that are not realized yet,
like agents, easy-to-use ontologies with inference engines and well-established trust-
providing systems. But the main purpose of a vision is to draw a scenario that is
hard to reach and yet not unreal, rather than to provide actual solutions, and the
Berners-Lee’s visionary description of the Semantic Web certainly lives up to this end.

1.2.2 Ontologies and the Semantic Web

With regard to the main components of the Semantic Web (as proposed in Berners-
Lee’s vision), ontologies and their representation formats are certainly the most in-
teresting and maybe most critical ones: while creating structured annotations with
RDF or using URIs for subject identification purposes seems a straightforward task
(given some familiarity with the corresponding standards), creating ontologies implies
a number of questions and problems that are not so easy to answer. It is impor-
tant to point out that ontologies definitely form the back-end of the Semantic Web
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and are a key component for its success. As stated earlier, the biggest achievement
of the Semantic Web is the transition of content from computer-presentable data to
computer-understandable information (i.e. from HTML etc. to ontologies). Only by
making the content of web pages available for automated processing by machines, a
certain degree of autonomous action can be achieved.
It is of course a dangerous statement to claim that computers are capable of “under-
standing” information in a way we humans do. Without going into the (philosophical)
discussion on human perception of information, computer scientists often simply judge
a machine’s capability to understand information by its actions taken with respect to
the goals targeted; or, as Gruber states, “an agent ‘knows’ something if it acts as if it
had the information and is acting rationally to achieve its goals” [Gru95].
Computer agents must therefore be capable of recognizing and identifying concepts
that are presented to them within web page annotations or ontologies, categorizing
new concepts and relating them to existing, known ones, as well as deducing fur-
ther knowledge from that categorization as needed to accomplish the respective tasks.
These requirements are essential for any automated, autonomous processing of infor-
mation and go far beyond the simple exchange of data via a certain network protocol
(which is what the WWW is basically about). In this context, ontologies can be seen
as the heart of the Semantic Web by enabling agents to meet those requirements.

1.2.3 Ontologies in the Layered Architecture

The important role of ontologies for the success of the Semantic Web is also visible
in the famous “layered architecture” diagram, as shown in Figure 1.1, which was
presented by Berners-Lee at XML 2000. Although only one layer is titled “Ontology
vocabulary”, ontologies and their representation formats are in fact present in all three
layers “RDF + rdfschema”, “Ontology vocabulary” and “Logic”. Since at the time
of writing there were almost no concrete solutions or even suggestions11 available for
for the two upper layers, “Proof” and “Trust”, ontology-related technologies form the
biggest part of the layered architecture.
In order to make the Semantic Web possible, there must exist feasible solutions for all
layers in the diagram:

Unicode, URI: Unicode [UC,Kuh99] and URIs provide a system-independent way for
encoding and addressing information. They are already used by the World Wide
Web and also form the basis for the Semantic Web, together with network and
transmission protocols like TCP/IP and HTTP.

XML: XML and its related standards provide a way to represent arbitrary information
structures and are the de facto standard for data exchange between applications

11Apart from Berners-Lee’s vague comment at XML 2000 to use Public Key Infrastructures for such
purposes.
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Figure 1.1: The Semantic Web Layered Architecture [BL00].
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[Beh03]. Given their broad support of both tools and users, they are a reasonable
choice for serving as a serialization format for ontologies.

RDF: RDF and RDFS provide a simple way to represent assertions as information
triples that together build a graph of concepts and relations between them (see
Section 3.2 for details). Thus, RDF and RDFS can be used as a format for
representing the information contained in an ontology. The ISO-standard 13250
Topic Maps aims at the same goal, but uses a somewhat different approach and
structures with increased complexity (see Section 3.1 for details).

Ontology: Neither RDF(S) nor Topic Maps provide a way to express certain advanced
properties of concepts or relations (like cardinality constraints, transitivity etc.)
that are needed for semantically qualifying the contents of the ontology, and
that provide the basis for inference and logical rules. Many of these advanced
properties are currently provided by the Web Ontology Language (OWL) which
is built upon RDFS. For Topic Maps, support for inference is partly provided by
several query languages, while formulating constraints may be facilitated by the
upcoming standard TMCL (Topic Map Constraint Language).

Logic: On top of ontologies, inference engines are used to retrieve assertions that
are not directly expressed within the ontology, but can be derived of existing
facts. While usually not part of an ontology, inference engines need the input
from an ontology to retrieve implicit facts needed to make computer agents
behave“intelligently”.

Two more key factors are not addressed by the layered architecture diagram: there
must be a consensus on how to establish identity for arbitrary concepts (physical and
abstract ones as well as electronic resources), and there has to be some kind of imme-
diate benefit for potential ontology authors to create ontologies and share them with
others via the Semantic Web. The latter issue will be discussed in Section 1.3, while
establishing identity is a very complex problem that will be discussed in Chapter 2.

1.3 Ontologies and Knowledge Management

Knowledge and Knowlege Management are one of the most used buzzwords not only
in the information industry, but also in very different research disciplines; they are
also used for many different purposes and with varying connotations. Therefore it is
almost impossible to provide a specific definition of Knowledge Management, as peo-
ple with different backgrounds and interests obviously emphasize different aspects of
“knowledge”. For many organizations, managing, conserving and building up knowl-
edge has become an important or even crucial part of their business activities, and very
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often strong support from computers is needed, but often limited to some elementary
document-organizing principles.
Regarding the terms “data”, “information” and “knowledge”, they are often used
inconsistently and synonymously for each other: but “in order to understand the
crucial issues of ‘Knowledge Management’, however, it is important to distinguish
between them” [SEW01]. An informal definition of data and information is given by
Küng et al.:

“Data consists of facts and measurements that are represented through
symbols for the purpose of processing and storage (usually highly struc-
tured, e.g., fields in relational database tables) without specification of
the possible use. At this level, data is relatively meaningless to the user.
When data is placed within a meaningful context, it becomes information.
Information can therefore be regarded as data put in a specific problem
context.” [KLS+01]

“Knowledge” is generally interpreted as combination of information “with experience,
context, interpretation and reflections and can therefore be regarded as a high-value
form of information that is ready to apply to decisions and actions and may be of sev-
eral types: Knowledge about something is referred to as declarative knowledge, proce-
dural knowledge is knowledge of how something is performed, and knowledge dealing
with why something occurs is called causal (or analytical) knowledge” [SEW01].
As explained earlier in Section 1.1.2, ontologies are a way to represent and store
knowledge about a certain domain in a declarative manner (i.e., facts are directly
represented by symbols and not encoded as procedural programs [Tau02]). This is
the reason for considering ontologies (and related technologies) as central parts of
advanced knowledge management efforts, as they are made by many organizations.
The key advantage of an ontology is that the facts it contains can both be viewed
and used by humans through an appropriate interface (which is of course also true for
any electronic document, for instance) and at the same time utilized by computers
(or maybe agents) without any human interaction at all. By opening organizational
knowledge to existing and future computer agents, the initial investments will surely
pay back at some point in time. But since ontologies can equally well be used directly
by humans, an immediate benefit is additionally achieved.
In order to denote ontologies as enabling technology for computer-supported knowledge
management, however, some aspects must not be left out. In addition to representing
hierarchies of concepts and relationships between them, a number of additional re-
quirements must be met by ontologies and their encapsulating ontology management
systems: presenting an easily navigable structure, providing links to actual resources
and versioning of information are only a few of them. Additionally, ontologies also pro-
vide a good solution for dealing with changing knowledge (“knowledge maintenance”)
because the traditional distinction between the schema layer and the actual content
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(e.g., of a relational database) is almost inexistent (see Section 2.5). For ontologies,
changing the schema (the class hierarchy) or parts thereof is as easy as changing the
actual data.
Finally, ontologies are also a promising way to gain benefit from inference engines: by
using an inference engine, implicit facts contained in the ontology can be retrieved.
Without that implicit knowledge, an ontology can still be regarded as a useful, uni-
versal datastructure for storing facts, but it will be almost useless for agents that need
actual “knowledge” as defined earlier. This is because some basic “intelligence” is
expected from an agent which can only be obtained by also providing implicit facts
in addition to the explicit facts that are present in the ontology (see also Section 4.3).
A detailed description of the two prevailing standards for ontology representation,
RDF/OWL and Topic Maps, and their respective capabilities is presented in Chap-
ter 3.
Summarized, it can be said that ontologies are well suited for knowledge management
purposes because of the following facts:

• They are built around concepts and represent “things” and relationships between
them; this is basically what “knowledge” is built upon.

• They can be used by both humans and computer agents, which allows for great
future evolution while providing immediate benefit.

• They can be used to provide input for important knowledge management features
such as navigation, links to external resources etc.

• They support evolution and change of knowledge through their flexible organi-
zation of concepts in a variable “network” rather than using fixed schemas.

• They may be used by inference engines to retrieve implicit knowledge that is
vital especially for computer agents.

This leads to the assumption that ontologies will probably be recognized as effective
tools for supporting knowledge management within organizations even if there is little
presence of the Semantic Web by now: ontologies are definitly promising tools on
their own, even without the additional benefit of the Semantic Web. Indeed, since the
number of ontology representation standards is very limited, interoperability between
existing ontologies will not be hard to achieve. This can result in a strong tendency
towards connecting ontologies, which is basically what the Semantic Web is about. Of
course, some serious issues like scalability and security have to be taken into account
if distributed ontologies are expected to grow as fast as the World Wide Web.
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The most important aspect of ontologies is certainly their ability to store facts about
arbitrary concepts, which makes them promising tools for knowledge management.
With respect to this functionality, a few important questions arise:

1. What is exactly a “concept”? How do terms like “subject” and “resource” relate
to them?

2. How are concepts represented within an ontology? How are concepts linked to
their corresponding counterparts in an ontology, i.e. how is identity established
for concepts in an ontology?

3. How can different ontologies refer to the same concept and yet assure some level
of interoperability?

4. How are concepts organized in an ontology?

Answers to these questions will be given in the following sections.

2.1 Concepts, Subjects, Resources

Ontology representations are so called “identity-based technologies” [Gar03a] because
ontologies focus on “things”, also called “concepts” or “subjects of discourse”. Topic
Maps always refer to concepts as “subjects”; a formal definition is given by the ISO
13250 standard:

“In the most generic sense, a ‘subject’ is any thing whatsoever, regardless
of whether it exists or has any other specific characteristics, about which
anything whatsoever may be asserted by any means whatsoever.” [BBN02]

Or, as Steve Pepper states: “in short, a subject can be any subject of discourse that
an author wishes to identify, name, represent, or otherwise make assertions about”
[Pep03].
Likewise, RDF uses the term “resource” defined in RFC 2396 to refer to concepts:

“A resource can be anything that has identity. [. . . ] Not all resources are
network “retrievable”; e.g., human beings, corporations, and bound books
in a library can also be considered resources.” [BLFIM98]
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This definition is somewhat problematic, as the concept of identity is not defined
anywhere in the standard. It is important to note that RDF “resources” are definitely
not limited to electronic resources, but may also refer to any other existing or non-
existing concept: “However, by generalizing the concept of a ‘Web resource’, RDF can
also be used to represent information about things that can be identified on the Web,
even when they cannot be directly retrieved on the Web” [RPR04].
The concept of identity is quite fuzzy and the discussion about it has a long philosoph-
ical tradition. While identity is generally assumed to be the sum of all characteristics
of a certain subject, this approach is difficult to handle for information technologies,
because it has to be recognized that those characteristics may vary over time, without
the identity getting lost. Some people even claim that there is no concept of “identity”
at all, because even if some consensus about a certain subject of discourse is achieved,
the communicating parties may still refer to slightly different concepts or have different
views on it.
Establishing at least some kind of identity is the first step if two ore more parties
wish to communicate about a subject: every party must know what the others are
talking about, otherwise the communication makes no sense. Taking conversation
among humans as the probably most prominent example, identity is usually established
through “context, experience, and secondary information that help to round out the
concepts that are being shared” [Deg04]. If the context is unclear to a participant of
the conversation, further explanations or descriptions are needed until it is obvious
that everybody is talking about the same “thing”, or subject.
For machine communication, establishing identity is equally important. In contrast
to humans, computers always need some kind of unique identifier or address, for a
certain subject. Only by comparing such identifiers, the identity of a subject can be
guaranteed. Examples for identifiers are paths and filenames of files on a hard disk,
unique keys in database applications, or URLs of web pages1. For such resources,
establishing identity is therefore straightforward2 and can be achieved by comparing
their respective identifiers: if any two resources have the same identifier, they are
assumed to be identical. Establishing identity for subjects that are not electronic
resources is more complicated, as explained in the next section.

1It is important to differentiate between the concept of a certain web page as a whole and the contents
of a web page: e.g., someone might add the concept “Homepage of Apple Computer, Inc.” to his
ontology, and then assert things about this concept (e.g., that he last visited the site on a certain
date). Opposed to that, the actual contents of the page, such as text, images etc., are not inherently
tied to that concept – they appear if the page is viewed in a browser, but apart from that, there
is no conceptual link between the homepage itself and its contents. URLs as unique identifiers
(such as http://www.apple.com) can only be used for concepts, since contents must be considered
dynamic and are likely to change.

2Actually, there is a number of problems with using URLs as identifiers for concepts; see Section
2.3.3 for details.
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2.2 Representation and Identification of Arbitrary Subjects

2.2.1 Proxies as Binding Points for Subjects

The key purpose of an ontology is to make it possible to store facts about subjects.
This is achieved by providing “binding points from which everything that is known
about a given subject can be reached” [Pep03]. Binding points are therefore electronic
placeholders, or proxies, for subjects. This is not only true for subjects that do not
have an electronic locator by nature, such as objects of the real world or abstract
concepts, but also for electronic resources that already have one or more locators. The
advantage of this non-distinction between real world subjects and electronic resources
is that they can be treated exactly the same way by an application or potential user.
For Topic Maps, the proxies for subjects are called “topics”; RDF uses the term “node”
(as in graph theory) to refer to a subject (see sections 3.1.3 and 3.2.1, respectively).
Since the proxies for subjects in an ontology are electronic resources themselves, they
are easily identifyable through some sort of locator, such as a numeric id, or URI (as
defined in RFC 2396 [BLFIM98]) etc. Any assertion that is to be expressed by the
ontology can use that identifier to refer to the proxy, and hence to the represented
subject. This however says nothing about how the relationship between a subject and
its proxies3 is established; RDF and Topic Maps take somewhat different approaches
here.

2.2.2 Identification with RDF

As for RDF, each “node” uses exactly one address (URI) to refer to a subject. If
the subject is an electronic resource that can be retrieved through an URI (such as a
webpage), that URI is used. If the subject is not an electronic resource, an arbitrary
URI can be used to refer to that subject, although it is highly recommended to use
an existing public subject identifier (see Section 2.3) if there exists one. In either case,
two subjects are considered identical if their URIs are the same (i.e. if two URIs are
identical, they refer to the same resource).

2.2.3 Identification with Topic Maps

As for Topic Maps, the relationship between a subject and its proxy can be created
in two different ways, depending on the nature of the subject to be represented. As
long as a concept in an ontology refers to an electronic resource, the identification
method is the same as with RDF: the (XML-based) Topic Map notation XTM uses
the URI of that resource, which is called subject address in this case, since the subject

3Any subject may have multiple different proxies, obviously, since even if only one proxy per ontology
is allowed for a subject, there usually exist multiple ontologies that refer to the same subject of
the real world.
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is addressed directly through its locator. By comparing any two URIs, it can again
be determined whether they refer to the same subject. The Topic Map Data Model
proposal defines the term “information resource” for Topic Maps as follows:

“An information resource is a resource that can be represented as a se-
quence of bytes, and thus could potentially be retrieved over a network.”
[GM05]

For subjects that can not directly be addressed by a computer, a subject indicator is
needed to establish identity:

“A subject indicator is a resource which provides some kind of compelling
and unambiguous indication of identity of a subject to humans. [. . . ] A
subject indicator is different from the subject that it indicates.” [Pep03]

The subject indicator itself, being an electronic resource, is computer addressable by
definition; its address is comparable to the subject address (i.e. they are both URIs),
but named subject identifier. The difference between a subject address and a subject
identifier is that the subject address directly references the subject to be represented
by the topic, whereas the subject indicator references a resource (the subject indicator)
which gives an indication about the identity of the subject. The subject indicator is
usually a resource whose content gives a human interpretable indication about, or
description of, the subject that is to be represented. Examples of subject addresses
and subject indicators can be found in Section 3.1.3.

2.3 Published Subjects

The concept of Published Subjects was introduced by the Topic Map community for
interoperability between Topic Maps, but it is equally well suited to establish interoper-
ability between Topic Maps and RDF/OWL. The specification for Published Subjects
was created by the OASIS Topic Maps Published Subjects Technical Committee and
gives the following indication about the purpose of Published Subjects:

“Published Subjects [. . . ] provide an open, scaleable, URI-based method of
identifying subjects of discourse. They cater for the needs of both humans
and applications, and they provide mechanisms for ensuring confidence and
trust on the part of users. Published Subjects are therefore expected to
be of particular interest to publishers and users of ontologies, taxonomies,
classifications, thesauri, registries, catalogues, and directories, and for ap-
plications (including agents) that capture, collate or aggregate information
and knowledge.” [Pep03]

Esstblishing Published Subjects is considered to be an open and distributed process,
as described in the next sections.
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2.3.1 Creating Published Subjects

A subject indicator, as described in Section 3.1.3, is basically an electronic resource;
every resource that is appropriate to establish the subject’s identity if conceived by
humans may be used as subject indicator. However, since the author of a resource
does not necessarily know that the resource is used as a subject indicator, it must
usually be taken into account that resources are either not stable (e.g. disappearing
web pages) or unambiguous enough to be used as long-lasting subject indicators for
subjects. To overcome this problem, a publisher deliberately publishes subject indica-
tors for any subjects he may feel responsible or qualified. By doing so, these subjects
become Published Subjects, their subject indicators become Published Subject Indi-
cators (PSIs) and their addresses, the subject identifiers, become Published Subject
Identifiers (PSIDs). The publisher assures the stability and unambiguousness of these
Published Subject Indicators and Identifiers.
In order to enable the publishing of subjects on a large scale and in a distributed
environment, there are no criteria a publisher has to meet: anybody can act as a
publisher for whatever subjects he wants to. It is up to the author of an ontology
to decide which publishers and published subjects he trusts. Typically, a provider
will not publish only one subject, but a whole collection of subjects all belonging
to a certain domain; an ontology author may look for adequate published subjects
provided by some reliable publisher, and if no appropriate published subjects exist,
he may publish the subjects himself. Whenever a better provider for a subject can
be found, it is easy to create a mapping from the self-published subjects indicators to
others.
It should also be mentioned that “published” does not necessarily mean “public”:
published subject can also exist within an intranet or a single computer with no public
access.
Several published subjects are already defined e.g. within the Topic Map standard
itself (the subjects “topic”, “association” etc.) or have been defined by Technical
Committees at OASIS.

2.3.2 OASIS Vertical Domain Applications

In August 2001, the Organization for the Advancement of Structured Information
Standards (OASIS) decided to form three new Technical Committees (TCs) in order
to focus on vertical domain applications of the Topic Map paradigm:

Topic Maps Published Subjects TC to “promote the use of Published Subjects by
specifying recommendations, requirements and best practices, for their defini-
tion, management and application.”

Topic Maps Published Subjects for Geography and Languages TC to “advance
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the XML Topic Maps specification for navigating information resources by
defining published subjects for languages, countries, and regions.”

Topic Maps Vocabulary for XML Standards and Technologies TC to “define a
Topic Maps Published Subjects vocabulary for the domain of XML standards
and technologies, which will provide a reference set of topics, topic types, and
association types that will enable common access layers and thus improved
findability for all types of information relating to XML, related standards, and
the XML community.”4

2.3.3 Subject Indicators for RDF

The main difference between Topic Maps and RDF with respect to establishing iden-
tity is how they relate to a subject that is not a network-retrievable resource: Topic
Maps carefully distinguish whether a referenced resource is the subject itself (e.g. a
topic representing a web page by means of a subject address), or whether the refer-
enced resource is only a indicator for a subject with no inherent address (e.g. a topic
representing a person by means of a subject indicator).
In RDF, there is simply no such distinction: “In RDF, the distinction between the RDF
model and the world it represents is not given much emphasis, whereas in topic maps
this distinction permeates the whole model” [Gar03a]. The absence of this distinction
is actually a very fundamental limitation; in RDF, it is not clear if a RDF resource
with URI

http://www.raffeiner.at/about_me.html

should represent a natural person or the web page that URI resolves to. Steve Pepper
and Sylvia Schwab outline the problem in their paper “Curing the Web’s Identity
Crisis”:

“This indiscrimate use of URIs to identify subjects both directly and indi-
rectly can be traced back to a lack of clarity regarding the very notion of
“resource” in the Web community.

Historically, in the model originally envisioned by Tim Berners-Lee, re-
sources were simply documents (information resources) that had locators.
Those locators turned out to be very useful as identifiers for documents
- for example, when attaching metadata to them. But as the Web ma-
tured a need arose to be able to make assertions about things that were
not documents (e.g., people and organizations) and the same practice of
using URLs as identifiers was simply extended without much thought for

4All descriptions taken from http://www.oasis-open.org.
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the consequences. This in turn led to the more general notion of ‘resource’
as defined in RFC 2396 [. . . ].

The term ‘resource’ obscures the fact that some of the things we want to
identify have locations and others do not. Using a ‘locator’ for something
that has a location makes sense; using it for something that does not is
asking for trouble.” [PS03]

If there is no clarity about what an URI resolves to, the whole concept of identity-based
technologies is almost useless because

• ontologies will not be reusable as they will be unable to unambigously identify
the subjects of discourse;

• they won’t certainly be able to interoperate, since there is no way of telling that
two proxies refer to the same subject;

• therefore, it will be impossible for humans and agents to aggregate information
and knowledge;

• this has the effect that ontologies will never scale beyond a closely controlled
environment, which is directly opposed to the vision of the Semantic Web.

The solution for the problem is to extend the RDF/OWL standards to recognize
the distinction between addressable and non-addressable subjects. Some people have
supposed to use a special URI syntax (e.g. by using the # sign) to identify one of the
two, which would eliminate the need for changing the actual RDF standard. Others
argue that this “quick and dirty solution” only shifts the problem from resources to
resource fragments (which the # sign is intended for). Whatever proposal is adopted, it
will certainly be necessary to advance the development and usage of the Semantic Web;
in fact, although the discussion may seem rather academic, one of the first questions
of an ontology author is certainly which URIs he or she should use for identifying
“things”.

2.4 Classes and Instances in Ontologies

2.4.1 Subclassing and Instancing

Any subject of discourse can be considered to be an instance of a more general concept,
or class, as shown in Figure 2.1. For example, Vienna is a concrete instance of the
abstract concept “city” (as it is used in the statement “a city is a large and densely
populated urban area” – this is not a statement about any existing instance of a city,
but a statement about cities in general, i.e. the class of cities).
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City
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instances of

Figure 2.1: The class “city” and some instances.

Classes, on the other hand, can be instances or subclasses of other classes. For instance,
the class “city“ could be treated as a subclass of “settlement” and at the same time
as an instance of “geographic concept”. There is a substantial difference between the
relationships “instance of” and “subclass of”: regarding the example given above, it is
correct to say “Vienna is a city” and “Vienna is a settlement”; it is however wrong to
say “Vienna is a geographic concept”5. The subclass relationship is transitive, which
means that if A is a subclass of B and B is a subclass of C, then also A is subclass of
C. This brings with it that all instances of a class are also instances of all superclasses
of that class. Figure 2.2 illustrates these relationships. While having subjects that are
both classes and instances is perfectly correct from a theoretical point of view, it adds
significant complexity to ontologies with respect to their computational complexity.
This somewhat academic approach to classes can be summarized as follows:

1. Any subject can be the instance of one ore more general concepts, or classes.

2. Classes can be instances or subclasses of other classes, which results in a tree of
classes, the class hierarchy.

3. Transitivity of the subclass relationship propagates all properties of a superclass
to its subclasses.

Class hierarchies within ontologies are created with the purpose of classifying and or-
ganizing instances of subjects. However, ontologies are capable not only of creating
trees and heriarchies of classes, but also of interconnceting the various classes and
instances through other, arbitrary relationships, like “is part of” etc. The more rela-
tionships exist between the concepts in an ontology, the greater the potential of the
ontology with respect to its expressiveness can be assumed.

5A similar example can be found in Rath’s Topic Map Handbook [Rat03].

22



2.4 Classes and Instances in Ontologies
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Figure 2.2: The concept “Vienna” as class and instance.

Sometimes, ontologies are regarded as collections of classes only, i.e. not containing
any actual instances. As such, they are used as some kind of indices or organizing
principles for “external” datasources, like traditional databases, or semi-structured
resources like electronic documents etc. However, the factual non-existence of a clear
distinction between “classes” and “instances” must be considered problematic for such
ontologies and prohibits a universally valid definition of ontologies as “containers for
classes”. Throughout this thesis, ontologies are therefore assumed to contain both
classes and instances (whenever that distinction applies).

2.4.2 Upper Ontologies

Since designing and populating ontologies is a very labor-intensive and time-consuming
task, ontologies usually cover only a certain domain of interest in a more detailed way.
It is however difficult to create an ontology from the scratch, since many concepts
and rules from our everyday life are of course not present by default in an empty
ontology. This makes it very difficult for agents to get reasonable results from an
ontology, especially if an inference engine is to be used, because an empty ontology
is like a “new universe” where no rules exist; by default, an inference engine can not
distinguish between e.g. animate and inanimate subjects, nor between abstract and
concrete concepts etc. Without this basic knowledge, however, any other assertions
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Figure 2.3: Upper, middle and lower ontology partitionings [MNV02].

lack proper foundations.
As a result from these observations, ontologies are usually partitioned into upper,
middle and lower ontologies. Upper ontologies only contain approximatley a dozen
concepts, like “(in)tangible subject”, “space”, “time”, “event”, “individual”, “set” etc.
These concepts are considered to be domain independent and are therefore valid for
almost any possible ontology. Middle ontologies contain a few hundred concepts that
are mostly domain independent, but may not be required by a certain ontology; they
include concepts like materials, agents, weather conditions, plants and animals etc.
Lower ontologies finally are domain specific ontologies that only conver their respective
area of interest, like a certain branch of science. Typically, these domain specific
ontologies contain many thousands of concepts and relations between them [MNV02].
This partitioning of ontologies is shown in Figure 2.3.
The distinction between upper, middle and lower ontologies however is not as precise as
depicted above. In many papers, ontologies are considered “upper” ontologies if they
contain knowledge that represents human common knowledge up to a varying degree
of detail. Most so-called “upper ontologies” are therefore actually some combination
of upper and middle ontologies with respect to the concepts they contain:

“Upper-level ontologies capture mostly concepts that are basic for human
understanding of the world. They are grounded in [. . . ] the common sense
that makes it hard to formalize a strict definition for them. They represent
the so called prototypical knowledge.” [KSD01]
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Since upper and middle ontologies are “limited to concepts that are meta, generic,
abstract and philosophical, and therefore are general enough to address (at a high
level) a broad range of domain areas” [SUO], they necessarily contain almost the same
concepts or at least concepts that are closely related to each other. This lead to
the creation of generally available upper ontologies that can be used by any ontology
author to build his ontology on top of. Currently, the best known upper ontologies
are Cycorp’s OpenCyc Ontology and the Suggested Upper Merged Ontology (SUMO),
which both are proposed starter documents for the creation of a free, public standard
called “Standard Upper Ontology”, or SUO.
Of course, the creation of upper ontologies also poses some serious, mostly philosoph-
ical questions: there is for instance an endless debate on whether physical objects
“are completely present at any moment of their existence” or should be regarded not
different from processes (in time)6. Such discussions can potentially lead to the cre-
ation of different upper ontologies that are incompatible to each other due to their
fundamentally differing views of the universe. A possible workaround has been pro-
posed by Chris Menzel, Associate Professor of Philosophy at Texas A&M University
and involved with the creation of the SUMO, which is to bundle up the various repre-
sentational choices in consistent and independent packages and create a lattice from
these:

“The top node of this lattice would be the SUMO, and each level below the
top node would represent inconsistent formal theories that could be used
in conjunction with the SUMO. Thus, each path through the lattice from
the top node to a lowerlevel node would result in a formal theory that is
self-consistent, but inconsistent with various other representational choices
provided by the ontological lattice.” [NP01]

The philosophical problems mentioned above are also recognized by Atanas K. Kiyakov
et al.:

“The existence of several upper-level ontologies that disagree on the most
basic concepts about the entities in the world demonstrates a significant
philosophical diversity. [. . . ] Which properties of the entities in the world
are the most basic ones? What follows from different choices on this level?
On which level of generality the differences disappear if they disappear at
all?” [KSD01]

Similarly, Missikoff et al. also point out the conceptual difficulties which are encoun-
tered upon creation of an upper ontology:

6The respective notions are also known as “3D” (the “endurantist”) or “4D” (the “perdurantist”)
views.
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“Creating ontologies is a difficult process that involves specialists from
several fields. Philosophical ontologists and Artificial Intelligence logicist
are usually involved in the task of defining the basic kinds and structures
of concepts [. . . ] that are applicable in every possible domain. The is-
sue of identifying these very few ‘basic’ principles [. . . ] is not a purely
philosophical one, since there is a clear practical need of a model which
has as much generality as possible, to ensure reusability across different
domains.” [MNV02]

Creating an upper ontology is therefore far from being a straigh-forward task, which
makes it difficult for a single person or even for a specific branch of science to create
an upper ontology that is actually useful for anybody else.

“Research in computer science, artificial intelligence, philosophy, library
science, and linguistics are helping to meet the need for a comprehensive,
formal ontology. All of these fields have experience with creating stan-
dard descriptions and terminology for the entities and events that make
up our world. However, none of these fields has been able, on its own,
to construct a standard, upper-level ontology. Computer scientists and
philosophers lack consensus in their communities for creating the very
large, wide-coverage ontologies that are needed, although they have the
necessary formal languages to do so. Librarians and linguists have the
charter to create large ontologies, but those ontologies have typically lacked
the formal definitions needed for reasoning and decision-making.” [NP01]

The following sections will shortly introduce the two largest upper ontologies available
today, OpenCyc and SUMO.

Cyc and OpenCyc Ontologies

In 1984 the Stanford professor Douglas Lenat startet the Cyc project, named after
the word “encyclopedia”, with the goal to establish the world’s first knowledge base
for human common sense. In 1994, Cycorp, Inc. was founded to further drive the
initial objective. The official vision of Cycorp is “to create the world’s first true arti-
ficial intelligence, having both common sense and the ability to reason with it” [Cyc].
At present, the Cyc knowledge base consists of a very large knowledge base contain-
ing about 100,000 terms (see Figure 2.4 for an exemplary selection) and 12,000,000
assertions that are organized in thousands locally-consistent contexts, the so called
“microtheories”.
In addition to the knowledge base, the Cyc system contains a natural language pro-
cessing module (NLP) for the English language and, first of all, a powerful inference
engine that is optimized in many ways to deliver fast answers to user queries. Accord-
ing to Cyc, the inference engine “performs general logical deduction (including modus
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Figure 2.4: Incomplete upper part of the Cyc Knowledge Base [Cyc].

ponens, modus tolens, and universal and existential quantification), with AI’s well-
known named inference mechanisms (inheritance, automatic classification, etc.) as
special cases.” It also uses a set of heuristics to search over proof-space, which is nec-
essary for searching a knowledge base that large: “many approaches commonly taken
by other inference engines (such as frame-based expert system shells, RETE match,
Prolog, etc.) just don’t scale up to KBs of this size”. The inference engine does not
rely on the “closed world assumption” commonly found in traditional database sys-
tems, i.e. that the non-existence of an assertion automatically infers the existence of
the corresponding negation. It should also be mentioned that the Cyc inference engine
supports “default-reasoning”, see Section 5.4.
All facts in the knowledge base are expressed in a language named “CycL”, which is
“essentially an augmentation of first-order predicate calculus (FOPC), with extensions
to handle equality, default reasoning, skolemization, and some second-order features.”7

The CycL language is rather easy to learn and due to its extensions of first-order logic
closer to the expressiveness of human language than other logic-based languages. One
drawback is the consequence that there exist assertions that are undecidable, which
may be problematic with respect to computational efficiency.
One important feature of Cyc’s knowledge base is that all assertions are organized in
contexts, or microtheories. These microtheories each contain a number of assertions
that are based on a shared set of assumptions, a common topic and a shared source.
The truth of the assertions depends on the assumptions in the microtheory. Microthe-
ories are organized in a polyhierarchy with the effect that assertions, that are true in

7Taken from http://www.cyc.com/cyc/technology/whatiscyc_dir/howdoescycreason.

27



2 Concepts and Identity

one microtheory, are also true in any microtheory below in the hierarchy. Assertions
within microtheories that are not related in such a way may be contradictory, which for
instance allows for formulating diverging views upon the truth of certain facts. “The
contexts are first-class terms in the KB; they appear in assertions, they are organized
into an ontology, and so on. An mt’s assumptions are themselves Cyc assertions about
time, space, granularity, topic, etc.” [RL02].
However, the Cyc ontology is a proprietary development of Cycorp and therefore in
its entirety not publicly available. In 1997, Cycorp released the Cyc Upper Ontology,
a text file containing the most general concepts defined in the ontology so far, but
without any rules and microtheories. In 2002, Cycorp released an extract of its on-
tology called OpenCyc to the public (under the GNU Lesser General Public License)
containing most upper level concepts and some mid-level ones. Release 1.0 of OpenCyc
will contain about 6,000 concepts and 60,000 assertions. Together with the OpenCyc
knowledge base, Cycorp also offers tools for querying, inferencing and adding facts to
the knowledge base.

Suggested Upper Merged Ontology

The Suggested Upper Merged Ontology, or SUMO, “is an upper level ontology that
has been proposed as a starter document for The Standard Upper Ontology Working
Group, an IEEE-sanctioned working group of collaborators from the fields of engineer-
ing, philosophy, and information science. The SUMO provides definitions for general-
purpose terms and acts as a foundation for more specific domain ontologies” [NP01].
In the source file8 for the SUMO it is stated that the SUMO “was developed within the
SUO Working Group by merging the SUO “candidate content” sources and refining
and extending this content on the basis of various knowledge engineering projects and
input from the SUO Working Group”:

“The SUMO incorporates elements of John Sowa’s upper ontology (as
described at http://www.bestweb.net/~sowa/ontology/toplevel.htm
and in Chapter 2 of his book “Knowledge Representation”, Brooks/Cole,
2000), Russell and Norvig’s ontology, PSL (Process Specification Lan-
guage), Casati and Varzi’s theory of holes, Allen’s temporal axioms, the
relatively noncontroversial elements of Smith’s and Guarino’s respective
mereotopologies, the KIF9 formalization of the CPR (Core Plan Represen-
tation), the ontologies available on the Ontolingua server maintained by
Stanford University’s Knowledge Systems Laboratory, the ontologies de-
veloped by ITBM-CNR, some of the spatial relations from an unpublished

8Version 1.6 can be downloaded from http://einstein.teknowledge.com:8080/download/

register.jsp?fileType=.zip&fileName=Sumo.zip after registration
9Knowledge Interchange Format, see Section 1.1.3.
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Figure 2.5: The SUMO top level ontology [NP01].

paper by Iris Tommelein and Anil Gupta entitled “Conceptual Structures
for Spatial Reasoning”, and a “Structural Ontology” proposed by David
Whitten and substantially revised and extended by Chris Menzel.”

The SUMO is copyrighted by Teknowledge and released under the GNU General Public
License. Figure 2.5 shows the top level concepts of the Suggested Upper Merged
Ontology.
The purposes of the SUO project include automated reasoning to support knowledge-
based reasoning applications, interoperability between applications (by establishing
a neutral standard that another ontology can be mapped to) and providing a basis
for e-commerce applications and educational applications as well as natural language
understanding tasks.
A somewhat simplified version of KIF called SUO-KIF [KIF] is used as serialization
format for the SUMO ontology. Similar to CycL, KIF has declarative semantics and
is logically comprehensive (it allows the expression of arbitrary sentences in the first-
order predicate calculus).
With respect to the number of concepts represented, the SUMO is somewhat smaller
than OpenCyc and focuses more on real “upper level” concepts than on concepts that
are supposed to be in the middle level of an ontology. Currently, SUMO contains about
1,000 concepts, 4,000 axioms and about 800 rules. While recognizing the impressive
size of the Cyc ontology and the amount of work put into its creation, the people
involved with the development of the SUMO also enumerate some limitations of the
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Cyc ontology and respective advantages of the SUMO:

• only a small part of the entire Cyc ontology (namely the OpenCyc ontology) has
been released to the public;

• Cycorp retains proprietary rights on its ontology, which is directly opposed to a
potential use as public standard, whereas the SUMO “is the working paper of
an IEEE-sponsored open-source standards effort”10;

• the contents of the Cyc ontology have not been reviewed extensively by indepen-
dent experts, while the content of the SUMO was not only created by a “diverse
group of collaborators from the fields of engineering, philosophy, and informa-
tion science“, but also heavily influenced by an open discussion on the SUMO
mailing list;

• the SUMO “should be simpler to use than Cyc” as “any distinctions of strictly
philosophical interest have been removed” [NP01].

For a critical discussion of the usefulness of (standard) ontologies, see Section 5.3.

2.5 Ontologies and Schemata

Since the early days of computer-supported, automated data processing, relational
database management systems (RDBMS) have been used to organize and store data
of various kinds. Over the years, many optimizations such as indices etc. as well as
“secondary functionality” (e.g. security mechanisms) were added to many systems, and
RDBMS evolved into highly efficient backend storage facilities used by innumerable
applications. The query and data manipulation language SQL also contributed to the
popularity of relational databases. With the advent of object-oriented programming
languages, the relational design of databases was questioned and alternatives were
developed, but were not adopted widely, mainly due to their inferior performance
figures compared with the “old-style” relational databases.
While relational databases proved to be well-suited for a wide range of different appli-
cation scenarios, their biggest strength turned out to be also their greatest weakness:
the fixed schema of a database allows for efficient organization of data, but is inap-
propriate whenever changes to it are expected to occurr often. This was especially
recognized as hindrance for knowledge management systems, as they often require a
certain flexibility of data structures. Therefore, different organization methods for

10Actually, both the OpenCyc ontology and the SUMO are starter documents for the SUO; however,
the advocates of the SUMO seem to have greater influence on (and are maybe more interested in)
the SUO working group than the Cyc creators do.
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data are needed for such systems, and ontologies offer interesting capabilities in this
area.
One of the big advantages of ontologies over traditional (object-)relational databases
is indeed their property to actively support the evolution and necessary change of
knowledge, i.e. knowledge maintenance. This is mainly due to the fact that ontologies
do not have to obey a fixed schema11, as database systems do; this will be explained
in the next paragraphs.
Traditionally, database systems use tables and similar structures, e.g. in the case of
object-oriented databases, to specify a schema for the actual data to be filled in. The
layout of the tables is deferred from the concepts that are to be stored within them.
While the data (i.e. instances of the concepts) can easily be added, modified, deleted
and of course queried, this generally not applies to the information contained implicitly
in the definition of the schema. Although it is possible to retrieve information on the
layout of the tables (often called metadata) e.g. by querying a special “master table”,
changes to the schema, while definitely possible, are problematic in a number of ways.
Since the information contained in the schema is only of implicit nature, it is usually
also transferred implicitly to the application that connects to the database at the time
of development. This means that during the creation of the application, information
about the schema (and hence the layout of tables and other objects in the database) is
encoded within SQL-statements, APIs and even elements of the graphical user interface
(GUI). Any changes to the schema must therefore be reflected by every application
that accesses the data described by that schema, which is the reason for the static
layout of databases: generally, a database schema is created at the very beginning of
the software development cycle, possibly modified later on, but surely not changed
any more after the release of the application when production data is stored by the
customer.
A fixed schema has the undeniable advantage that it allows the data to be organized
very efficiently, for instance through the creation of supporting structures like indices,
compiled stored procedures etc. Also, programmatic data structures (e.g. Java classes
etc.) and even many elements of the user interface often resemble the underlying
structure of the database schema. But the advantage of efficient organization comes
at the cost of flexibility: in fact, the need for frequent structural changes is completely
ignored, with the term “frequent” meaning “occurring too often to adapt applica-
tion code manually”. This however is exactly what knowledge management (and also
novel approaches such as the view of corporations as “adaptive enterprises”) is about:
only by constantly adding and modifying concepts in the knowledge base, effective
knowledge maintenance takes place; a fixed schema is rather inacceptable for a on-

11The existence of “schema languages” like RDFS does not contradict the fact that ontological schemas
are not fixed; rather, schema languages allow for creating ontologies that represent a certain schema
but are not subject to its constraints in their entirety. An explanation of RDFS can be found in
Section 3.2.2.

31



2 Concepts and Identity

tological knowledge base. The implications of these observation are far-reaching; for
instance, the traditional roles of the schema designer (i.e. the database designer) and
the application user become indistinguishable or at least overlap.
One could of course say that the classes in an ontology effectively make up some kind
of flexible schema, like a “virtual layer”12 side by side with the set of instances of
classes (which could be seen as a second “layer”, accordingly). This is also what Hans
Holger Rath refers to by stating that in order to get a Topic Map application up and
running, it is essential to “define the schema – what kinds of subject will be covered
and how they will be related; what should a valid and consistent topic map look
like” [Rat03]. Similar statements can be found also for RDF: “We can distinguish
three kinds of concepts in RDF: fundamental concepts, schema-definition concepts
(useful for defining new vocabularies) and utility concepts [. . . ]” [Cha01]. While this
point of view is certainly not incorrect, it obscures the great potential that is inherent
to any application using an ontological structuring of data. This is even more true
for large scale ontologies: ”. . . we know that building large scale ontologies pose a
new set of problems especially in an environment where ontologies are viewed as ‘live
repositories’ rather than frozen resources” [Var02].
Actually, for ontology applications it is far more appropriate to completely abandon
the concept of a schema: since there is no implicit schema in an ontology, why should
one try to artificially create one? This approach is also endorsed by the fact that the
distinction of classes and instances is not as natural as it might appear at first. As
already outlined in Section 2.4, any concept can be a class and an instance at the same
time, which makes a clear separation between the two impossible. Both Topic Maps
and OWL Full support the representation of a concept as both class and instance;
OWL Lite and OWL DL do not allow such kind of representation, but require an
(artificial) distinction and according workarounds for computational reasons. In case
of Topic Maps, it is even impossible under certain circumstances to specify if a given
subject is an instance or a class, or both (this is known as the “sleeping class” problem,
see also Section 3.1.4).
Instead of creating a schema, the focus lies on the constraints that may be applied to
instances of classes, and which may be inherited by subclasses. Such constraints are
usually established either through the ontology representation format itself, as it is
the case with RDF/OWL, or they may be superimposed by an additional constraint
language in case of Topic Maps. It should not be neglected the fact that the absence
of a fixed schema has severe implications on storage considerations and the design of
applications (and especially their user interfaces), which are beyond the scope of this
thesis.
Finally, the role that (object-)relational databases can play in the field of ontolo-
gies should be analyzed more thoroughly. In fact, most ontologies rely on relational

12as opposed to the static layer which a database schema represents
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databases for persisting their data, which looks like a contrast to what has been said
above. As explained in Section 4.1, the key difference is the mapping between con-
cepts and schema elements (tables, ...) of the database. Originally, concepts of the
application domain were mapped to the database schema: e.g. a table “EMPLOYEE”
for the concept (or class) of employees, a table “CLIENT” for the class of clients etc.
Since ontologies do not know the number and definition of the application concepts be-
forehand, they instead map their own ontological language constructs to the database
schema: e.g. a table for all “classes”, a table for all binary “relations” and so on. Used
in this way, traditional databases still play a crucial role for persistency and scalability
of ontologies.
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3 Topic Maps and RDF/OWL

This chapter deals with the details of the ontology representation formats Topic Maps
and RDF/OWL with respect to their functionalities as identity-based technologies.
The first section starts with a short history and current status of Topic Map standard-
ization and continues with an in-depth explanation of concepts like subjects, topics and
assertions that are crucial for understanding how Topic Maps work. Further sections
will introduce the concepts of class hierarchies, scopes and reification of subjects or
assertions, as well as the ideas behind published subjects.
The second section covers RDF, RDFS and OWL and their respective language con-
cepts. Special attention is further given to the relationship between Topic Maps and
RDF by comparing the two technologies at structural level, correlating the correspond-
ing standards and pointing out similarities and differences.

3.1 Topic Maps and Related Standards

3.1.1 History of Topic Map Standardization

In 1991, the Davenport Group was established with the goal to create a standard
for software documentation [Rat03]. One of the main contributors was the publisher
O’Reilly & Associaties, which needed a standardized master index for the X-Windows
documentation. Two subgroups were formed, one developing the DocBook DTD,
the other, named “Conventions for the Application of HyTime” (CApH), creating the
SOFABED (Standard Open Formal Architecture for Browsable Electronic Documents)
model which used the hyperlink facilities provided by the ISO 10744 HyTime standard.
The CApH group elaborated the SOFABED model and renamed it “Topic Maps”; in
1995, it was accepted as “new work item” by ISO and released in 1999 by the ISO/IEC
JT1 SC34 as International Standard ISO/IEC 13250 [BBN02].
The ISO/IEC 13250 standard defined an interchange syntax based on SGML and
HyTime (HyTM, for HyTime Topic Maps), which according to the “Guide to topic
map standardization” [BNB02] was not compliant to resources on the World Wide Web
(e.g., HyTime does not necessarily use URIs to reference external resources). To resolve
this issue, the independent organization Topicmaps.org was established in 2000 with
the goal to elaborate a Topic Map specification based on the W3C recommendations
XML and XLink. In 2001, the official version of the XML Topic Map (XTM) 1.0
specification was published. This specification was given to ISO/IEC, which included
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the XTM notation as second interchange syntax in the original 13250 standard by
means of a Technical Corrigenda in October 2001.
Although both interchange syntaxes HyTM and XTM are specified in ISO/IEC 13250,
no explanation or definition is given on how the two syntaxes relate to one another.
Also, both specifications fail to define precise guidelines for implementations, resulting
in a number of situations where it is unclear what exactly is supposed to happen within
a Topic Map application. Implementations are forced to define their own rules for
such cases sacrificing interoperability, which is quite contrary to the original purpose
of an International Standard. Differences between the two interchange syntaxes are
described in [BN01].
To overcome such situations, a new edition of the ISO/IEC 13250 standard will be
created. The core part of the new standard will be formed by the Topic Map Data
Model (TMDM, formerly known as Standard Application Model, SAM), which will
provide a precise and unambiguous basis for Topic Map implementations. Another im-
portant element of the new standard will be the Topic Map Reference Model (TMRM),
which is a more abstract graph model for Topic Maps and will feature “mechanisms
for explaining relationships between different knowledge representations” [BNB02].
In 2001, two more standard initiatives were started by the ISO/IEC technical com-
mittee JT1 SC34: the Topic Map Query Language (TMQL), which will become Inter-
national Standard ISO/IEC 18048, and the Topic Map Constraint Language (TMCL,
ISO/IEC 19756). Both specifications rely on the TMDM and are still under develop-
ment as of January 2005; for details about the existing drafts, see sections 4.2.2 and
3.1.10 respectively.

All parts of this thesis which deal with Topic Map syntax representation, especially
those concerning storage and querying of Topic Maps, will always refer only to the
XML Topic Map (XTM) syntax (general concepts and considerations, on the other
hand, are usually independent from the serializing syntax and therefore valid for all
notations). The reason for this is that the underlying XML notation has become ex-
tremely popular during the last years, whereas only a marginal number of HyTime
applications exist. Additionally, as already mentioned earlier, the addressability of
electronic resources using URIs is an important requirement for Topic Maps, consid-
ering the broad availability of the World Wide Web or HTTP-based intranets. Future
Topic Map implementations will therefore almost certainly use the XTM syntax for
representing Topic Maps.

3.1.2 Topic Map Notations

Before discussing any details of Topic Maps, a short introduction on the different
Topic Map syntaxes is given here. The Topic Map standard ISO 13250 determines
general conditions that must be satisfied by all (standardized) Topic Maps. The most
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important ones regarding the notation of Topic Maps will be quoted here:

“The Topic Map notation is defined as an SGML Architecture, and this
International Standard takes the form of an architecture definition doc-
ument expressed in conformance with Normative Annex A.3 of ISO/IEC
10744:1997, the SGML Architectural Form Definition Requirements (AFDR).
The formal definition of the Topic Map notation is expressed as a meta-
DTD.

[. . . ]

The Topic Maps syntax makes use of the base, location address, and hy-
perlinking modules of the HyTime architecture as defined in clauses 6, 7
and 8 of ISO/IEC 10744:1997.

[. . . ]

The HyTime architecture provides a comprehensive set of addressing mech-
anisms and a standard syntax for using them. In addition, it provides
means whereby any addressing syntax can be declared and used. The
Topic Map architecture preserves these features of HyTime. Thus, the
Topic Maps architecture allows Topic Map authors to use any addressing
scheme, including proprietary addressing mechanisms driven by expres-
sions in any notations, provided each such notation is formally declared as
a notation in the manner prescribed by the SGML and HyTime Interna-
tional Standards.” [BBN02]

One very important thing to note is that the original Topic Map notation is using
SGML and HyTime (which are both ISO standards) to define a meta-DTD. This
meta-DTD can be used either directly to create Topic Map documents, or indirectly
to create different Topic Map notations (which derive from the meta-DTD and thus
are still compliant to the original standard).
This makes it possible to create different “flavors” of topic map notations which is
not only advantageous but also adds significant complexity to real world Topic Map
applications. In order to overcome this situation, the standard was extended to include
the XML Topic Map (XTM) notation, which is based on XML and XLink. In fact,
XML is a subset of SGML that covers the most important aspects of the very complex
and lengthy SGML standard, but is easier to handle.
Both the HyTM and XTM notations are defined in the Topic Map standard and are
therefore in the status of International Standards. Apart from these, a number of pro-
prietary notations exists that either were created when no standard had been defined
yet or that have advantages regarding the verbosity or complexity of the standard-
ized notations. The most well-known notations are the Linear Topic Map Notation
(LTM, [Gar02]) defined by Ontopia AS, and AsTMa= (which is part of the AsTMa*
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language family, [Bar04]). Both notations are more compact than the XTM notation,
but while LTM is intended as interchange format between machines (as is XTM),
AsTMa= is far easier to read and write directly by humans.
All notations have in common that they are always used for serialization purposes only,
for instance to write topic maps to physical files or to exchange Topic Maps between
machines. They are not relevant for the internal representation of a Topic Map within
a Topic Map engine; rather, any Topic Map engine should be able to serialize its Topic
Map representation using an arbitrary notation. The Topic Map Data Model states:

“Topic maps may be represented in many ways: using topic map syntaxes
in files, inside databases, as internal data structures in running programs,
and even mentally in the minds of humans. All these forms are different
ways of representing the same abstract structure.” [GM05]

Part 4 of the revised ISO 13250 standard will also include a notation for canonicaliza-
tion purposes:

“Canonicalization is the process of serializing a data structure in such a
way that two data structures considered to be the same result in the same
serialization and two data structures not considered to be the same result
in two different serializations. A canonical form enables direct comparison
of two data model instances to determine equality by comparison of their
canonical serialization.

This part of ISO/IEC 13250 defines a canonical sort order for any set of of
information items from the Topic Maps Data Model and a transformation
of an instance of the Topic Maps Data Model to an instance of the XML
Infoset model.” [Ahm04]

Thus, the canonical serialized form of two Topic Maps (or their constructs) can be
used to determine their equality or inequality by comparing them byte-by-byte.

3.1.3 Topics – Proxies for Subjects

Within Topic Maps, the proxies for representing subjects are called topics; one may
also say, a topic is the electronic representation for a subject which is otherwise not
addressable or identifiable by a computer. However, as mentioned in Section 2.1,
this statement is too restrictive: actually, Topic Maps treat everything the same way,
whether it is a resource that already has an address, or anything else: every subject
is represented by a topic. There is even a 1-to-1 relationship between subjects and
topics: in a Topic Map, a subject is represented by exactly one topic, and one topic
always represents exactly one subject.
For electronic resources that already have an address which identifies them uniquely,
a topic may use that address as subject address. If two topics have the same subject
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Topic Map

World Wide Web

Homepage
of Stefan R.
subject address=

http://www.raffeiner.at

http://www.raffeiner.at

<html>
<body>
<h1>Welcome</h1>
<p>Welcome to the pers
onal homepage of Stefan
Raffeiner!</p>
</body></html>

Figure 3.1: Subject representation with subject address.

address, they are considered to represent the same subject (and, as there can be
only one topic representing a subject in a single Topic Map, the two topics would
be merged). Figure 3.1 shows an example of a Topic Map containing a single topic
that represents the author’s homepage: as the subject (the homepage) in this case is
clearly a resource with an address, the topic uses this address as subject address for
the purpose of identification.
All subjects that are not network-retrievable resources are represented by arbitrary
electronic resources which give some idications on the identities of those subjectes.
Such a resource is called subject indicator, its address is the subject identifier. Both
the subject address and the subject indentifiers are basically computer addresses (e.g.
URIs), but they are used for different purposes. Subject addresses, indicators and
identifiers are explained in Section 2.2.
Figure 3.2 shows an example of a Topic Map containing a single topic that represents
a person: as the subject (the person) has no network address, the resource

http://www.raffeiner.at

is used as subject indicator. The address of the subject indicator is the subject iden-
tifier used by the topic to reference to the author.
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World Wide Web

"The real world"

Topic Map

http://www.raffeiner.at

Stefan R.
(the person)

subject indicator=
http://www.raffeiner.at

My name is Stefan R.,
I was born on....

Figure 3.2: Subject representation with subject indicator and subject identifier.
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If a subject is likely to be represented in more than one topic map, it is advisable
not to use an arbitrary subject indicator but refer to published subjects instead; see
Section 2.3 for details about published subjects and published subject indicators.
The decision whether a certain subject (or, topic) should be included in a Topic Map
is to be made by the Topic Map author(s) with respect to the purpose or domain of the
Topic Map. From a conceptual point of view, any topic of any type may be included
in a Topic Map.

3.1.4 Classes and Instances

Topic maps provide a very elegant way to deal with classes and instances: as pointed
out in Sections 2.2 and 2.1 about subjects and identification, in a Topic Map all
subjects are represented by topics, including abstract ones. This means that there is no
substantial difference between instances and classes of subjects in a Topic Map: every
instance and every class gets a topic which represents it. There is in fact no way to tell
whether a topic is a class or an instance unless there exists another topic that states
that it is an instance of the first topic (which must be a class then); this is also known
as the “sleeping class problem” (introduced in the Topic Map Handbook [Rat03]) and
should be approached with the development of the TMCL. All topics that do not have
an explicitly defined “instance of” relationship are implicitly instances of the topmost
class “topic”, which is predefined in the Topic Map standard.
Regarding the various elements of a Topic Map, it can be stated that:

• a topic can be instance of multiple classes

• an occurrence can be instance of exactly one class

• an association can be instance of exactly one class

• no other elements can be instances of classes.

3.1.5 Topic Characteristics: Names, Associations and Occurrences

Since topics provide references to subjects by means of subject addresses or subject
identifiers, any information that should be tied to a subject can be stored in the Topic
Map and then bound to the representing topic; the containers for storing information
about subjects are called topic characteristics. There are three different kinds of
topic characteristics: names, occurrences and associations. The following sections will
provide some insight into the details of each.

Names

The simplest and often most important information about a subject is its name, which
is usually basically a string. Without a name, a topic is only represented by an abstract
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id, which is not suitable for communication with humans. A topic can have multiple
names, e.g. to list synonyms or translations in different languages or to enable accurate
sorting. Topic Maps know two different types of names: base names and variant
names. A base name is a string primarily used for identification by humans; it is
also used for display and sorting if no variant name exists that is specifically suited
for these tasks. Variant names are considered to be “variants” of the base name, e.g.
synonyms or translations etc.
Base names are governed by the Topic Naming Constraint(TNC): the XML Topic
Map notation standard states that:

“Two topics with the same base name in the same scope1 implicitly reify
the same subject and should therefore be merged.” [Gro01]

The TNC has always been a somewhat controversial element of the Topic Map standard
and, according to various mails on the Topic Map mailinglist2, is very likely to be made
an optional feature in the final version of the Topic Map Data Model.

Occurrences

With exception of names, all facts about a single topic are represented by occurrences.
There are two different ways to use occurrences: if an external resource like a web page
or a document exists, the occurrence is basically a reference to that resource (e.g. this
can be used to connect a picture to the topic representing a certain person). If some
kind of “simple” data should be linked to a topic (like “20.10.1980” or “123,000”), the
data itself is stored directly within the occurrence element (and therefore within the
Topic Map). The Topic Map standard does not define any data types; all occurrences
are stored as strings and must be interpreted by the application (which also has some
effects on efficient storage of Topic Maps, see Section 4.1).
In order to express the “meaning” of an occurrence it is possible to assign a certain
type, or class, to an occurrence by stating that the occurrence is an instance of that
class. For example, the occurrence referencing

http://www.raffeiner.at/pic1.jpg

may be instance of the class “portrait”, and the occurrence “20.10.1980” may be
instance of the class “birthdate”.

Associations

Establishing relations between topics in a Topic Map is done by creating associations.
Associations can include any number of topics and are therefore said to be “n-ary”; the

1For details on scopes, see Section 3.1.6.
2see for instance http://www.infoloom.com/pipermail/topicmapmail/2004q3/006221.html
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AustriaVienna
is-capital-of

role="city" role="country"

Figure 3.3: An exemplary association “is capital of”.

most commonly used associations are binary (i.e. connecting 2 topics). Associations
are assertions and have therefore no inherent direction; instead, every association
specifies roles, and the topics to be connected through that association are said to
play these roles (role players). This implies that an association can be seen from
the perspective of any participating topic and will still represent the same assertion:
it is the same thing to say “Vienna is the capital of Austria” and “Austria has a
capital named Vienna”. Figure 3.3 shows a Topic Map with two topics, Austria
and Vienna, and the association “is capital of” between them. The association has
two roles, “country” and “city”, which are played by the topics Austria and Vienna,
respectively.
It should be pointed out that the incorrect assertion “Austria is the capital of Vienna”
can only be achieved by assigning the wrong roles to the role players (Austria plays the
role of city and Vienna the role of country), which must be detected and prevented
by some semantic validation mechanism, which could be provided for instance by
the TMCL. The Topic Map standard itself has offers no vocabulary for specifying
constraints on which classes can play which roles. As it is the case with occurrences,
also associations can be instances of classes which determine the “meaning” of an
association and also define the roles which exist for that association.

3.1.6 Scopes

A scope represents a certain point of view on the information in a Topic Map, which
means that the validity of assertions can be limited to certain circumstances. Scopes
are ideal for representing languages: the validity of the base name “Vienna” of a topic
could be limited to the scope “English”, whereas the base name “Wien” for the same
topic is only valid for the scope “German”. Other potential applications for scopes
include the propagation of access rights or the expression of different or contrary
opinions about characteristics, which is an important feature especially for knowledge
management. Representing contrary opinions is however difficult to implement with
scopes, as outlined in Section 5.2.
Scopes can be specified for all three topic characteristics: base names, occurrences
and associations; these characteristics are then said to be scoped. The topics that the
characteristics belong to are not part of a scope, but exist independently from scopes.
If no scope is defined for a topic characteristic, the default unconstrained scope applies.
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Salzburg

(reified association) Stefan R.
author-of

role="topic" role="author"

Mozart
born-in

role="city" role="person"

Figure 3.4: Reification of an association.

The unconstrained scope does not limit the validity of the assertion expressed by the
characteristic.
A scope can effectively be used to filter a Topic Map: all characteristics that belong to
a scope can be “hidden” or “shown”, depending on the visibility of that scope (within
a user interface, for instance). A scope can therefore also be seen as a set containing
all characteristics that belong to it.
Although scopes are a very important feature of Topic Maps, it is “a feature of which
semantics have been deliberately left fuzzy by the Topic Maps specification, letting
to every application the task to interpret it at will in its context.” [Vat03]. This can
get problematic if Topic Maps are to be used in a less controlled environment or are
supposed to be merged (which was originally one of the motivations for creating the
Topic Map standard).

3.1.7 Reification of Assertions

Topic Maps provide a feature which allows Topic Map authors to make statements
about statements:

“The concept of reification has had the misfortune to have had stuck onto it
a rather intimidating name, but it is in fact quite simple. Making assertions
about things is easy, as you can create symbols3 to do so and then just make
the assertions. Making assertions about assertions, on the other hand, is
tricky. However, if you can create a symbol that represents an assertion
you can just use that symbol to do it. Creating a symbol that represents
an assertion is exactly what reification is.” [Gar03a]

For example, a small Topic Map could consist of the topics “Mozart” and “Salzburg”
and a relationship of type “born in” (Figure 3.4). If the Topic Map should include
a reference to the author of that relationship, this means to make a statement about

3The term “symbol” is used for “topic” here.
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the relationship. In order to do so, the relationship has to be reified first: in order
to do so, a new topic is added to the Topic Map and its subject indicator is set to
the association between “Mozart” and “Salzburg”. The new topic now represents the
the association itself; arbitrary new associations (and occurrences) can now be added
to this topic, e.g. an association of type “author-of” to specify the author of that
association.
As depicted in the example, reification of Topic Maps is basically performed by simply
adding a new topic to the Topic Map. As aleady indicated by Figure 3.4, reification in
Topic Maps is that easy because the relationship between the topics is already repre-
sented by an explicit “association” construct before any reification actually takes place.
One could also say, that Topic Maps in fact reify all associations by default through
the association constructs provided by the Topic Map standard. This “reification by
default” is also called preemptive reification; its advantages are described by Steven
R. Newcomb as follows:

“The advantage of preemptive reification is that we can always say some-
thing new about anything that already exists, without having to choose
between the two evils of creating redundant connections, on the one hand,
or invalidating existing lore about how things are connected together, on
the other.” [New02]

Newcomb’s remarks about the “two evils” refer mainly to RDF reification, see Section
3.2.1, which is also called “lazy reification”.
As Topic Maps preemptively represent all relationships through associations, there
must be a limit to the depth of recursion which is implied by this behaviour. According
to Newcomb, the Topic Map Reference Model forbids any “in situ”4 reification that
only serves to make assertions about Topic Map constructs themselves:

“[The TMRM] uses the yardstick of ‘substantiveness with respect to to the
semantics of the assertion’ to justify its decisions as to the level at which
further in situ reification is forbidden. [. . . ] in situ reification does not
occurr when its only conceivable purpose would be to allow assertions to
be made about the subterranean mechanics of the graphic representation
of an assertion.” [New02]

Although sometimes reification is not considered an important aspect of ontological
knowledge representation, the fundamental differences between Topic Maps and RDF
should be emphasized.

4In situ reification is the kind of reification where relationships between concepts are replaced with
their reified versions, as it is the case with RDF reification.
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3.1.8 Merging Topic Maps

As indicated in Section 3.1.1, one of the requirements that led to the development
of the Topic Map standard was the ability to merge multiple indices into one master
index. It is therefore not surprising that the Topic Map standard provides methods
to join the contents of two Topic Maps.
As already mentioned in Section 3.1.3 there is a 1-to-1 relationship between topics and
subjects: apart from being the logical consequence of one topic representing exactly
one subject, it is also very handy for navigational purposes because all assertions
(names, occurrences, associations) about a subject can be reached directly from the
corresponding topic. If two Topic Maps are to be merged, it is essential to know if
two topics represent the same subject: if yes, they must be merged into one topic
that contains the union set of all characteristics of the original topics. There are three
possibilities for two topics to represent the same subject:

• if the topics have the same base name in the same scope, the Topic Naming
Constraint requires a merger5 (see Section 3.1.5);

• if the topics use the same subject address to refer to an electronic resource;

• if the topics use the same subject identifier to refer to a subject indicator for any
subject without an electronic address.

The resulting topic will be the set union of all names, occurrences and associations of
the original topics (without doubles). Names are compared byte-by-byte, occurrences
must be instances of the same class and point to the same resource, associations must
be instances of the same class and have the same roles and role players [Rat03].
Thus, any Topic Map corresponding to the standard will never contain two topics
representing the same subject. It should be added for the sake of completeness that
this is not equally true for a serialized version of a Topic Map (e.g. a XML file
containing a Topic Map in XTM notation). In fact, multiple topics for a single subject
can be present in a serialized Topic Map, but they have to be unified according to the
rules stated above upon deserialization. The purpose for this different behaviour is to
facilitate easy authoring and handling of Topic Map files.

3.1.9 Upcoming Standards: Topic Map Data Model and Topic Map
Reference Model

As explained in Section 3.1.1, the current ISO standard 13250 is about to be revised
and split up in a new multipart standard. Along with a part dealing with canonical-
ization of Topic Maps and specifications for XML Topic Map and HyTime Topic Map

5The equality of subjects that have the same base name in the same scope is hard to derive logically,
but should be accepted as convention rather.

46



3.1 Topic Maps and Related Standards

syntaxes, the new standard will also contain the Topic Map Data Model (TMDM) and
the Topic Map Reference Model (TMRM). Since the latter two can be seen as major
cornerstones of the standard, they are briefly presented here.

Topic Map Data Model

As outlined in the Topic Map Data Model proposal, the TMDM “defines the abstract
structure of topic maps, using the information set formalism, and to some extent their
interpretation, using prose” [GM05]. The data model should facilitate the consistent
interpretation of interchange syntaxes (such as XTM or HyTM as well as other, non-
standardized notations) and provide a basis for other Topic Map-centric standards,
such as TMCL or TMQL. The latter two however are not part of the new ISO 13250
standard. Additionally, the TMDM clarifies the rules for merging Topic Maps and
defines some “fundamental published subjects” (i.e. those used to indicate the Topic
Map constructs themselves).

Topic Map Reference Model

The Topic Map Reference Model provides a more abstract graph model of Topic Maps.
It is informally described as follows:

“In this model, names and occurrence resources turn into nodes on the same
level as topics, and they are related to their topics using an association-like
structure of nodes and arcs.

[. . . ]

The Reference Model provides a mechanism for explaining the relationships
between different knowledge representations, such as topic maps, RDF, and
KIF. This will make it easier for topic maps to interoperate with these other
knowledge representations.” [BNB02]

If Topic Maps will ever play a major role in knowledge management, there will surely be
a need for interoperability, especially if the large number of applications and ontologies
using RDF and KIF is considered. The new Topic Map Reference Model supercedes
earlier attempts to provide a formal model for Topic Maps, e.g. [AdMRV02].

3.1.10 The Ontological Potential of Topic Maps

Background

If one takes a close look at Topic Maps, their historical standard syntax HyTM and its
XML successor XTM, and especially at their more abstract foundations (as provided
by the ISO 13250 SGML standard and the TMRM), one thing stands out: there has
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always been an implicit principle that guided the development of Topic Maps, and
that principle still influences the most recent Topic Maps standardiziation efforts. It
is the demand that Topic Maps should be able to represent “any thing whatsoever,
regardless of whether it exists or has any other specific characteristics, about which
anything whatsoever may be asserted by any means whatsoever” [BBN02].
In fact, to get a simple Topic Map up and running, very little is needed: a few topics
that represent subjects, and maybe a number of assertions to link them or occurrences
that the topics can link to. There is actually no need for defining classes or types of
topics since topics, associations and roles are not required to be typed. Associations
can have any number of roles, since they are n-ary by default, and even undirected.
In fact, almost no “ontological overhead” has to be added to a Topic Map, if it is not
needed. This freedom of expression is certainly one of the biggest strengths of Topic
Maps, as there are almost no constraints imposed through the underlying data model.
It is also that principle that made the concept of (formal) ontologies rather unpopular
in the Topic Map community. With respect to Topic Maps, ontologies generally use a
more constraining data model with a defined vocabulary to represent concepts and their
relationships. The ontological vocabulary allows for the creation of inference engines
and the automatic semantic validation of underlying data, but on the other hand, it
sometimes also limits the expressive power of the system. Such limitations have never
been accepted by most Topic Map advocates. Instead, Topic Maps are preferrably re-
ferred to as being able to represent arbitrary ontological vocabularies. Bernard Vatant
states that “both topic maps specifications and literature have implicitly or explicitly
presented the standard as ’ontology-agnostic’, meaning they are able to support, rep-
resent and manage any kind of knowledge in any kind of ontological context, and even
independently of the constraints imposed by any ontology” [Vat04]. For instance, the
Topic Map standard does not define properties of associations such as transitivity; if
one needs such a property, he has to define it (e.g. by creating a topic “transitive
association” and using it as type for other associations). The OWL standard, on the
other hand, defines several properties such as transitivity or symmetry, but does not
allow for creating arbitrary properties of relationships (and thus is said to have a fixed
ontological vocabulary).
While ontologies historically clearly belonged to the field of Artificial Intelligence whose
popularity has been decreasing during the last decades, the Semantic Web initiative
with its W3C recommendations RDF, RDFS and especially OWL has brought on-
tologies to the attention of a much broader audience. Opposed to earlier ontological
systems which were mainly focused on expert systems containing narrow and spe-
cialized knowledge, the Semantic Web definitively emphasizes the representation of
any kind of knowledge, and with respect to autonomously acting agents, even human
“common sense” knowledge.
This redefinition of application areas for ontologies has also confronted again Topic
Maps with the claim for more ontological support. Indeed, most Topic Maps can be
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found to be driven by (and thus at least partially representing) implicit ontologies:
“Classes of topics, association types, role types, occurrence types, seem carefully cho-
sen, and one will find out some sensible and recurrent patterns linking association
types to specific role types, occurrence types to topic types, role types in association
types to topic classes, implicit rules of cardinality, etc.” [Vat04].
In contrast to explicit ontologies, Topic Maps provide no predefined vocabulary to im-
pose constraints on types and cardinality, nor to facilitate the use of inference engines
through relationship characteristics (like transitivity etc.) or inference rules. Although
it would be possible to define such vocabularies by means of the existing Topic Map
constructs, Topic Maps “enriched” in this way would become incompatible6 with each
other. In fact, the definition of constraints should be covered by the new standard
TMCL, but as the existing “straw man proposal” indicates, no support for inference
is added by TMCL.
The expressive power of Topic Maps is definitely not to be underestimated: Topic Maps
are able to represent both a class and an instance with only a single topic, associations
are n-ary and undirected (making them way more powerful than the binary, directed
relationships used for instance by RDF), and they do not limit their expressiveness
through any ontological vocabulary (which is not unproblematic, as explained earlier).
Therefore it is not surprising that both the Upper Cyc Ontology and also the SUMO
have also been exported as Topic Maps: see [Cyc01] for information about the XTM
version of Upper Cyc (which itself is not available any more) and [SUM] for a browsable
version of the SUMO as Topic Map. In the context of the UTON project, Topic Map
constructs have also been adopted to facilitate the creation of large scale ontology
networks [Var02].

Topic Map Constraint Language (TMCL)

The Topic Map Constraint Language is sometimes referred to as the Topic Map world
counterpart of OWL, but in fact has a somewhat different focus. TMCL “provides
means to express constraints on Topic Maps conforming to ISO/IEC 13250:2000”
[MN03] and can thus be seen as a pure constraint language with no support for infer-
ence. Constraints expressed with TMCL can be used to guide the authoring of Topic
Maps by hindering the Topic Map author to create semantically invalid assertions.
Alternatively, they can be used to validate existing assertions or entire Topic Maps
(e.g. prior to a merge operation).
TMCL relies on the Topic Map Query Language (TMQL, see Section 4.2.2) for speci-
fying which Topic Map information items are subject to a specified constraint (through

6This means that a Topic Map application would not recognize the constraints and inference rules
created by another Topic Map application, since no standardized vocabulary exists; compliance to
the original Topic Map standard however would still be guaranteed.
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a “selector expression”) as well as for determining the validity of those information
items (through a “constrainer expression”).
Both TMCL and TMQL rely on the new Topic Map Data Model standard which
will be part of the revised ISO 13250 standard. Since TMQL is in its early stages of
development, also TMCL is far from being complete; at the time of writing, only a
“straw man proposal” exists. Some people suggest to use an adapted version of OWL
for Topic Map schema definitions ( [Vat03], [Gar03a], [Vat04]).

3.2 RDF, RDFS and OWL

3.2.1 The Resource Description Framework

The Resource Description Framework (RDF) is a language based on XML syntax in-
tended for representing information about resources in the World Wide Web, or any-
thing that can be identified by resources on the WWW. The main difference between
Topic Maps and RDF is that RDF was originally designed to enable authors to add
machine-processable information to existing network-retrieveable resources, whereas
Topic Maps, although providing ways to link to resources via occurrences, represent
a more abstract, index-like point of view. RDF can be considered a bottom-up ap-
proach that allows to make statements especially about resources, while Topic Maps
are built top-down. For a discussion of the relationship between “resources” and sub-
jects, see Section 2.1. Extensive introductions to RDF can be found for instance
in [RPR04,Ogb00,Cha01].

Notation

For RDF, only one standardized notation exists, namely RDF/XML7. The purpose of
this standardized syntax is to enable the interchange of RDF graphs between different
RDF-processing applications. Thus, the rather verbous XML notation is not intended
for “internal representation” (i.e. within a RDF application) of the underlying graphs.
A sample RDF/XML code is shown below [RPR04]:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>

7Most people referring to “RDF” as serialization format actually mean RDF/XML; not much em-
phasis is given to this distinction in practice.
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"The composer
W. A. Mozart"

"was born in"

"has name"

Salzburg
(the city)

Wolfgang Amadeus Mozart

http://www.mozart.at/
about.html

http://www.salzburg.at/

(literal value)

http://predicates.org/
predef#born-in

http://predicates.org/
predef#has-name

Figure 3.5: A RDF statement as graph.

<contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>

</rdf:RDF>

RDF Constructs: Nodes and Arcs

The RDF Model uses concepts known from graph theory to represent subjects and the
relations between them: any concept is represented by a node, and relationships are
arcs between nodes. Since only binary and directed relationships are allowed in RDF,
a single arc always connects exactly two nodes, the start node and the end node. These
two nodes are known as subject and object, respectively, the arc is called predicate (or
property). Together, the two nodes and the arc represent a single statement. A simple
RDF statement is shown in Figure 3.5.
Since statements always consist of a subject, predicate and object, they are also re-
ferred to as triples. Instead of using the graphical display format or the RDF/XML
notation, RDF statements are often displayed as triples using the triple notation as
shown below:

<http://www.example.org/index.html>
<http://purl.org/dc/elements/1.1/creator>
<http://www.example.org/staffid/85740> .

<http://www.example.org/index.html>
<http://www.example.org/terms/creation-date>
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"August 16, 1999" .

<http://www.example.org/index.html>
<http://purl.org/dc/elements/1.1/language>
"en" .

Subjects have to be “resources” (i.e. concepts identified by URIs), whereas objects may
either be resources as well, or literal values (see below). Predicates are again always
identified by URIs that indicate the type of relationship expressed by the predicate
(the example above uses relationships defined by the Dublin Core Metadata Initiative
[WKLW98]).
While in principle subjects and objects are identified by unique URIs, it is sometimes
convenient to establish concepts “on the fly” without having to create factitious URIs.
RDF offers a construct called blank node which allows for creating anonymous concepts
with no generally valid URI assigned. Instead, blank nodes are identified by arbitrary
names that only have to be unique within the RDF document. With respect to the
uniqueness of URIs, two resources with the same URI are generally considered to
represent the same concept (see Section 2.2.2).

Literals

In addition to connecting resources, RDF also offers the possibility to link concepts
to simple data values, such as arbitrary strings, numbers, dates etc. These values are
called literal values, or simply literals.
There are two ways to specify literals: either a literal is a plain literal contain-
ing only some text with an optional language tag, or it is a typed literal contain-
ing a value whose lexical form is determined by the mandatory datatype URI. The
datatype URI corresponds to the datatypes defined in the XML Schema standard (e.g.,
"27"^^<http://www.w3.org/2001/XMLSchema#integer>).

Containers

RDF facilitates the handling of containers and collections by defining a container
vocabulary that consist of three different types of containers: rdf:Bag, rdf:Seq and
rdf:Alt. They can be used as types for concepts that contain other things:

• a “bag” is a container for resources or literals with no inherent order of the
members, possibly containing duplicates;

• a “sequence” is a container for resources or literals where the order of the mem-
bers is important, possibly containing duplicates;
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• an ”alternative” is a container for resources or literals that are alternatives for
a property value, again possibly containing duplicates.

However, the use of the predefined container vocabulary is not mandatory:

“Users are free to choose their own ways to describe groups of resources,
rather than using the RDF container vocabulary. These RDF containers
are merely provided as common definitions that, if generally used, could
help make data involving groups of resources more interoperable.” [RPR04]

Reification

RDF provides support for reification, i.e. making assertions about assertions. In
contrast to Topic Maps, relationships between concepts are not represented through
any “symbols” in RDF by default. Therefore, reification of RDF relationships is more
complex than reification of Topic Map associations.
RDF provides four predefined properties, rdf:Statement, rdf:subject, rdf:object
and rdf:predicate, that can be used to denote a RDF statement and its respective
parts. If a RDF statement has to be reified, a new concept representing that statement
is inserted into the graph. This entails the following transformations: the original triple
(e.g. ex:vienna ex:inhabitants "2000000"^^xsd:integer) is replaced with 4
new triples: 1 triple for expressing the fact that the new concept is a statement (by
using the predicate rdf:type), and 3 triples linking the original parts of the assertion
to the predefined properties rdf:subject, rdf:object and rdf:predicate:

ex:newconcept rdf:type rdf:Statement
ex:newconcept rdf:subject ex:vienna
ex:newconcept rdf:predicate ex:inhabitants
ex:newconcept rdf:object "2000000"^^xsd:integer

Figure 3.6 shows a graph-based version of this example. As demonstrated, RDF
reification is not as straightforward as reification in Topic Maps.
The most important drawback however is the need for replacing the original triple
with its reified version. Generally, providing additional information about another
statement is not expected to affect the original statement in any way; but this is not
true for RDF reification. Therefore, any application that allows for reification not only
adds information to the ontology, but actually changes existing statements.
Also, the reified version of a statement is much more abstract and has to be interpreted
in a different way than ordinary statements, for instance by ontology query languages.
This adds significant complexity to RDF applications and potentially limits the broad
propagation and easy application of RDF reification.
Finally, opposed to Topic Map reification, RDF uses no preemptive reification by
default. Instead, relationships are only reified in situ if and when it is needed. This so
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Vienna
(the city)

"inhabitants"

"Normal" RDF statement

"inhabitants"
2,000,000

ex:vienna

ex:inhabitants

(literal value)

ex:inhabitants

The statement
itself

Vienna
(the city)

RDF-Statement
(predefined)

Reified RDF statement

"has-subject"

"is-of-type"

"has-predicate""h
a
s-ob

ject"

2,000,000

ex:newconcept

(literal value)

rdf:subject

rdf:type

rdf:predicate

rd
f:ob

ject

ex:vienna

rdf:Statement

Figure 3.6: The reification process for RDF graphs.
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called lazy reification has several consequences which can be considered problematic
under certain circumstances.

First, upon reification of a relationship, it has to be decided whether the original rela-
tionship should be effectively replaced (and therefore removed from the RDF graph),
or whether it should stay in place in addition to its reified version. The replacement
of the relationship may e.g. not be suitable for “remote” ontologies, i.e. ontologies
that are not under control of the reifying party. Also, reifying a large number of rela-
tionships by replacing them may entail performance issues and render the RDF graph
overly complex.

On the other hand, leaving relationships in place is not an elegant solution either:
changes to the relationship must be propagated to both the original and the reified
version, the RDF graph becomes ambiguous and lacks parsimony. After all, lazy reifi-
cation as used by RDF can be problematic with respect to its usage within Semantic
Web ontologies.

3.2.2 RDF Schema

Regarding common ontological tasks such as instancing, subclassing and constraining
of concepts, RDF itself has little to offer. Through the predefined predicate rdf:type,
RDF allows for creating instances of classes, but even marking concepts as classes or
creating subclasses is beyond the scope of RDF.

In order to define new RDF vocabularies (consisting of classes, class hierarchies and
properties), the RDF Vocabulary Description Language, or RDF Schema (RDFS), can
be used [VDL04]. RDFS does not define any domain-specific classes or properties, but
provides additional predefined RDF constructs that can be used to define such classes
and properties. Thus, the most important RDFS additions to the RDF vocabulary
are rdfs:Class and rdfs:subClassOf to create nodes which represent classes, as
well as rdfs:range and rdfs:domain to constrain properties (the predefined property
rdf:property is already defined in the RDF standard itself). rfs:range constrains
the types or values that a property may accept, while rdfs:domain limits the usage
of a property by defining the classes which a property may be used for.

RDFS also facilitates the creation of subproperties through the relationship type
rdfs:subPropertyOf. Additionally, there is a number of other RDFS built-in proper-
ties like rdfs:comment, rdfs:label and rdfs:seeAlso play a minor role with respect
to the ontological capabilities of RDF(S).

Finally, it should be mentioned that almost every RDF application uses both RDF
and RDFS (or its extension OWL); in fact, the distinction between RDF and RDFS,
while definitively existent in theory, is almost neglectible in practice.
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3.2.3 The Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a W3C standard which is built upon RDF
Schema and enriched with semantics taken from DAML+OIL. Extensive descriptions
of OWL are to be found for instance at the W3C site [OFT04,OGD04,OSM04,OUC04].
The history of OWL begins with the W3C standard RDFS which is described as
“semantic extension of RDF” ( [VDL04]). RDFS is part of six documents published by
the W3C that together constitute the RDF standard family. The vocabulary defined by
the lightweight RDFS is however very limited and was extended by a semantic markup
language named DAML+OIL8. DAML+OIL [CvHH+01] was first defined in 2000 and
is a combination and advancement of the DAML-ONT ontology language (DARPA
Agent Markup Language9) and the Ontology Inference Layer (OIL10). DAML+OIL
offers a vocabulary for defining ontologies with constraints and inference mechanisms.
OWL is basically an extension of DAML+OIL (for a list of changes from DAML+OIL,
see [BvHH+04], Appendix D). There are three increasingly-expressive subsets of OWL,
OWL Lite, OWL DL and OWL Full. OWL Lite “supports those users primarily
needing a classification hierarchy and simple constraints”, OWL DL11 is for users
“who want the maximum expressiveness while retaining computational completeness
[. . . ] and decidability” whereas OWL Full offers the “maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees” [OGD04].

Classes

All concepts with OWL are implicitly instances of the uppermost class owl:Thing. In
order to allow for the creation of user-defined classes, OWL introduces the owl:Class
property which is an extension of rdfs:Class and is used to denote classes throughout
OWL ontologies. Since owl:Class is a subclass of owl:Thing, every user-defined
class is also a subclass of owl:Thing, because the rdfs:subClassOf relationship is
transitive. “Individuals” (i.e. concepts that are not classes) are thus direct members
of owl:Thing, except if they are instances of other classes, obviously.
Since only OWL Full is capable of handling a concept as a class and an instance at the
same time, [OGD04] recommends to clarify the intended usage of an ontology before-
hand. If OWL Lite or DL are to be used (e.g. because of computational advantages),
workarounds for such concepts must be arranged.
OWL is also able to represent unnamed classes (or anonymous classes) that are not

8See [OO02] for a good introduction to DAML+OIL.
9http://www.daml.org/

10http://www.ontoknowledge.org/oil/
11“OWL DL is so named due to its correspondence with description logics, a field of research that

has studied a particular decidable fragment of first order logic. OWL DL was designed to support
the existing Description Logic business segment and has desirable computational properties for
reasoning systems.” [OGD04]
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represented explicitly by means of an URI, but instead implicitly by one of the following
OWL constructs:

• an exhaustive enumeration of individuals that together form the instances of a
class (owl:oneOf)

• a property restriction (there are 6 OWL constraints to specify value and cardi-
nality constraints; see example given below)

• the intersection of two or more class descriptions (owl:intesectionOf)

• the union of two or more class descriptions (owl:unionOf)

• the complement of a class description (owl:complementOf)

The following example is provided by the OWL Guide [OGD04], with the element
<owl:Restriction> being the unnamed class:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

Finally, there are two more built-in properties for further specifying classes:

• owl:equivalentClass to express the fact that two classes have exactly the same
set of instances, although the classes themselves are not equal;

• owl:disjointWith to express the fact that two classes must not have any com-
mon instances.

Instances

There are three built-in OWL properties that allow for stating facts about the identity
of individuals:

• owl:sameAs indicates that a certain concept is equal to some other concept; for
OWL Full, the concepts invoved may be instances or classes; for OWL Lite and
OWL DL, only instances are allowed.
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• owl:differentFrom indicates that two instances refer to different subjects.

• owl:AllDifferent states that all instances in a list refer to different subjects;
this construct can be replaced through corresponding binary owl:differentFrom
properties and is hence provided for convenience only.

Properties

In addition to the RDFS constructs related to properties, rdfs:subPropertyOf, rdfs:
range and rdfs:domain, OWL defines two types of properties: owl:ObjectProperty
and owl:DatatypeProperty. They (and their potential subproperties) are used to
relate concepts to concepts, or concepts to datatypes (i.e. simple literals or typed
literals), respectively. It should be noted that these types of properties are disjoint
classes: either a property is subproperty of owl:ObjectProperty, or it is subproperty
of owl:DatatypeProperty.
The most important additions of OWL with respect to properties however are the
following property characteristics:

Transitivity: if a property P is an instance of type owl:TransitiveProperty, then
for any x, y and z: P(x, y) and P(y, z) implies P(x, z).

Symmetry: if a property P is an instance of type owl:SymmetricProperty, then for
any x and y: P(x, y) implies P(y, x).

Functional: if a property P is an instance of type owl:FunctionalProperty, then for
any x, y and z: P(x, y) and P(x, z) implies x = z.

Inverse: if a property P is an instance of type owl:inverseOf, then for all x and y:
P(x, y) implies P(y, x), and P(y, x) implies P(x, y).

Inverse functional: if a property P is an instance of type owl:InverseFunctional
Property, then for all x, y and z: P(y, x) and P(z, x) implies y = z.

These property characteristics significantly improve support for inference engines and
together with class hierarchy relationships form the backbone of OWL ontologies.

Versioning

OWL provides several built-in properties to enable versioning of ontologies and parts
theirof. owl:versionInfo allows to attach an arbitrary string to a concept which
contains information about the current version of that concept. This feature is in-
tended to be used by versioning systems. owl:priorVersion can be applied to an
entire ontology and points to another ontology which represents a prior version.

58



3.3 Comparing Topic Maps and RDF

owl:backwardCompatibleWith and owl:incompatibleWith may also be applied to
entire ontologies and indicate the level of backward compatibility with other ontolo-
gies (which are assumed to be an prior versions). Finally, owl:DeprecatedClass
and owl:DeprecatedProperty designate deprecated classes and properties; concepts
marked this way should not be referred to any more. This allows for slowly migrating
applications to new versions of ontologies.
Finally, OWL also enables the import of other ontologies “whose meaning is considered
to be part of the meaning of the importing ontology” [BvHH+04]. The import is
achieved through use of the transitive owl:imports property.

3.3 Comparing Topic Maps and RDF

This section compares the constructs provided by Topic Maps and RDF; an exhaustive
analysis of the two technologies on a data model level can be found in Lars Marius
Garshol’s paper “Living with Topic Maps and RDF” [Gar03a]; Steve Pepper, on the
other hand, gives some general indications on the relationship between Topic Maps
and RDF [Pep02b]. Some hands-on experiences with using both Topic Maps and RDF
to create an index of conference papers are described in “Lessons on Applying Topic
Maps” [Pep02a].

3.3.1 Concepts

Topic Maps and RDF are both “identity based technologies”, which means that they
both primarily deal with representing subjects and making assertions about subjects.
Terminology is somewhat confusing here: what Topic Maps call “subjects” is exactly
the same as RDF’s “resources”; RDF “resources” are therefore not limited to electronic
resources, but may represent anything whatsoever.

3.3.2 Assertions

Topic maps offer three methods to make assertions about subjects: names, occurrences
and associations. RDF knows only the concept of “statements”:

• Names are added to RDF resources by using a name property (which must
be defined by the vocabulary used) instead of being assigned to subjects as
“privileged” (and built-in) properties.

• Occurrences are represented almost identically in Topic Maps and RDF (“prop-
erties”).

• Associations on the other hand do not have a direct counterpart in RDF. Topic
Maps associations can only be used to connect topics (but not topics and re-
sources), and may have any number of roles (and respective role players). RDF
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only allows exactly 2 roles (the subject and the object of a statement). Finally,
associations do not imply any directions, whereas RDF statements always point
from the subject to the object of an assertion (this is also the reason for the
existence of constructs like owl:inverseOf in OWL).

3.3.3 Reification

As shown in Section 3.1.7, reification of assertions can be achieved easily and elegantly
with Topic Maps. RDF also supports reification (Section 3.2.1), but the author has
to take a rather awkward way: the original statement has to be replaced by an empty
RDF node which is given the type rdf:Statement and which uses a special vocabulary
to add its subject, object and property; reified statements must therefore be treated
differently as ordinary RDF statements.

3.3.4 Qualification

Topic maps have the built-in feature of scopes that allow qualification of topic char-
acteristics, i.e. to express the context or limited validity of an assertion (see Section
3.1.6). RDF has no comparable feature, except a language identifier that may be
attached to literals. Of course, qualifying statements can be made if statements are
reified first, but for RDF statements reification is rather unhandy, as noted above.
Lars Marius Garshol identifies the underlying problem as follows:

“The key problem here is that statements in RDF have no identity, which
means that it is impossible to make resources that represent them (without
changing the statements) and since the model does not directly support
qualification support for qualification cannot be added through reification.
This is one of the most fundamental differences between Topic Maps and
RDF, and one that has so far frustrated all attempts to model Topic Maps
in RDF in a natural way.” [Gar03a]

3.3.5 Types and Subtypes

Both Topic Maps and RDF provide similar ways to create class (or type) hierarchies
and class instances (see Section 2.4). For RDF, creating subclasses is supported only
by using RDF Schema (RDFS), or OWL.

3.4 Summary

With respect to Topic Maps and similar technologies like RDF, an ontology can be
used to handle the following core tasks:
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1. It is a container for classes and provides methods to establish relationships
between these classes (“class hierarchy”, see Section 2.4). As this is the most
obvious purpose of an ontology, many definitions of the term “ontology” only
cover this aspect.

2. In most cases, ontologies also contain instances of classes; these instances can
then be connected through relationships (“associations” or “statements”).

3. It can be used to express constraints for the classes within the hierarchy; this
combination of class hierarchy and constraints, makes is possible to validate
classes and instances against it and to ensure thereby the semantic correctness
of the ontology.

4. It offers definitions of certain “built-in” properties for classes and relationship
types that are necessary to allow reasoning (or inferencing) on the class hierarchy
and the instances in the ontology. This makes it possible to get information from
an ontology which has never been supplied directly: e.g. if an ontology contains
the information that the concepts “mother” and “father” are subclasses of the
concept “parent”, and that “Leopold Mozart” was the father and ”Anna Maria
Pertl” the mother of “Wolfgang Amadeus Mozart”, a query against that ontology
for Wolfgang Amadeus Mozart’s parents should retrieve both his father and his
mother, although the fact that Leopold Mozart is Wolfang Amadeus’ parent has
never been stated directly.

Smaller ontologies for demonstration purposes can be found for instance at the on-
tology library sites [DOL04,OLB], including ontologies for wines, travel and tourism,
countries etc.
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This chapter deals primarily with issues regarding the practical implementation of ap-
plications that use ontologies as knowledge repositories. Three key topics were found
to be especially challenging: providing scalable, persistent storage, allowing for sim-
ple, yet flexible and powerful querying, and deducing new information by automated
reasoning over knowledge bases. Interestingly, the former two of these challenges are
generally considered to be solved for traditional applications, but appear anew if on-
tologies are involved. Also, solutions for Topic Maps and RDF/OWL sometimes follow
quite different approaches and show individual strengths and weaknesses that will also
be described in the following sections.

4.1 Persistent Storage for Ontologies

4.1.1 Overview

Ontologies represented with RDF/OWL and Topic Maps are likely to become valuable
tools for knowledge management and are necessary for the semantic interchange of
data between autonomous agents in a distributed environment such as the proposed
Semantic Web. RDF, OWL and Topic Maps are relatively new standards, which gives
them the possibility to take advantage of the experiences made with large, distributed
information stores such as the WWW. However, by the time of writing only few large-
scale implementations of RDF/OWL or Topic Maps exist outside of tightly controlled
research areas.
While ontologies are certainly capable of representing knowledge, this knowledge must
also be made accessible to users and agents. Therefore, persistent storage and pow-
erful query mechanisms for ontologies are critical issues for any ontology framework.
Providing scalable storage facilities is even more important as most example ontologies
available for the new ontology representation formats are quite simple and can easily
be kept in memory by ontology management systems. Real world ontologies however
are expected to grow up to significant size, depth and complexity, even more if they
are all connected through a future Semantic Web.
Compared to traditional web pages which form a large part of the world’s most success-
ful information store, the WWW, ontologies are unequally more difficult to represent,
store and query. The simple HTML format of web pages and their organization as
basic textfiles in a filesystem is certainly inadequate for a large and complex ontology.
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Ontologies in textual format (e.g. RDF/XML or XTM) are indeed available for down-
load on dedicated web sites, but if ontologies were actually to be distributed this way,
large ontologies would for instance have to be partitioned into many small files, like
the “RDF dump” of the DMOZ Open Directory [DMO]. This is however not an option
if one considers the large number of interconnections between concepts in complex on-
tologies; the DMOZ dump for instance contains about 300MB of data in compressed
format.
Rather, with respect to storage and data exchange, ontologies should be regarded as
repositories [Ahm00] that allow for adding, deleting, updating, and retrieving relevant
information through appropriate APIs or languages for data manipulation and query-
ing. This perception permeates the existing efforts for establishing persistent storage
facilities.
The perception of ontologies as repositories also makes them comparable to traditional
relational databases with respect to the features provided by storage services and the
expressiveness of query languages. Different approaches for enabling persistent and
scalable storage for ontologies are described in the next section; query languages and
inference mechanisms are discussed in sections 4.2 and 4.3.

4.1.2 Approaches to Providing Persistence

Both OWL and Topic Map ontologies use multiple notations such as RDF/XML or
XTM for information exchange purposes. However, as already mentioned earlier, these
formats are merely serialization formats of the underlying, abstract data models that
consist of nodes and arcs in case of RDF or topics, associations, occurrences and scopes
etc. (in case of Topic Maps). In order to provide persistent storage for these ontology
representation formats, basically three different approaches exist:

1. The concepts represented in the ontology are considered as individual, different
entities and are thus mapped to according structures, usually in a traditional
relational database system. The layout of these structures complies with the
properties of the respective concepts.

2. The constructs of the underlying data model are regarded as individual entities
which are to be persisted, usually again as structures in a relational database sys-
tem. The layout of the structures corresponds to the properties of the entities of
the data model as they are defined by the respective standards (W3C RDF/OWL
or ISO 13250 Topic Maps). For RDF, the simple three-valued statement data
model is often used as basis for dedicated so called “triple stores”.

3. The serialized versions of the concepts in the ontology are used for persistence
purposes. As both Topic Maps and RDF offer XML based notations, ontologies
can be represented as pure XML documents, which in addition are expected to
correspond to the according DTDs defined by the respective standards.
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Data Centric Persistence

The first approach is also known as data centric approach and often mentioned in con-
text with mapping XML documents to relational databases1 [KK03,Bou01a,Bou01b,
Mit03]. With respect to ontologies, the process can be described as follows.
The first step is to identify the types of concepts and their properties that are to be
stored in the ontology. Then, these types of concepts are mapped to according tables
in a traditional RDBMS, with the previously identified properties being the fields of
the tables. Finally, the instances of the classes can be inserted into the tables as
rows, with one row representing one instance of a concept. This procedure is the same
for subjects, relationships and all other data model entities defined by the respective
standard.
In addition, several “auxiliary” tables are needed to keep track of whether a certain
table maps to a subject or to a relationship etc. This leads to the situation that the
database is actually split into two “virtual layers”: the virtual “schema layer” consists
of the auxiliary tables that keep track of all classes in the ontology, whereas the virtual
“data layer” contains the tables created as instance containers for specific classes.
Such a data centric approach was for instance originally followed by the Sesame on-
tology framework [BKvH01, BKvH02] in conjunction with a PostgreSQL database.
Figure 4.1 shows the setup of the Sesame data centric object-relational mapping for
an exemplary ontology covering books and their writers (represented by the Book,
Writer and FamousWriter classes) which are connected by hasWritten-relationships.
There are two advantages that can be exploited with the data centric approach. First,
query answering as well as inserting, removing and updating instance of classes is
extremely inexpensive and straightforward, as there is virtually no difference to tra-
ditionally designed databases. All manipulations concerning instances are in effect
nothing more than executions of data manipulation commands as they are natively
provided by all RDBMS. Second, some RDBMS like PostgreSQL offer built-in object-
relational features that can be used directly for modelling class-subclass relationships
etc. PostgreSQL databases offer for instance the possibility to create subtables that
are connected to their parent tables through transitive relationships. This allows for
creating a table for a certain class and according subtables (for subclasses of that
class). The same is true for properties and subproperties, accordingly.
The main drawback of the data centric approach is that changes to the class hierarchy
in an ontology are extremely expensive, as they require creating new entities in the
database. For every new class (and also subclass) that is to be inserted into the
ontology, a respective table has to be created, even if only a small number of instances is
present. This means, that changes to the class hierarchy always require data definition
commands to be performed, which are expensive in almost any RDBMS. Referring to
the discussion in Section 2.5, in most cases an ontology (or the class hierarchy contained

1In this context however, XML and mapping methods are not directly addressed.
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Figure 4.1: The Sesame data centric object-relational mapping [BKvH01].
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in it) can not be considered to be static; rather, one of the main strengths of ontologies
is to facilitate the use of highly flexible schemas (if a variable class hierarchy can be
considered to be a schema at all).
Therefore, with exception of a few, special cases, changes to class hierarchies in ontolo-
gies must be assumed to happen frequently, which makes the data centric approach
unfeasible for many applications. Another reason for abandoning the data centric
object-relational approach in real world applications is its inflexibility against incre-
mental uploads of large datasets, as the developers of Sesame noticed:

“Our experiences with this database schema on PostgreSQL were not com-
pletely satisfactory. Data insertion is not as fast as we would like. Espe-
cially incremental uploads of schema data can be very slow, since table
creation is very expensive in PostgreSQL. Even worse, when adding a new
subClassOf relation between two existing classes, the complete class hier-
archy starting from the subclass needs to broken down and rebuilt again
because subtable relations can not be added to an existing table; the sub-
table relations have to be specified when a table is created. Once created,
the subtable relations are fixed.” [BKvH02]

Summarized it can be said that the data centric object-relational approach of providing
persistence for ontologies, while certainly being an interesting and promising one, in
practice fails to deal with variable class hierarchies in an efficient way, which is usually
reagarded as a crucial feature of ontologies.

Structure Centric Persistence

The second approach is also known as structure centric and is equally popular among
Topic Map and RDF implementations. As it is the case with the data centric approach,
persistency is eventually provided by a traditional RDBMS, but usually without re-
quiring object-relational features. Opposed to the first approach, the key idea here is
to map the finite number of data model concepts to according structures (tables) in
the relational database. Again, the process has also been described for XML docu-
ments [KK03,Bou01b,Mit03,Bou01a] but has also been specifically implemented for
both Topic Map and RDF applications.
As outlined in Section 3.1, the Topic Map data model offers a small number of built-in
concepts, like Topic, Association, Occurrence, Scope etc., whose properties are well
defined. In contrast to the actual classes and instances they represent, the number
and design of these built-in concepts are static (as they are standardized). Therefore,
it is a straightforward task to create corresponding structures in a RDBMS and map
the concepts to these structures in such a way that in the end there is one table for
all topics, one table for all associations, etc. Various examples of this implementation
for Topic Maps exist, e.g. [WM01,KLS+01].
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subject predicate object

ex:vienna ex:inhabitants 2000000

ex:mozart ex:born-in ex:salzburg

Figure 4.2: A naively implemented triple store table.

With respect to RDF, the data model consists basically only of statements, with each
statement including a subject, an object and a predicate (Section 3.2). This means
that for a naive approach only one single table (with three corresponding text fields
containing the respective URIs or literals) is needed to express a complete RDF graph,
as shown in Figure 4.2. Due to the layout of their tables, databases configured this
way are therefore commonly referred to as triple stores. They are certainly a very
elegant solution for ontology persistence and are probably one of the main reasons
that RDF/OWL has gained significant popularity among ontology developers. Also,
many variations and improvements over the naive approach exist, mainly in order to
achieve high levels of scalability.
The first advantage of the structure centric approach is its ability to allow for in-
expensive, frequent changes of instance data as well as of schema information (class
hierarchies). Since all assertions, including hierarchical relations, are broken down
to the level of single statements, no artificial distinction between “schema layer” and
“data layer” has to be made. This allows not only for representing frequently changing
ontology hierarchies, but also for efficient incremental incorporation of large datasets,
as no structural changes of the underlying database schema are required.
The second advantage of structure centric ontology representation is commonly found
to be reported for dedicated triple stores, but also applies for Topic Map represen-
tations. Due to the fixed, rather simple architecture of the database, scalability op-
timizations are easy to apply, enabling the efficient storage of millions of concepts
and relationships. Several optimizations that were realized in practice are outlined in
Section 4.1.3.
One main disadvantage of the structure centric approach (in the case of RDF triple
stores) is encountered when retrieving statements for answering ontology queries. In
order to evaluate a condition that not directly addresses the URIs or literals of the
statements to be retrieved, the table containing the statement triples has to perform
one or more self-joins, an operation which is expensive for large datasets [ACKP01,
KK03]. Such large datasets must be considered to occurr frequently, as all information
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of an ontology is stored within a single triple table. It is therefore not uncommon for
such a table to contain millions of triples, which have to be compared to each other
even several times, depending of the nature of the query to be answered. Although
various optimization efforts try to limit the negative effects of storing triples in a single
table, generally worse query answering performance has to be expected compared to
the object-relational approach.
One more positive potential of structure centric persistence should be mentioned.
First, in addition to querying and modifying the contents of an ontology through
traditional SQL statements like SELECT, INSERT, UPDATE or DELETE, many
modern RDBMS also provide support for storing and retrieving XML-formatted data.
Usually, XML documents are required to conform to a predefined schema (e.g. a
DTD) and are then mapped to according relational structures within a database.
This functionality can only be exploited as long as the schema of the XML documents
is not changing (frequently), because the mappings are usually regarded as static. The
structure centric approach of storing ontologies meets this criterion, thus enhancing
the interoperability between ontology applications and databases by facilitating the
use of XML-based data exchange.
Similar considerations can be applied to frameworks that provide persistence for Java
objects etc., such as Hibernate [Hib], Castor [Cas] and many others. Again, rather
static mappings are being used, which asks for a static database model. Some frame-
works actually provide some automated creation of database schemas, but this is again
not an option for frequently occurring schema changes. Therefore, the structure-centric
approach is also the only one appropriate for such frameworks, apart from the fact
that most object-oriented applications which capsulate ontologies (e.g. Topic Map
engines etc.) will generally use the standardized RDF or Topic Map data models as
design patterns for their internal classes (whose instances eventually are the objects
to be persisted).

XML-based Persistence

The third approach to achieve ontology persistence is inspired by the XML serialization
formats of Topic Maps and RDF, namely XTM and RDF/XML. For instance, the
XTM4XMLDB [Lis] implementation provides persistence for Topic Maps using the
open-source XML database eXist [eXi].
From the perspective of XML processing tools and applications, both XTM and
RDF/XML are just ordinary XML schemas (or DTDs) which impose strict constraints
on the structure of XML documents containing serialized ontologies. Therefore, it
seems to be a straightforward task and promising idea to store XTM and RDF/XML
documents within dedicated XML databases, especially from the perspective of an
application developer. After all, quite an amount of work is needed to provide effi-
cient persistence for ontologies using relational databases as outlined in the two former

69



4 Implementation Challenges

approaches.
As Ronald Bourret points out, “the term ‘native XML database’ first gained promi-
nence in the marketing campaign for Tamino, a native XML database from Software
AG” [Bou03], but no formal technical definition has ever been provided. Opposed
to XML-enabled relational databases, native XML databases completely abandon the
concept of tabular organization of data in favor of text-based or model-based storage
mechanisms specifically tailored to XML:

“Native XML databases are databases designed especially to store XML
documents. Like other databases, they support features like transactions,
security, multi-user access, programmatic APIs, query languages, and so
on. The only difference from other databases is that their internal model
is based on XML and not something else, such as the relational model.”
[Bou03]

With respect to their use as repositories for ontologies, one important observation must
be taken into consideration: XML databases primarily provide methods for storing
and retrieving XML documents. Although access to arbitrary parts of documents
is also possible, efficient retrieval of data is mostly achieved when accessing either
whole documents or their parts in the order of their appearance (within the document
hierarchy): “retrieving data in the hierarchy in which it is stored is very quick, but
retrieving the same data in a different hierarchy is not” [Bou03]. Also, many native
XML databases, while supporting large numbers of documents, require individual
documents to be rather small in size for efficient processing.
The focus on documents as primary entities poses the question of how XML documents
relate to ontologies. Although one single XML document can contain a complete
ontology from a conceptual point of view, storing such a large, single document is not
advisable for the reasons given above. Rather, ontologies have to be broken down into
multiple XML documents, for instance based on the concepts and relationships that
are represented, or on the entities of the underlying data model (RDF nodes and arcs,
Topic Map topics, associations etc.). However, there are no standardized guidelines
for such partitionings of ontologies.
In other respects, native XML databases provide features that are not necessarily
needed by ontology applications. The most important one is that XML databases
are able to store XML documents in the exact format they were specified, including
comments, blank lines, processing instructions etc. This makes it possible to round-
trip documents, which means that storing and retrieving a document results in exactly
the same data. This ability is crucial for many XML processing applications, but is
not generally required for storing ontology serializations.
In fact, XML documents are mainly used for two different purposes: either they serve
as pure containers for data and are thus said to be data-centric2, or they encapsu-

2The term “data-centric XML document” as used in this place is not related to the “data-centric
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late text intended for human consumption with additional markup and are called
document-centric (because they are comparable to text documents generated by tra-
ditional word processors).
Document-centric XML documents “are characterized by less regular or irregular struc-
ture, larger grained data [. . . ], and lots of mixed content” [Bou03]. The order of the
elements within the document hierarchy is usually significant. Data-centric documents,
on the other hand, exhibit a very regular structure with fine grained data elements
without mixed content. Since data-centric XML documents are intended for machine
consumption, the order of the elements in the document hierarchy is not important in
most cases.
Obviously, XTM and RDF/XML files are data-centric documents, as they are merely
serialized versions of ontologies which are not conceptually tied to XML. Native XML
databases however must support both data-centric and document-centric XML files,
which results in a certain overkill of features that are not needed for storing XTM or
RDF/XML documents.
Finally, native XML databases are not superior to relational databases in terms of
support for the ontological data models used by Topic Maps or RDF. While these
data models are both based on graphs, XML uses tree-based structures, which are
great for applications where tree structures are natively used, but provide almost no
advantages for representing graphs. This can also be recognized by the fact that XML-
based query languages, such as XPath or XQuery, offer no additional power over SQL
for almost any operations on ontologies, whereas they are definitely superior whenever
“genuine” tree structures are to be queried: “questions like ‘Get me all documents in
which the third paragraph after the start of the section contains a bold word’ [. . . ]
are clearly difficult to ask in a language like SQL” [Bou03]. Relational databases use
a model consisting of tables and rows, which neither allows for representing graphs
directly, but has proven to be reliable and, above all, massively scalable.
Summarized, native XML databases are certainly interesting candidates for storing
ontologies serialized with XML-based notations. However, with respect to relational
databases, they offer no real advantages on the representation of the underlying ontol-
ogy data models, while at the same time features like round-tripping and hierarchical
queries (e.g. using XQuery) are not needed by data-centric XML documents such
as XTM or RDF/XML files. Also, frameworks that provide persistence for ontolo-
gies will probably prefer relational databases over native XML databases because the
former are not only more “mature”, but there are also many different RDBMS imple-
mentations ranging from simple in-memory databases to enterprise server RDBMS,
covering all major platforms and operating systems and thus facilitating portability
and customization.

approach” for ontology persistence described earlier.
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4.1.3 Scalability Considerations

If ontologies are to become the backend of semantically enriched applications, they will
surely need to represent many thousands or even millions of concepts and relationships.
Therefore, the scalability of ontology data stores is an important issue for any larger
ontology-powered application.
As Section 4.1.2 demonstated, there are not many options that promise to scale be-
yond a certain depth and complexity of an ontology. The only approach to provide
persistence in a truly scalable way is the structure centric one, which for RDF results
in dedicated triple stores. Topic Maps can be persisted by using a similar schema, but
due to the higher complexity of the Topic Map data model with respect to RDF, more
structures are needed in a database schema. While quite a large number of Topic Maps
applications are known to be successfully working under real world conditions, the lack
of information about Topic Maps and scalability should be noted here; certainly, this
crucial aspect has to be examined more thoroughly. A theoretical work considering
Topic Maps as hypergraph [BA01] has been presented in 2001, but no results of real
world implementations are available by the time of writing. Topic Maps concepts have
also been used to develop UTON, “a technology framework for building large scale
ontologies” [Var02], but again results can not directly be interpreted for Topic Maps.
Many RDF triple stores, on the other hand, have been tested with large quantities
of data to determine their ability to scale with large ontologies [Lee04]. Instead of
presenting various implementations and their respective performance figures, some
general approaches on improving scalability for dedicated triple stores are described
here. As starting point, the naively implemented triple store table as shown in Figure
4.2 is used.
The first, quite obvious improvements are motivated by the long and verbous character-
based format of URIs. URIs used in RDF/XML are ordinary XML URIs which consist
of namespaces and identifiers for the resources that are represented. Since namespaces
are usually used many times in different URIs, database size can be reduced by mov-
ing them to a separate table. Sometime, this idea is extended to whole URIs, as e.g.
proposed by ICS-FORTH’s “generic representation” [ACKP01]. The “generic repre-
sentation” (shown in Figure 4.3) consists of two tables, one storing the actual URIs
and assigning them unique (integer) numbers, the other representing the triples by
using the unique numbers instead of full URIs. Triple stores configured in such a way
are commonly referred to as normalized triple stores.
Another optimzation which is common among RDF triple stores is to treat literals
different from URIs. This is usually achieved by using a dedicated column in the
triples table, as it can also be seen in Figure 4.3. Since literals can only be used as
objects (and never as subjects or predicates) in a RDF statement, only one of the
two columns “object” and “literal” is used per row. Although this results in a large
number of NULL values to be inserted, it increases scalability, because the distinction
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Figure 4.3: Outsourcing URIs for increased scalability [ACKP01].

between URIs and literals can be made already at database level and does not have to
be performed by the application. There is also another reason for having a separate
column for literals only: literals are simply strings that must be interpreted by the
application (in case of typed literals, they are accompanied by a datatype identifier to
facilitate interpretation) and can therefore also contain URIs as values. These URIs
are not to be treated as “resources”, but only as literal string values; however, they
look exactly like resources identified by URIs, which makes literals and resource URIs
indistinguishable from each other if they are not contained in separate table fields.

A novel approach to achieve persistence and scalability for RDF was developed by R.
V. Guha and resulted in his triple store database rdfDB [Guh]. rdfDB uses hashes of
URIs to build three B-Tree index files based on the URIs of “subject and predicate”,
“object and predicate”, and “predicate” only, respectively. The idea of creating hashes
from URIs has been adopted by other implementations, e.g. 3store [RTS]. 3store uses
the MySQL RDBMS for persistence and a database layout as shown in Figure 4.4.
The “triples” table stores only the hashes of the URIs, whereas the tables “resources”
and “literals” connect hashes and URIs (for resources) or hashes and literal values
(for literals). The most appealing benefit from using hashes is that the lookup-tables
“resources” and “literals” are only needed for converting output-hashes into URIs: the
hashes of URIs within the query can be calculated by a hashing algorithm, and join
operations in the database during query execution are performed with the hash values
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Triples
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int64 text

Figure 4.4: The 3store database layout using hashed URIs.

themselves; therefore, only those hashes that appear in the result of a query must be
re-transformed into URIs using the lookup-tables.
All implementations discussed so far treat all types of concepts and relationships
equally, whether they are predefined in the respective standard or “user-defined”, e.g.
created through appropriate subclassing and instancing of basic elements. Although
they are not different from a technical point of view, most ontologies will make heavy
use of the built-in types and properties as defined by the Topic Maps or RDF/OWL
standards. Therefore, efficient processing of these types and properties is especially
important. Such considerations led to the development of so called hybrid solutions,
for instance the “specific representation” of ontologies presented by ICS-FORTH (see
Figure 4.5):

“In the former representation [. . . ] the core RDF/S model is represented
by four tables [. . . ], namely, Class, Property, SubClass and SubProperty
which capture the class and property hierarchies defined in an RDF schema.
[. . . ] The main goal of SpecRepr is the separation of the RDF schema from
data information, as well, as the distinction between unary and binary
relations holding the instances of classes and properties.” [ACKP01]

Another scalability improvement is introduced by the Jena Semantic Web Framework
[Jen]. Jena23 uses a denormalized triple store for increased scalability, in contrast to
the normalized triple store approach described earlier:

3Only the current version of Jena, Jena2, uses the denormalized version; its predecessor, Jena1, used
a normalized triple store.
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Figure 4.5: The hybrid solution, distinguishing RDF/S types and properties.

“This normalized scheme uses less space than the standard triple store
approach since a literal value or resource URI is only stored once, regardless
of the number of times it occurs in statements. The space savings comes at
a cost however since retrieving the subject, predicate and object values for
a statement requires a 3-way join of the statement, literals and resources
tables.

[. . . ]

Jena2 stores RDF statements using a denormalized triple store approach
which is a hybrid of the standard triple store and the normalized triple
store. This scheme uses a statement table, a literals table and resources
table as before. However, the statement table may contain either the val-
ues themselves or references to values in the literals and resources tables.
‘Short’ literals are stored directly in the statement table and ‘long’ liter-
als are stored in the literals table. Similarly short URIs are stored di-
rectly in the statement table and long URIs are stored in the resources
table.” [Jen04]

The denormalized triple store approach taken by Jena2 is basically a trade-off between
storage size and query response time: shorter response times are achieved at the
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expense of additional storage space. A configurable threshold length separates “long”
values from “short” ones, effectively limiting the negative effects on storage size and
query response time.
Finally, most implementations providing persistence for ontologies take special care of
“non-standard situations”: the most commonly appearing exceptions are reified state-
ments and inferred assertions. Reified statements are either flagged by an additional
(boolean) column in the triple store, or are stored in a separate table (e.g. in Jena2):
“the benefit of the reified statement table is that it stores reified statements in an
optimized form” [Jen04], effectively removing the need for storing the four statements
(that together form the reified version of a single “normal” statement) as four rows in
a standard triple store (see also Section 3.2.1).
Inferred statements are usually automatically added by inference engines upon in-
sertion of an asserted statement and must be marked as such, since they must be
removed or recalculated whenever statements are deleted from the ontology. Without
such indication, there would be no way to later on distinguish between statements that
were explicitly inserted into the ontology and statements that were inferred automat-
ically based on inference rules. Of course, marking inferred statements only applies to
forward-chaining inference mechanisms which calculate inferred statements in advance
(see Section 4.3).

4.1.4 Cyc Transcript Files

An interesting solution that is quite different from the approaches presented earlier is
applied by the Cyc System [Cyc], which basically adopts an in-memory approach and
adds support for updating the knowledge base by writing new and updated data to a
transcript file:

“The world file contains a copy of the knowledge in the KB that has been
translated into a compact, efficiently loaded binary format called CFASL.

[. . . ]

When the executable file is invoked to start a running process, part of the
information that must be provided (e.g., via a command line argument or
in a configuration file) is the name of the desired world file. The newly
started process will try to locate the specified world file and, if successful,
will try to load the entire contents of the file into memory (RAM plus
virtual memory).

[. . . ]

Every running Cyc image has a separate copy of the knowledge base. This
raises the question of how, at a site where several people are using Cyc
and the KBs of several images are frequently modified, the different KBs
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are kept in sync. This is accomplished by having each image write its
own operations (KB modifications) to a sequence of transcript files. [. . . ]
a Cyc image that is completely up-to-date (i.e., that has processed all of
the operations contained in the master transcript file) should be used to
write out a new world file. This world then becomes the new foundational
knowledge base that all Cyc images load when they start up [. . . ]” [SGKM]

Transcript files as described by the Cyc architecture are appropriate if several users
are modifying a large ontology: inconsistencies due to concurrent updates are detected
whenever a Cyc image processes changes that were originally performed on another
image, which is quite different from how RDBMS work (inconsistencies are prevented
by locking mechanisms). Transcript files are therefore adequate for occasional updates
with low probability of concurrency, but are likely to become too inflexible for other
scenarios.

4.1.5 Persistent Storage Summary

As shown in the previous sections, traditional relational databases still play an impor-
tant role for providing persistence for ontologies, even though they do not naturally
support flexible schemas and hierarchical structures. By concentrating on the limited
number of concepts defined by the Topic Maps and RDF/OWL standards, the effects
of the variable nature of ontological schemas can be compensated, which enables suf-
ficially scalable solutions for storing ontologies. Many optimizations and variations
exist to further enhance speed and efficiency, most of them focusing on RDF triple
stores.
The approaches presented in the previous section all share common features of mod-
ern RDBMS, such as multi-user access, ACID4 transactions etc. Of course it is also
possible to store ontologies in simple XML files, but this strategy is only advisable
for small, single-user test environments and certainly does not scale well. The same is
true for in-memory implementations, which are quite common among ontology frame-
works. While offering superior speed when answering queries, multi-user access is
usually provided for read-only scenarios only, if at all. Finally, the in-memory method
employed by Cyc, while certainly being an interesting option, is not likely to perform
well within distributed environments.

4.2 Querying Ontologies

As discussed in Section 1.3, representing knowledge with ontologies is an important
step towards true computer-aided knowledge management. With the possibility of
persisting large ontologies in appropriate storage facilities, ontologies would finally be

4Atomic, Consistent, Isolated, Durable
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able to elvove from pure research objects to real world applications. However, repre-
senting knowledge is not enough to allow for practical use of ontologies: appropriate
querying methods are equally important and must be provided to fully exploit the
power of ontologies.
As there exist different approaches on storing ontologies, e.g. relying on RDBMS or
native XML databases, one could consider the use of well-established query languages
like SQL or XQuery [XQR04] as a logical consequence. Since ontologies can be de-
composed into according tables in a relational database, or serialized to XML using
one of the XML-based serialization formats, such query languages obviously offer the
possibility to retrieve all data contained in an ontology. Such considerations are indeed
not incorrect, but do not account for the special semantics used within ontologies.
Both SQL and XQuery are well suited for retrieving data from a known schema and are
thus bound to the structure of the data store. A query author is generally expected
to know this structure, a requirement that is acceptable for traditionally designed
databases. Ontologies however actually use a data model that differs significantly
from its representation in a database, as explained in Section 4.1. Users querying on-
tologies can be expected to know the abstract data model (and its primary elements,
such as topics, associations, occurrences, or nodes and arcs) that Topic Maps or RDF
use, but they should not have to deal with the implementation details of the ontology
store (e.g. whether a data-centric or a structure-centric approach is followed, or which
serialization syntax is used etc.). For XML documents, things are even more compli-
cated, as many different XML syntaxes are allowed by the RDF/XML notation itself.
Broekstra, Kampman and van Harmelen point out that

“[. . . ] the XML syntax for RDF is not unique: different ways of encoding
the same information in XML are possible and in use currently.” [BKvH01]

The ambiguity of the RDF/XML notation therefore effectively prohibits querying XML
documents on a syntactical level. The solution of this problem is to distinguish be-
tween the structural level at which the information is encoded, and the semantic level
which corresponds to the abstract data model used for ontology representation. As
both SQL and XQuery clearly belong to the structural level, the need for dedicated
query languages at the semantic level arises: “a direct usage of the XML syntax
(and its underlying tree data model) in order to represent RDF/S (meta)data is not
appropriate, since semantically equivalent descriptions may have several XML seri-
alizations” [KMA+02]. The purpose of such semantic query languages is to hide the
implementation details from the ontology user and instead provide means to formulate
queries on the semantic, data model level:

“In this way, Semantic Web applications have to specify in a high-level
language only which resources need to be accessed, leaving the task of
determining how to efficiently store or access the descriptions to the un-
derlying RDF database engine.” [KMA+02]
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Similar considerations apply to Topic Maps. Semantic query languages are also com-
monly called “graph-based”, as they rely on the graph representation of ontologies.
The main advantage of semantic query languages, apart from syntactical considera-
tions, is their ability to perform certain advanced tasks such as recursively traversing
class hierarchies and determining inferred instantiation relationships. This is only
possible because graph-based query languages incorporate the semantics of the under-
lying data model, which for instance defines the transitive nature of the subclassOf-
relationship. Without this knowledge, only direct instances and subclasses can be
determined automatically. Providing these kinds of “basic inference” is however cru-
cial for user interaction purposes: since the query author is expected to think in terms
of the data model, query results must live up to obvious expectations: if a query author
wants to retrieve all instances of a certain class, all instances of all subclasses must
also be included in the answer, if complete abstraction from the actual implementation
should be achieved. If more powerful methods of inference are needed, dedicated in-
ference engines can be used; see Section 4.3. A formal approach of performing queries
on DAML+OIL ontologies using inference is for instance presented by Horrocks and
Tessaris [HT02].
For ontologies expressed with RDF, another, more light-weight method to perform
queries exists. Due to the simplicity of the RDF data model, which basically consists
of nodes and directed arcs, RDF ontologies can be described by 3-valued statements
(triples), which are usually persisted in triple stores as outlined in Section 4.1.2. The
triple notation of RDF ontologies has been used as a basis for a number of query
languages which essentially allow for selecting triples based on filter expressions. Al-
though triple-based query languages do not provide actual abstraction from the im-
plementation (the triple store), they obscure many implementation details such as
special treatment of literals, redundancy for the sake of performance etc. The benefit
of triple-based languages is that they can easily be implemented (at least in triple
stores) and are usually well supported by the storage modules themselves: for in-
stance, rdfDB [Guh] and 3store [RTS] use dedicated index files that allow for fast
query execution based on triple filtering using URI hashes.
Topic Maps, on the other hand, are not subject to triple-based languages or similar
simplifications, because their data model can not be generalized any more (at least
no other standardized versions exist). This is also the reason for Topic Maps query
languages always fully incorporating the semantics of the Topic Maps data model.

4.2.1 RDF Query Languages

In this section, popular query languages for RDF are presented and their most impor-
tant features are described.

RQL: RQL [KMA+02] is one of the few graph-based query languages for RDF. The
specification of RQL introduces the “Formal Data Model”, a semistructured
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type system that is used by RQL in addition to the RDF and RDF Schema
standards. The Formal Data Model clearly distinguishes between data, schema
and metaschema layers within an ontology and also imposes some additional
constraints on the original standards (such as prohibiting loops in hierarchies).
It is the foundation of the RQL query language specification itself: “Exploiting
its formal background, RQL constitutes a typed, declarative query language for
uniformly navigating on RDF/S graphs at all abstraction layers” [KMA+02].

RQL uses predefined functions such as subClassOf and subPropertyOf to tra-
verse recursively the class and property hierarchies in the ontology. Some of these
functions are closely related to the according vocabulary provided by RDF/S,
others like leafclass are provided for convenience. Answer sets can be limited
to direct predecessors and successors in the hierarchy by using the “^” operator.
Binary operators like =, <, > etc. can also be used to compare hierarchical re-
lationships between classes (Painter < Artist). Projection5 is provided by a
SQL-like syntax, as are the set operations UNION, INTERSECT and MINUS.

One of the most interesting aspects of RQL is its functional nature: RQL op-
erates on arbitrary RDF structures (graphs), and all query answers are again
returned as “bags” or “sequences” as defined by the RDF standard. This makes
it possible to use the output of a RQL query as input of another, a process which
is called functional composition6. The possibility of “chaining” RQL queries sig-
nificantly increases RQL’s expressive power.

RDQL: The “RDF Data Query Language” [Sea04a] is a quite simple language derived
from the discontinued SquishQL query language and used by a number of RDF
systems. RDQL is triple-based, using triples with constant values and variables
as selectors:

“An RDQL consists of a graph pattern, expressed as a list of triple
patterns. Each triple pattern is comprised of named variables and
RDF values (URIs and literals). An RDQL query can additionally
have a set of constraints on the values of those variables, and a list of
the variables required in the answer set.” [Sea04a]

RDQL uses a SQL-like syntax to allow for projection. No recursive traversal
of hierarchies is provided, and the language is not functional (it uses triples as
input and provides variable bindings as output).

SeRQL: This graph-based query language is used in the Sesame RDF framework and
is based mostly on RQL. It inherits RQL’s ability to traverse class hierarchies

5Projection allows for including only relevant variables in the final answer set, thus improving per-
formance by removing all temporary variables.

6For instance, SQL is also a functional language, which can use subqueries as input for other queries.
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and offers similar built-in functions. SeRQL is also able to query for reified
statements, a functionality that is missing in RQL.

Unlike RQL, SeRQL offers two different methods for retrieving query results:
either the answer is in tabular form, binding query variables to values (using
the SELECT clause similar to SQL), or a new RDF graph can be constructed
from the values determined by the query (using the CONSTRUCT clause). The
latter method “returns a true RDF graph, which can be a subgraph of the graph
being queried, or a graph containing information that is derived from it” [SeR].
Construct clauses would enable functional composition of SeRQL queries, but
no nesting of queries is supported at the time of writing.

SPARQL: The SPARQL query language [Sea04b] is being developed by the “W3C
RDF Data Access Working Group” and is based on the triple-model. It bor-
rows many concepts from RDQL, but adds functionality to construct output
graphs similar to SeRQL. Since no actual query nesting is supported, functional
composition of queries is again not possible.

Since SPARQL does not incorporate any predefined RDF/S vocabulary, it lacks
any support for inference: “A query processor is unaware of any inference an
RDF store may provide and SPARQL makes no distinction between inferred
triples and asserted triples” [Sea04b]. It should be noted that SPARQL is still a
W3C Public Working Draft at the time of writing. Also, SPARQL may become
increasingly interesting for remote ontology querying purposes once the definition
of the SPARQL remote access protocol is published.

TRIPLE: TRIPLE [SD02] is a query language based on Horn-logic and F-Logic (see
Section 4.3.4) that focuses on RDF inference and transformation tasks. Al-
though basically operating on triples (hence the name), its expressiveness can
be considered to be very powerful, mainly due to the layered nature of the lan-
guage. In contrast to other query languages, TRIPLE does not predefine certain
predicates to support the semantics of one representation format (like RDF/S
or Topic Maps), but provides means for defining rules. This makes it possible
to use TRIPLE for a variety of languages, including RDF/S, OWL, Topic Maps
and UML; it has been used for RDF-based languages mostly.

As Horn rules are not powerful enough to represent the complete semantics of
languages like OWL, external reasoning programs (DL classifiers) can be plugged
in to support or replace the built-in inference engine. TRIPLE is also able to deal
with reified statements and allows for defining rules with full First Order Logic
syntax. Skolem functions can be used for ontology mapping and integration
purposes. TRIPLE offers both a ASCII-based syntax and a RDF-based syntax
intended for human or machine consumption, respectively.
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Versa: The graph-based query language Versa allows for easy navigation along the arcs
in a RDF graph. Its main strength is the support for both forward and backward
traversals of paths within a RDF model: in forward traversals, navigation occurs
from subject to object, whereas in backward traversals, the object is the starting
point. Traversals can also be done trasitively, thus supporting the transitive
nature of some relationship types (like subClassOf).

Versa makes heavy use of functions, which gives it a LISP-like appearance. In
addition to functions specific to the RDF standard (like all(), which retrieves
all resources from a model), a large number of string, boolean, logic and set
functions is provided by the language.

This is of course not an exhaustive list of all RDF query languages available; however,
some query languages were either developed for theoretical purposes only and were
never implemented for actual use, or are still in a very experimental state and thus
not appropriate for “real world”-usage purposes.

4.2.2 Topic Maps Query Languages

This section lists most of the available Topic Maps query languages together with their
respective characteristics.

tolog: The tolog query language [Gar03b, Gar04b] combines elements from Datalog
(a subset of Prolog) and SQL to answer queries on Topic Maps. At the time
of writing, tolog is the most complete query language available for Topic Maps,
with several real world implementations actively using it. Therefore, it is also
considered to be the most promising candidate for the upcoming TMQL standard
(see below).

Tolog uses built-in predicates such as topic(), association(), instance-of(),
type()7 etc. for modelling the according semantics of the Topic Maps standard.
Answers are always in tabular form; no functional composition of queries is
possible.

Associations in a Topic Map can be used as “dynamic predicates”:

composed-by(puccini : composer, $OPERA : opera)?

will for instance retrieve all operas composed by Puccini in a Topic Map8. Since
Topic Maps associations are n-ary and undirected, the order of the values in
a predicate is meaningless to the query processor. Therefore, values must be

7The predicate type models subclass relationships.
8The complete example queries for tolog can be found in [Gar04b].
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followed by the type of role they play in the association (i.e. “composer” and
“opera” in the example).

Similarly, occurrences can be used as dynamic predicates using a syntax like
date-of-birth($COMPOSER, $DATE)? which retrieves all composers (topics, ac-
tually) and their birth dates in the Topic Map. Occurence predicates are always
binary, with the first value representing the topic and the second value the oc-
currence.

Other tolog features are the support for boolean operators, sorting, counting,
projection of output variables and “non-failing clauses” (i.e. “a clause that will
produce a value for a variable if it can, but if it cannot still won’t cause the
query to fail” [Gar04b]).

One of the most interesting features of tolog is its ability to represent user-
defined inference rules which are executed and evaluated by the query processor
whenever a query is to be answered. Inference rules are specified like predicates,
taking an arbitrary number of variables as parameters and defining a function
body which uses the input variables for other predicates:

influenced-by($A, $B) :- {
pupil-of($A : pupil, $B : teacher) |
composed-by($OPERA : opera, $A : composer),
based-on($OPERA : result, $WORK : source),
written-by($WORK : work, $B : writer)

}.

Inference rules can use other inference rules and may also be recursive, which
makes it possible to transitively traverse Topic Maps. They can be added to
a query directly, or they may be stored in external files and imported via the
import statement whenever needed.

Toma: This query language [Pin04] also supports the semantics of the Topic Maps
data model through built-in functions like $topic.type(), $topic.super() etc.
Associations are modelled using the -> operator. Projection and set operations
are also present, but many other features expected from a query language are
still missing. Among them are the standard comparison operators (<, > etc.),
ordering and grouping of results (similar to SQL), and creating user-defined
functions (analoguous to the inference rules in tolog).

AsTMa?: The AsTma? query language [Bar03a,Bar03b] is part of the AsTMa* lan-
guage family and uses AsTMa= and AsTMa! for notation and specifying con-
straints respectively. Topic Maps semantics are again incorporated as built-in
keywords, enabling the search for topics, associations, occurences etc. Queries
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can be wrapped as functions which can be used by other functions, thus encapsu-
lating the complexity of queries and allowing for elegant combination of queries.
Functions can return simple values, lists, XML markup or entire Topic Maps.

TMPath: TMPath [Bog04] is actually not a complete query language, but can be used
to address parts of a Topic Map in XPath-like style. It relies on the TMDM and
incorporates its semantics through according keywords (“steps”). Toma allows
for quantified and conditional expressions; transitive assciations are supported
through the // operator.

TMQL: All Topic Map query languages presented so far are not formally standardized,
which means that at the time of writing no official standard for querying Topic
Maps exists. To overcome this situation, the Topic Map Query Language is being
developed by the ISO/IEC JTC1 SC34 WG3 and will eventually become official
standard ISO 18048. Although the need for a standardized query language has
been recognized already several years ago, no specific draft (apart from a very
early “clay man version”9) of the language exists yet. The reason for this was
the lack of a formal data model for Topic Maps which would enable a precise
definition of the query language. The revised ISO 13250 standard now also
includes the “Topic Map Data Model” (see Section 3.1.9) which was finished in
early 2005 but has no official status yet. Workings on improved versions of the
TMQL are expected to start soon.

Some preliminary considerations on the requirements [GB03a] and use cases
[GB03b] of the TMQL already exist, together with a few proposals on the syn-
tax of the language [Ksi00]. Also, many popular query languages (tolog, Toma,
AsTMa?, TMPath, XTMPath [BG02] etc.) are regarded as candidates for bor-
rowing syntactical constructs to the TMQL; the final language definition is likely
to include elements from various languages. The clay man proposal uses a SQL-
like syntax mostly influenced by tolog, with added capabilities for path-based
navigation, both built-in and user-defined functions, querying multiple Topic
Maps, specifying existential and universal quantifiers as well as supporting sev-
eral auxiliary functions, such as constructors for answers in Topic Maps format
(e.g. which Topic Map elements should be included in the query response).

Due to the lack of an official standard, many Topic Map frameworks either
support one of the languages presented above or enable access to a Topic Map
by providing according APIs, which generally not only allow for retrieving parts
of Topic Maps, but also for inserting new items and updating existing ones.

9Presentation slides covering the functionality of the clay man version can be found at http://www.
jtc1sc34.org/repository/0502.pdf.
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Again, some more query language for Topic Maps exist, but are not described here in
detail because of their incomplete implementations.

4.2.3 Query Languages Summary

As outlined in the previous section, numerous approaches to semantic query languages
for ontologies exist. Some of them are specified in detail, while others are still of exper-
imental nature. Common tasks such as finding direct instances of classes are usually
supported well, whereas advanced properties like functional composition or transi-
tive traversals are not implemented in many languages. Since the latter is usually
considered to belong to the “inference part” of an ontology, this is not necessarly a
disadvantage, even more as many languages try to be as simple as possible. Generally,
it remains an open question to which extent inference capabilities should be incorpo-
rated into query languages; reasoning with ontologies is discussed in detail in Section
4.3.
With respect to traditional query languages like SQL, many query languages appear
to be rather poorly equipped with built-in functions. Ordering, grouping and set
operations on result sets are commonly used features of SQL, but are often not present,
as sometimes are boolean and comparison operators. Aggregate functions are also
implemented rarely.
Several approaches exist regarding the input and output formats of ontology query
languages. In most cases, variables are specified in some kind of “pattern” and are
then bound to actual values by the query processor, resulting in a tabular answer set
comparable to a traditional SQL result. Some languages allow for creating triples or
even graphs from the variable bindings using a “construct”-pattern, which may be a
very interesting feature for many applications and allows for functional composition
of queries.
One more observation should be noted here: none of the presented query languages
allows for modifying the underlying ontology, which means that updates to the knowl-
edge base must be performed by calling a separate API. While performing updates is
not a strict requirement for query languages, it may still be a desirable feature which
is for instance recognized by the developers of the TMQL: “it is agreed that part 1 of
TMQL will cover retrieval scenarios only; updating TM stores is left for part 2, which
will be handled separately” [TMQ].

4.3 Reasoning with Ontologies

The original definition of ontology given in Section 1.1.1 emphasizes the fact that on-
tologies are not only about concepts, but also about the relationships between them.
Actually, the explicit existence of relationships between concepts is an outstanding
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feature of ontologies, compared to traditional systems dealing with information rep-
resentation (such as databases) where relationships are only represented implicitly
by primary or foreign key columns. It allows for a feature that is conceptually un-
available10 for database systems, namely automated reasoning over the concepts and
relationships in the ontology.
There are two main application areas for automated reasoning within ontologies: per-
forming semantic validation of concepts, and inferring implicit knowledge from explicit
facts using rules. Semantic validation focuses on the correct “content” of concepts and
their properties, in contrast to syntactic validation which evaluates the correspondency
of an ontology with XML and RDF standards. RDFS and OWL provide constructs to
constrain the use of concepts and properties (e.g. by specifying values for domain and
range keywords), and ontology data can be checked against these constraints using
an inference engine:

“Reasoning is important to ensure the quality of an ontology. It can be em-
ployed in different development phases. During ontology design, it can be
used to test whether concepts are non-contradictory and to derive implied
relations. In particular, one usually wants to compute the concept hierar-
chy. Information on which concept is a specialization of another and which
concepts are synonyms can be used in the design phase to test whether
the concept definitions in the ontology have the intended consequences or
not.” [BHS03]

However, performing semantic validation can be considered to be a side-effect of the
true purpose of an inference engine, which is to derive implicit information from the
explicit facts contained in an ontology. The most interesting observation is that this
process of deducing new knowledge can be performed automatically without any user
interaction (and thus without additional information provided by a human operator).
It is actually a bit misleading to speak of “new knowledge”, since all information is
indeed contained in the existing facts, but the process of deducing new knowledge is
similar to the way human reflection works. For example, the brother of any person’s
parent is said to be an uncle of that person. If it is known that a person A has a
father B, and that C is the brother of B (these are the explicit facts), we can derive
that C is the uncle of A (which is derived knowledge). Similary, if the concept “cow”
is known to be instance of the concept “mammal”, and “mammal” is known to be a
subclass of the concept “animal”, the conclusion is that cows are also animals (which
is a quite obvious, but originally not directly available fact).

10One of the reasons for this is that, in contrast to ontologies, databases are not aware of their
respective schemas, as outlined in Section 2.5.
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4.3.1 Logics in the Semantic Web

From a developer’s point of view, dealing with inference is not a straightforward task,
as a firm background in formal logics is needed. This is also the reason for many on-
tology frameworks not supporting inference mechnisms at all, or only providing basic
functionality. It should be noted that inference is indeed not needed by many applica-
tions which only require simple representation of explicit concepts and relationships.
On the other hand, the vision of the Semantic Web includes agents that autonomously
act on behalf of their owners. But even to achieve very simple goals, such agents will
have to revert to a knowledge base representing human common sense, which is very
likely to be too large and complex to be populated manually with explicit facts only.
Apart from being infeasible, such an approach would also thwart the original purpose
of an ontology which is to create clear, unambiguous hierarchies and relationships be-
tween concepts. Also, in order to be autonomous, an agent must be able to cope with
incomplete facts and remote ontologies, effectively compensating the lack of informa-
tion by mapping new assertions into its local knowledge base and performing inference
to deduce the knowledge that is needed to accomplish the current task. For instance,
a travel agency may provide assertions about departure dates and times of flights,
but not a complete ontology about transportation. An agent that attempts to book
a flight for its owner must therefore be able to recognize that airplanes are a means
of transportation and adequate for travelling long distances, and that oil-tankers are
not (although they also have departure dates and times).
Within the Semantic Web layered architecture depicted in Figure 1.1, inference may
occurr on two layers: the “Ontology vocabulary” layer may provide inference for
subsumption and instance relationships (as Description Logics do, see next section),
whereas other rules are represented by the “Logic” layer (e.g. Horn-logic rules).
Inference within ontologies is not a stand-alone feature, but is often tightly integrated
in storage and/or query facilities. Two different approaches exist for enabling infer-
ence within ontology frameworks: the data-driven approach and the hypothesis-driven
approach. The former, also called forward-chaining, starts the inference engine when-
ever new (explicit) assertions are to be inserted in the ontology. Implicit facts are then
deduced by the inference engine and also stored in the ontology. This “exhaustive for-
ward inferencing” is generally considered to be unfeasible for larger ontologies due to
its greatly increased need for storage space (see e.g. [Las02]), but as Broekstra and
Kampmann show [BK03], it is well suited for flat ontologies of medium size. Special
attention must be given to statement deletion, which requires all deduced facts to be
revised. This can either be achieved by marking inferred assertions upon insertion,
removing them and recomputing the deductive closure of the ontology (the “naive
approach”), or by establishing a sophisticated truth maintenance system which tracks
the logical dependencies between assertions. The advantage of forward inferencing is
that queries can be answered very fast, as no additional inference must be performed
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to retrieve answers from the ontology.

The hyptothesis-driven approach, also called backward-chaining, performs inference
only when needed to answer queries. No truth-maintenance mechanisms are needed,
as the computed results are used for query answering only and are not stored in
the ontology itself (of course, this behavior is usually modified in favor of a caching
mechanism to avoid multiple computation of the same implicit facts). “The main
advantages of such an approach are the decrease in required storage size and upload
time, while the main disadvantage is the decrease in performance of query answering”
[BK03].

4.3.2 Formal Foundations

Ontologies as organizing principles for knowledge management have been studied
by the artificial intelligence and knowledge representation communities for several
decades, using formal logic as foundational theory for implementing automated rea-
soning mechanisms. In fact, logic models have been found to be closely related to
ontologies: the knowledge bases used by logic languages are comparable to the in-
formation contained in an ontology (e.g. represented by RDF/OWL or Topic Maps),
although such knowledge bases usually use somewhat different representation syntaxes
(such as KIF, or notations closely related to the abstract syntax used in formal logic)
for expressing facts about and relationships between concepts.

Many different “kinds” of logics were developed since the beginning of the last century,
with various degrees of complexity and expressiveness. Research has mostly concen-
trated on first order logic11 and various subsets thereof, such as Description Logics
and Horn-logic. The reason for this is that while higher order logics are more expres-
sive than first order logics, they are hard to reason with, because they do not admit
a proof theory (this is essentially a corollary of Gödel’s incompleteness theorem): in
higher order logics (e.g. second order logics), there are true sentences which can not
be proven true. This makes higher order languages unsuited for most applications
beyond theoretic research.

First order logic, on the other hand, is semi-decidable, which means that for every
formula either the formula itself or its negation can be proven true in finite time.
Although this makes a big difference from a theoretical point of view, in practice
inference engines (so called “theorem provers”) for full first order logics are unable to
scale with large sets of data. Hence, most actual implementations of inference engines
focus on subsets of first order logic, mostly Description Logics and Horn-logic.

11Roughly spoken, first order logics can not quantify over predicates, in contrast to higher order logics.
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4.3.3 Description Logics

Description Logics are a family of languages of varying complexity and computational
properties that can be used to represent knowledge. Description Logics focus on the
representation of concepts (or classes); the basic idea is to use constructors to build
complex classes from simpler concepts. “The name description logics is motivated
by the fact that [. . . ] the important notions of the domain are described by concept
descriptions, i.e., expressions that are built from atomic concepts (unary predicates)
and atomic roles (binary predicates) using the concept and role constructors provided
by the particular DL” [BHS03]. Description Logics contain a terminological formalism
(“TBox”) for defining hierarchies of concepts, and an assertional formalism (“ABox”)
to state properties of instances (also called individuals).
Special attention is given to the computational behavior of description logic languages:

“In order to ensure a reasonable and predictable behavior of a DL system,
[. . . ] inference problems should at least be decidable for the DL employed
by the system, and preferably of low complexity. Consequently, the expres-
sive power of the DL in question must be restricted in an appropriate way.
If the imposed restrictions are too severe, however, then the important
notions of the application domain can no longer be expressed. Investigat-
ing this trade-off between the expressiveness of DLs and the complexity of
their inference problems has been one of the most important issues in DL
research.” [BHS03]

As first order logic is only semi-decidable (and thus often considered to be undecidable
for practical use), Description Logic languages must be designed very carefully to
maintain decidability. This can be achieved by allowing only constructors that avoid to
make a language undecidable, and avoiding constructors that do so. Of course, this has
negative effects on the expressiveness of a Description Logics language. Summarized it
can be said that designing a Description Logics language is always a tradeoff between
allowing for expressiveness and still maintaining decidability.
Some of the most prominent Description Logics for ontologies are SHIQ [HST99]
and SHOQ(D) [HS01], both members of the SH family of Description Logics whose
constructors and axioms “include the boolean connectives (intersection, union and
complement), restrictions on properties, transitive properties and a property hierar-
chy” [HPSvH03] and thus support many of the features needed by ontologies. In
addition to these properties, SHIQ also uses inverse properties and generalized car-
dinality restrictions, whereas SHOQ(D) “adds the ability to define a class by enu-
merating its instances12 [. . . ] and support for datatypes and values (e.g., integer and
string datatypes, and values such as ‘35’)” [HPSvH03]. Both SHIQ and SHOQ(D)

12This is also known as existential definition of classes.
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are decidable and of worst-case deterministic exponential time (ExpTime) complexity,
which makes them well suited for reasoning in ontologies.
Actually, Description Logics and OWL are closely related, since the predecessor of
OWL, DAML+OIL, was already heavily influenced by Description Logics research.

“Description Logics, and insights from Description Logic research, had a
strong influence on the design of OWL, particularly on the formalisation
of the semantics, the choice of language constructors, and the integration
of datatypes and data values. In fact OWL DL and OWL Lite [. . . ] can be
viewed as expressive Description Logics, with an ontology being equivalent
to a Description Logic knowledge base. [HPSvH03]

While OWL full is undecidable (and hence difficult to use for inference engines), OWL
DL can be mapped to the expressive SHOIN (D) Description Logic, which is decid-
able and of worst-case non-deterministic exponential time (NExpTime) complexity.
SHOIN (D) is an extension of SHOQ(D), adding inverse roles but being restricted
to unqualified number restrictions. The NExpTime complexity makes inference pos-
sible for OWL DL, but “there is as of yet no known ‘practical’ complete algorithm
for inference in SHOIN (D), i.e., one that is likely to perform well on the kinds of
problem encountered in typical applications” [HPSvH03]. OWL Lite, on the other
hand, is comparable to the SHIF(D) Description Logics, which is known to be of
ExpTime complexity, thus making OWL Lite a good candidate for inference services
with limited expressiveness.
While Description Logics such as SHOIN (D) offer a strong formal foundation for on-
tologies, there are also some limitations to the inference services they provide. Above
all, inferencing with the Description Logics described above is always limited to clas-
sification and subsumption of concepts, hence the name “classifiers” for Description
Logics inference engines. This means that a new class can be placed automatically
in the hierarchy of concepts by a classifier, and for any new individual (instance),
the classes it belongs to can be determined. The two most popular modern classifiers
are FaCT [Hor01] and RACER [HM01], which are both able to perform inference on
SHIQ Description Logics knowledge bases. BOR [BOR] is another Description Logics
reasoner designed for DAML+OIL and compliant to OWL. It’s derivative SeBOR is
integrated in the Sesame framework.
Classification and subsumption are certainly some of the most important and fre-
quently used kinds of inference, especially because they allow for semantic validation
(and thus always produce sound and complete results). There are however cases where
additional functionality is needed. An important limitation of (decidable) Description
Logics is the lack of property chaining, i.e. the possibility of defining rules that are
globally valid and not tied to a particular instance. This makes it impossible to create
rules such as “an uncle is a parent’s brother” and to reason with such definitions.
Property chaining was excluded deliberately from languages such as OWL, because
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“allowing relationships to be asserted between property chains [. . . ] would make OWL
entailment undecidable” [HPSvH03]. Other limitations are discussed in Chapter 5.

4.3.4 Horn-Logic

Horn-logic is another subset of first order logic which is restricted to definite clauses,
i.e. clauses with one positive literal. Horn-logic and its most prominent language Dat-
alog13 have been used for inference in deductive databases and are now considered as
interesting candidates for providing additional inference support for ontologies. On-
tologies based on Description Logics are only able to represent concepts and relation-
ships between them (the so called extensional knowledge), but are unable to represent
rules (intensional knowledge). Horn-Logic based languages can be used to express
both extensional and intensional knowledge. While Horn-Logic itself is undecidable,
certain subsets obtained by applying restrictions (as for instance imposed by Datalog)
are decidable.
In contrast to Description Logics, which primarily deal with consistency checking and
classification, Horn-logics focus on deducing new knowledge from existing one by using
rules. These rules consist of a head containing the assumptions, and a body containing
the facts to be deduced if the assumptions can be proven to be true. Rules may also
be recursive, thus greatly increasing the expressiveness of Horn-logic languages.
Due to its background in the database area, Datalog assumes a relational data model
which is not very well suited for supporting ontologies. The newer F-Logic14 language
[KLW95], which is also based on Horn-logic, adopts a object-oriented data model
and was also inspired by frame-based languages. Several implementations of this
language exist, such as XSB [XSB], Flora-2 [YKZ03, CFJ03], F-OWL [ZFC04] and
OntoBroker [FDES98]. These systems have shown to be highly scalable, also due to
the fact that they usually use the closed world assumption (“negation by failure”) like
traditional database systems do. Description Logics, on the other hand, are said to be
less scalable for very large knowledge bases; they use a open world assumption, which,
despite being closer to reality15, is the reason for many problems commonly found in
Description Logics.
Recent approaches to ontology modelling accept the strengths and weaknesses of De-
scription Logics and Horn-logic based languages and try to combine the best of both
worlds. A prominent example is the TRIPLE language presented in Section 4.2.1,
which is based on Horn-logic and F-Logic and may call (external) Description Log-
ics classifiers if needed (hence the term hybrid language). Integration of Horn-logics
and Description Logics is currently an active area of research in the Semantic Web

13Horn-logic with 0-ary function symbols only
14“F” stands for “Frames”
15After all, an ontology is always only a partial representation of all possible things that exist; there-

fore, the non-existence of concepts not contained in an ontology can ususally not be assumed.
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community (see e.g. the RuleML initiative [RML]).

4.3.5 Reasoning with Topic Maps

Inference engines supporting Topic Maps are very rare. The reason for this can proba-
bly be found in the formal foundation of Topic Maps, whose design was not influenced
by Description Logics as it is the case with OWL. Therefore, properties of associa-
tions like transitivity are not present in the Topic Map standard16. As Newcomb and
Biezunski state, “the whole question of inference rules is not addressed in ISO 13250;
inferencing is regarded as a property of systems and not of documents, and therefore
inference rules are regarded as outside the scope of the standard” [NB00]. In fact, con-
sidering the n-ary and omnidirectional nature of Topic Map associations, properties
like transitivity can not be applied directly (as they are meaningful for binary rela-
tionships only). Subsumption and classification algorithms can of course be applied
to Topic Maps, since corresponding constructs exist (see Section 3.1.4).
In fact, the only way of reasoning with Topic Maps is provided by the query language
tolog (see Section 4.2.2), which allows for creating rules similar to those used by F-
Logic. The drawbacks of such a solution are twofold: first, rules must be specfied using
a syntax different from the standard XTM syntax. Second, they are not part of the
Topic Map itself, but are stored in external files. Also, the rules are always executed
by the query processor and the results can not easily be stored in the Topic Map,
which means that only backward-chaining inference can be performed. Any caching
strategy has to be implemented by the query processor, too. Maybe some of these
issues will be remedied with the upcoming TMQL standard.

4.3.6 Summary

One of the key purposes of ontologies is to provide meaningful (semantically enriched)
data for both computer agents and humans. The existence of richly populated on-
tologies representing some more or less sophisticated level of “common sense” is an
important requirement for the realisation of autonomously acting agents. An agent
without a knowledgebase that enables it to act reasonably will never be able to carry
out useful tasks. However, such rich ontologies need a lot of manual input from hu-
man ontology modellers (as demonstrated by the Cyc ontology); yet it is impossible to
provide a complete knowledge base of common sense in this way, which demonstrates
the need for autmatically deducing implicit facts from explicit information.
The formal foundations of ontologies and especially the close relationship between De-
scription Logics and ontology representation formats such as OWL offer a good basis

16In the early days of Topic Map standardization, properties of associations were obviously considered
to be included in the standard; see e.g. [Rat99].
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for automated reasoning. Although different approaches to inference had been investi-
gated for several decades especially among artificial intelligence researchers, the recent
wave of interest in ontologies caused by the Semantic Web initiative encouraged the
development of new, efficient inference engines for both Description Logics classifiers
and F-Logic reasoners. While there are still many issues to be resolved, integrating
classification and rule-based inference is a promising approach towards inference en-
gines that are not only interesting from a researches point of view, but indeed ready
for use in real world applications.
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After presenting basic concepts of ontological modelling in Chapter 2, introducing
RDF, OWL and Topic Maps as XML-based representation formats (Chapter 3) and
describing some of the partially solved issues emerging whenever applications using
ontologies are to be implemented (Chapter 4), this final chapter is dedicated to some
of the most unclear, yet very important aspects of ontologies, especially in the context
of the Semantic Web. While some of these issues are related to ontologies in general,
others are rather specific properties of the OWL or Topic Map representations formats.
Both of them must be considered to be equally important, since OWL and Topic Maps
can be considered as the only languages that will potentially be adopted on a large
scale.
A common property of the problems presented in the following sections is that they
can not be solved by gradually improving certain aspects of the underlying systems or
technologies, but must be seen as conceptual weaknesses. In this respect, they are far
more critical than the challenges described earlier, like providing scalable storage for
ontologies (see Section 4.1), as those can be improved by applying better algorithms,
faster hardware etc.
The Semantic Web initiative focuses on autonomous interpretation of data by agent-
based systems, a vision that imlicitly requires agents to revert to some kind of common
sense knowledge. Ontologies, which shall constitute the primary knowledge containers
for agents (and humans as well), must therefore be able to represent such common
sense knowledge, a requirement which turns out to be unequally harder to meet than
originally assumed by many ontology engineers.

5.1 The Problematic Notion of Identity

5.1.1 Problem Description

Ontologies primarily focus on representing “things”, or concepts, by creating electronic
proxies (“binding points”) for them in order to allow for linking arbitrary assertions to
them. Since each concept can only have exactly one proxy within a single ontology, it is
a crucial task to determine the equality (or inequality) of any two concepts. Generally,
this is referred to as “establishing identity” for a certain concept, which is crucial only
at first sight. In fact, the notion of identity is rather a philosophical problem, but
nevertheless immediately comprehensible for anybody: while it is obvious that identity
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is not directly linked to one specific property of a concept but rather to the sum of
all its properties, it still remains a difficult question to what extent properties can be
modified without changing the identity of the respective concept.
Despite this fundamental problem, ontology representation formats such as RDF/OWL
and Topic Maps have adopted quite a simple model which assumes the existence of
some kind of unambiguously determinable identity for every concept, whether it is an
object or living being of the real world, an abstract concept, an electronic resource,
or a class of such concepts (which is esentially seen as an abstract concept itself). Al-
though this simple solution is technically feasible, it must be considered to be rather
superficial and turns out to be no real solution whenever different points of view of
the same concept are to be represented, as discussed in Section 5.2.
Also, it should be noted that the existence (which is yet another quite unclear term
by itself) of a concept, especially if talking about things in the real world, must not be
confused with its lifetime. The ISO 13250 Topic Map Standard explicitly states that
proxies may refer to inexistent concepts as well:

“In the most generic sense, a ‘subject’ is any thing whatsoever, regardless
of whether it exists or has any other specific characteristics, about which
anything whatsoever may be asserted by any means whatsoever.” [BBN02]

The RDF standard, on the other hand, resorts to the definition of the term “resource”
in RFC 2396, which only mentions that a “resource can be anything that has identity”
[BLFIM98]. This is considered to be a rather problematic definition (see also Section
2.1); after all, inexistent concepts may still be present as abstract ones in the mind of
humans, e.g. the former Soviet Union etc., and therefore an ontology may certainly
refer to them through an electronic proxy.
Apart from the difficult philosophical aspects of “identity”, the RDF standard also fails
to provide a method for unambiguously referring to concepts which are not network-
retrievable. This has already been discussed in Section 2.3.3, but is mentioned again
here because at time time of writing no possible solution has been proposed by the
creators of the RDF standard, thus often creating confusion among the adopters of
the new standards.
Topic Maps, on the other hand, carefully distinguish between network-retrievable re-
sources (which are referred to by Subject Addresses) and other concepts (which are
referred to by Subject Indicators). Interoperability between ontologies is achieved by
creating Public Subject Indicators (PSIs, see Section 2.3.1), a process that is assumed
to be open and distributed, since anybody can create Published Subjects at will:

“Anyone can publish PSIs, from the largest international organizations
to communities of interest, enterprises and even individuals. There is no
approval process and no registration authority. The adoption of PSIs can
therefore be an open, bottom-up, and distributed process.” [Pep03]
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It is however questionable whether this process will actually work out. One criti-
cism of the method described above is that interoperability of ontologies can only be
guaranteed if the same PSIs are used for the concepts that are represented (again,
determining equality of concepts is subject to the considerations made earlier in this
section). At least, explicit mappings must be provided for different PSIs referring to
the same concept in order to achieve integration of ontologies. Creating such map-
pings is not only a laborious task and possibly of little interest to the publisher1,
but may also be objected on purpose, e.g. in a competitive scenario involving several
publishers of the same domain. While being an interesting suggestion to the problem
of interoperability among ontologies, PSIs yet have to prove their applicability under
real circumstances.

5.1.2 Possible Solutions

The philosophical problem of establishing identity is very unlikely to be solved by
means of technical standards, if a single “solution” can be assumed to exist at all.
With respect to the scope of this thesis, only the deficits of the RDF standard and
possible workarounds will be discussed.
As outlined in the previous section, the Topic Map standard already includes a clean
separation between network-retrievable subjects and other concepts that can not be
referred to directly by machines. Thus, a modification of the RDF standard in order
to allow for a similar distinction would be the logical consequence, albeit the most
unlikely one, as existing standards are not subject to changes. Such modifications
have been proposed by several people, as outlined in the paper “Curing the Web’s
Identity Crisis”:

“Others in the Web community have made more useful proposals, includ-
ing Sandro Hawke, who suggests that the dual use of URIs be formally
recognized in RDF. Hawke uses the terms ‘page-mode’ and ‘subject-mode’
to make exactly the same distinction as that made in Topic Maps between
subject addresses and subject identifiers. [. . . ] First of all, the RDF model
[. . . ] must be adjusted to recognize the distinction between information
resources and ‘things in general’ (i.e., between addressable subjects and
arbitrary subjects).” [PS03]

Two possibilities exist to introduce such a modification:

1. The RDF standard is extended to include a special vocabulary for making the
necessary distinction described above. This is also the approach taken by Topic
Maps with the resourceRef and subjectIndicatorRef elements and is cer-
tainly the most radical and elegant way of dealing with the problem.

1In this case, the term “publisher” refers to publishers of “Published Subjects”.
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2. The syntax of the URI referring to a concept is modified. In fact, the RDF
and OWL standards and also many examples use the #-sign in URIs to indicate
that an URI is not referring to a network-retrievable resource; however, no official
standard or convention exists: “Throughout RDF, strings like ’http://www.w3.
org/1999/02/22-rdf-syntax-ns#type’ are used with no consistent explanation
of how they relate to the web” [Haw03]. While using URIs including the #-sign
to indicate an arbitrary subject would not require to change the RDF standard
itself, this approach neglects the fact that the #-sign is already used as fragment
identifier in URIs:

“But using ‘#’ like this, while perhaps reasonable in RDF, is not in
keeping with the general architecture of the web. Both subject-mode
and page-mode identification are useful for both full pages and for
fragments. In HTML, it’s common to point to parts of other docu-
ments [. . . ]. It’s also common to use full-page addresses to identify a
subject [. . . ].” [Haw03]

Summarized, the syntactical approach to resolve the RDF problem must be
considered as easy to implement, but not universally applicable and is thus ill-
suited for general adoption.

In addition to these two options, there is also a third possibility for distinguishing
concepts that are network-retrievable and concepts that are not. The RDF Schema
standard provides the built-in rdfs:subClassOf predicate to allow for subsumption
of concept classes, thus creating a class hierarchy. All RDF classes must be (implicit
or explicit) subclasses of the top-most class rdfs:Class. This definition could be
extended on a conventional basis by introducing two arbitrarily named disjoint classes,
e.g. “RealWorldObject” and “WebResource”, and relate all other classes to these
classes via the rdfs:subClassOf predicate. Any RDF instance concept would be
further required to be an instance of either “RealWorldObject” or “WebResource”
(but not both, as they are disjoint classes), or of one of their subclasses. This has
the following effects in practice: any class is either a subclass of “RealWorldObject”
(thus representing a class of real world objects) or a subclass of “WebResource” (thus
representing a class of web resources), and any instance is either a real world object
or a web resource (i.e. linked to one of these classes through the rdf:type predicate).
Although the proposal presented above is both easy to implement and does not re-
quire the RDF standard to be modified, it has no official backup at the time of writing.
It is however interesting to note that the developers of the query language RQL use
this model even for a relatively small example ontology [KMA+02]. Another draw-
back is that the proposal is based on a convention only, thus possibly compromising
interoperability among arbitrary ontologies that do not adopt the convention.
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5.2 The Absence of Context and Contextual Constraints

5.2.1 Problem Description

One of the most surprising facts about OWL and, to a large extend, also about Topic
Maps is that there are no built-in methods for dealing with contexts in a clean way. A
context is often defined as a set of assumptions and facts that together build a basis
for other assertions:

“A context [. . . ] is a set of assertions, representing a particular set of
surrounding circumstances, relevant facts, IF-THEN rules, and background
assumptions.” [Cyc02a]

Sometimes, contexts are also seen as a specific party’s view of a domain, and are thus
opposed to the common understanding of an ontology as a shared set of concepts and
assertions (see also Section 1.1.1):

“Ontologies are shared models of some domain that encode a view which
is common to a set of different parties;
Contexts are local (where local is intended here to imply not shared)
models that encode a party’s view of a domain.” [BGvH+03]

This point of view is not contradicting the first definition, but emphasizes the different
scopes of ontologies and contexts. However, even though ontologies represent shared
knowledge, that knowledge can not automatically assumed to be universally valid.
In fact, the absence of context in OWL and Topic Maps means that concepts and
assertions are not constrained in any way and thus must be considered to be valid
under all circumstances. Although the Topic Map standard provides the “scope”
element (see Section 3.1.6) for dealing with contextual constraints, its semantics are
unclear; also, Topic Maps scopes are far from offering a complete solution to the
problem of representing context, as outlined in the next section.
The implications of these findings are far-reaching and problematic especially whenever
ontologies should represent common sense knowledge, which tends to be very complex.
Ontologies that are unable to deal with contexts reveal serious shortcomings whenever
one of the following cases occurs:

Change of knowledge: without being linked to any context, concepts and assertions
are valid at all points in time. Changes to the knowledge base are not only
problematic if they collide with “outdated” information (see Section 5.3), but
are also retroactive. Thus, many assertions in a knowledge base can only be
considered to be true if their validity is constrained to some period of time. For
example, woman suffrage was introduced in Austria in 1918; until that point in
time, women were not entitled to vote or to be elected. An ontology can only
model these facts if their validity is subject to temporal constraints.
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Spatial constraints: similar considerations apply to the spatial validity of facts in
an ontology, as the validity of assertions may be restricted to certain places or
locations. The inability of OWL and Topic Map ontologies to cope properly with
space and time on a logical2 level is widely recognized: “[. . . ] spatiotemporal
ontologies are in their infancy, in particular because of the lack of an appropriate
model, capable of dealing with space and time at the ontological level, and of a
suitable reasoning engine” [SCPV04]. Reasoning with concrete domains (such
as integer numbers) is supported by several inference engines, e.g. RACER, but
spatial and temporal inferencing is still unavailable in current systems.

Different points of view: whenever different points of view are to be modelled in an
ontology, providing relationships to the contexts of the parties involved becomes
crucial. Of course one could argue that controversial facts must not be present
in an ontology (since it is supposed to contain “shared” information only), but
in practice, obtaining an agreement about controversial aspects is usually harder
than expected. Therefore, the need for ontologies to represent different points of
view of certain concepts and assertions should not be ignored; even the existence
of certain concepts is not always self-evident. Different points of view can also
cause inconsistencies within an ontology; this is discussed in Section 5.3.

The identity of concepts is another critical aspect that may differ depending on
who defines a concept. As Doctorow points out in [Doc01], “reasonable people
can disagree forever on how to describe something”, e.g. “No, I’m not watching
cartoons! It’s cultural anthropology.” Since ontologies anticipate the existence of
an unambiguous identity, different definitions and descriptions of a concept are
not problematic for ontologies, but require descriptive statements (such as the
one in the example) to belong to different contexts.

Fictitious facts: for obvious reasons, it is very important for any ontology to distin-
guish between concepts and facts that are believed to be true in the “real world”
and those that are considered to be fictitious:

“In the fictional context of Brain Stoker’s Dracula, vampires exist; in
the standard rational worldview context they don’t. Other contexts
carve out similar distinguishable eras in time, political or religious
points of view, and so forth.” [Sto98]

Generally, concepts, assertions and common sense rules that are found in a ficti-
tious context do not apply to real world entities, and vice versa. For instance, a
rule could state that all living beings come into existence at some point in time,

2This must nut be confused with ontologies about space and time; creating ontologies that contain
spatial and temporal terms is of course possible and according efforts are being made, but this
does not help in constraining the validity of assertions in ontologies in general.
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get older over time and eventually die. This is however not true e.g. for most
cartoon characters, whose age is not tied to any strict timeline. One could also
argue that the whole notion of time is not identical for the real world and many
fictitious stories, even though certain aspects such as the monotonic nature of
time usually apply to both of them.

In addition to purely fictitious facts, believes and religious assumptions are also
subject to such considerations. Especially with respect to the moral aspects of
many religions, modal logic (see next section) could be an important addition to
the standard logic vocabulary (that is e.g. used by description logic classifiers).

In the next section, we will discuss some possible solutions for these conceptual weak-
nesses of ontologies.

5.2.2 Possible Solutions

Temporal and Spatial Contexts

Although in practice it is hard to find assertions that can be considered universally
true and thus a big need for constraining assertions in this way should exist, neither
OWL nor Topic Maps offer a clean solution for this problem. Both representation
formats are unable to deal with the continuous nature of time and space, at least at
constraint level. This is also true for the scope construct in the Topic Map standard,
which can only represent discreet constraints of validity.
Summarized it can be said that current ontology representation formats such as OWL
and Topic Maps do not include mechanisms for constraining assertions to certain
periods in time or certain (geographic) areas. However, they are certainly suited for
representing temporal and spatial concepts, such as “interval”, “event” etc. Respective
ontologies (which are often referred to as spatial or temporal ontologies) have been
created lately, several proposals and examples can be found e.g. in [SCPV04,PH04,
CoB04].
An additional step towards proper handling of spatial and temporal properties of as-
sertions would be the creation of inference engines that are able to deal with the
temporally and spatially limited validity of assertions. Such inference engines would
yield correct results for all queries where such constraints of validity can not be ne-
glected, as in the example given in the previous section. At the time of writing, no
such inference engines for OWL or Topic Maps exist.

Modelling Points of View

If an ontology has to cope with several different points of view of various parties, two
possibilities for doing so have been proposed. The first proposal is to keep concepts
and assertions that are “shared” (i.e. common to all parties) in a shared ontology, and
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Sample Ontology 1 Sample Ontology 2

Wine

�

�

�
�

�

White Wine Red Wine

Teroldego

Vino

Vino bianco Vino neroVino rosato

Figure 5.1: C-OWL mappings between two sample ontologies [BGvH+03].

facts that are considered to be “subjective” in separate, local ontologies. The latter
ontologies are therefore models of the respective contexts and are thus referred to as
contextual ontologies:

“We say that an ontology is contextualized or, also, that it is a contextual
ontology, when its contents are kept local, and therefore not shared with
other ontologies [. . . ]” [BGvH+03]

In order to achieve interoperability between the shared ontology and its contexts,
explicit mappings are provided that link corresponding concepts:

“A context mapping allows us to state that a certain property holds be-
tween elements of two different ontologies.” [BGvH+03]

Mappings consist of serveral unidirectional “bridge rules” which can express different
types of relationships between any two concepts [PBZ04], such as “more specific than”,
“more abstract than”, “disjoint from”, “compatible with” etc.
An implementation of this idea for OWL ontologies has been presented in [BGvH+03].
Since OWL does not allow for creating mappings to other ontologies (other than a
rather simple import mechanism), its syntax was extended, resulting in the Context
OWL, or C-OWL. In Figure 5.1, a sample mapping between two ontologies is illus-
trated.
The main drawback of this solution is that it is not very feasible in the context of open
environments:

“However, the vocabularies of local ontologies are supposed to be pair-wise
disjointed, and the globalization can only be obtained by using explicit
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mappings. It doesn’t fit very well in with one of the basic architectural
principles of the Web, which allows anyone be able to freely add information
about an existing resource using any vocabulary they please.” [QG04]

These disadvantages however apply to all solutions that require some kind of manual
mapping between ontologies. Therefore, methods for automatically creating map-
pings have been investigated. In [ES04], (simple) mappings between ontologies are
for instance created by calculating the similarity of concepts. Other approaches use
Bayesian Networks to improve ontology mappings [MNJ04].
A different approach is followed by the Topic Map standard, which allows for creating
scopes within a Topic Map ontology. After creating scope elements in a Topic Map,
any assertion can be linked to one or more of these scopes, which means that the
respective assertion is only valid within the referenced scopes. Assertions that are
not “scoped” in any way are universally valid. Although scopes seem to be a good
solution for modelling different points of view, they are considered to be problematic
in a number of ways. First, scopes can also be used for many other purposes, e.g. for
propagating access permissions within an ontology, which can easily lead to confusion
since the Topic Map standard does not define any “types of scopes”. Second, scopes
can not be further organized for instance in a hierarchical manner. This also limits
their practical use, as no indirect references to scopes are possible (e.g. for inference
purposes).

Fictitious Facts

There are many application areas for ontologies where it is crucial to detect and
properly “tag” those facts that can not generally assumed to be true. For instance,
ontologies have been used successfully for supporting Natural Language Processing
tasks (NLP) by providing important background information about concepts for the
interpretation process [AKM+03]. Also, the automated population of ontologies from
documents such as web pages and text files by using NLP methods is being investigated
[CVV04,HSC02,PSL03].
However, the implementations presented so far are not able to detect facts that are
only valid in a certain context, which is maybe due to the fact that OWL (which
is used for virtually all implementations) is not able to properly represent contexts
and associated facts. Yet in reality, a great part of documents that contain written
text is either completely fictitious (novels etc.) or contains rhetorical elements such as
irony or cynicism which sometimes express facts that must not be taken literally. A
promising method for representing contexts, called “microtheories”, is used in the Cyc
knowledge base. As the primary focus of a microtheory is to maintain consistency, it
is described more in detail in the next section.
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As already denoted earlier, modal logic may be another interesting way to represent
uncertain facts, especially in conjunction with moral expressions:

“Modal logic is, strictly speaking, the study of the deductive behavior of the
expressions ‘it is necessary that’ and ‘it is possible that’. However, the term
‘modal logic’ may be used more broadly for a family of related systems.
These include logics for belief, for tense and other temporal expressions,
for the deontic (moral) expressions such as ‘it is obligatory that’ and ‘it is
permitted that’, and many others.” [Gar03c]

As modal logic is again a wide area of research by itself, it will not be discussed here in
detail. It should be pointed out that some Description Logic reasoners such as FaCT
and RACER are able to perform inference in the (weak) “modal logic Km with graded
modalities and axioms” [RAC]. However, little additional information on applying
modal logic to contextual problems in ontologies is available.

5.3 Maintaining Consistency

5.3.1 Problem Description

Closely related to the notion of context is the aspect of consistency within an ontology.
Ontologies are commonly expected to contain only facts that do not contradict each
other, thus resulting in a consistent ontology. Especially OWL with its strong back-
ground in Description Logics is a good example for an ontology language that requires
consistency in order to yield meaningful information. Also, consistency is essential
for inference engines, which are unable to deduce implicit knowledge if the knowledge
base contains conflicting assertions. With respect to Topic Maps, the lack of a proper
ontological vocabulary facilitates the representation of arbitrary facts, even if they
contradict each other. However, reasoning is very limited for Topic Maps, which is
why we will concentrate on OWL in this section.
Despite of these considerations, it is still surprising that there is no way to properly
represent contradictory facts in OWL. This is however necessary if, as already men-
tioned, different point of views are to be represented, or whenever assertions are tied
to a particular context (such as fiction). If we recall one more time the vision of
the Semantic Web [BLHL01], ontologies should also contain common sense knowledge
in order to properly support automated agents. However, if perfect consistency is
required in an ontology, representing complex information is likely to be impossible.
The very same observation was made by the creators of CYC:

“The [. . . ] perhaps most important lesson we learned along the way was
that it was foolhardy to try to maintain consistency in one huge flat CYC
knowledge base. [. . . ] in the context of working in an office it’s socially
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unacceptable to jump up screaming whenever good things happen, while
in the context of a football game it’s socially unacceptable not to.” [Sto98]

Such contradictions are not only likely to occurr whenever complex knowledge should
be modelled, but may even form the biggest part of the common sense knowledge.
After all, there are almost no assertions that can be considered to be true under all
circumstances. It is therefore important to account for this fact and provide solutions
instead of ignoring it, as it sometimes appears to be the case with OWL ontologies.
Another problematic aspect of maintaining consistency in an ontology should not be
neglected. Ontologies are intended to store information, and creating a large ontology
requires a great amount of work. Therefore, large ontologies will become valuable
resources that are likely to stay in place over a longer period of time. Certainly,
information in an ontology has to be updated, completed, revised and removed from
time to time, a process which is often referred to as ontology maintenance:

“Any ontology must be current and represent the ‘here and now’ to be
properly understood, interpreted and acted upon. Ontology maintenance
is the set of processes -– both manual and automatic -– that focus on
keeping ontology representations current within the environment(s) where
used.” [Deg04]

However, maintaining consistency in a changing ontology is not only difficult, but also
poses the question if information should be removed at all. By removing outdated
facts, one loses the implicit information that these facts were considered to be true
during a certain time span (i.e. while they were present in the ontology). For exam-
ple, the concept “Soviet Union” is considered to be inexistent in 2005, but certainly
existed from 1922–1991. By removing the concept from the ontology, the information
that the Soviet Union existed at all would be lost. Contexts could help to deal with
inconsistencies that arise from the maintenance process, e.g. by providing a certain
context for all concepts and assertions that are considered to be outdated.

5.3.2 Possible Solutions

As already indicated, creating independent contexts for conflicting facts has shown
to be a very promising solution to the problem of maintaining consistency. Such an
approach has been taken by CYC, whose knowledge base contains a large number of
so-called microtheories. Microtheories are constructs that represent different contexts
and can be arranged in a polyhierarchy. A microtheory can be seen as a bundle of
assertions that is based on a shared set of assumptions about a certain domain. Any
microtheory is also implicitly based on the assumptions that are true in any of its
parent microtheories in the hierarchy (the so-called “domain assumptions”).
The most important aspect of a microtheory is that all assertions within a single
context are consistent:
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“One of the functions of microtheories is to separate assertions into con-
sistent bundles. Within a microtheory, the assertions must be mutually
consistent. This means that no hard contradictions are allowed, and any
apparent contradictions must be resolvable by evaluation of the evidence
visible in that microtheory. In contrast, there may be inconsistencies across
microtheories.” [Fou]

A microtheory can also have a set of other microtheories that are consulted by the
inference engine whenever a query can not be answered within the original context.
All other facts are not available for reasoning purposes:

“If there is a fact (or rule) somewhere in Cyc that’s not in that Microthe-
ory, and also not in any of the the other Microtheories accesible to that
Microtheory [. . . ], then Cyc will not use that fact” [Cyc02a]

Inaccessible facts are thus not to be processed by the inference engine.
Besides allowing for global inconsistencies while still allowing for local inference, mi-
crotheories are also helpful from a performance point of view. Since any query is to
be answered by starting from a specific microtheory, the inference engine can focus on
the context that is represented by that microtheory, which reduces search space and
allows for more efficient inference mechanisms.
Summarized it can be said that representing contexts as distinct sets of assertions
within one single ontology seems to be a solution that accounts for both global in-
consistency (which is inevitable in a large scale ontology) and inference within the
locally consistent context (which is necessary for deriving knowledge and answering
queries). With respect to OWL, an implementation of a similar method is probably
not straightforward, e.g. because of OWL’s inability to represent generic if-then rules
(“chains of properties”, see Section 4.3.3). A proposal for introducing such rules to
OWL is described in [MLYL04].

5.4 Dealing with Uncertainty

5.4.1 Problem Description

One more aspect of knowledge management has not been discussed so far, which is
how uncertain facts are represented by ontologies. Human common sense includes
much information that is based on believes and assumptions, and we commonly use
words like “probably”, “possibly” etc. to express uncertainty. Actually, a great part
of human activities is based on assumptions with varying degree of certainty, mainly
because it is usually too intricate to acquire all factual information before attempting
further actions. Also, our everyday experience helps us to estimate the degree of
uncertainty of a specific information; for instance, we assume that buildings, shops
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etc. which we know to be located in a certain place today will probably also be there
tomorrow, although this assumption may occasionally turn out to be wrong. On the
other hand, we will not generally assume that e.g. vehicles will stay in place for a
longer period of time.
The necessity of representing uncertain facts in knowledge bases is therefore well-
known; again, it is somewhat surprising that neither OWL nor Topic Maps provide
any support for capturing uncertainty. For OWL, this can be partially explained by
its background in Description Logics:

As with traditional crisp logic, any sentence in OWL, being asserted facts,
domain knowledge, or reasoning results, must be either true or false and
nothing in between. However, most real world domains contain uncertainty
knowledge and incomplete or imprecise information that is true only to a
certain degree. Ontologies defined by these languages thus cannot quantify
the degree of the overlap or inclusion between two concepts, and cannot
support reasoning in which only partial information about a concept or
individual in the domain can be obtained.” [DP04]

Dealing with uncertainty is especially important whenever inference is performed on
an ontology. As Topic Maps are usually not directly related to inferencing, there is
also no information about uncertainty within Topic Maps.

5.4.2 Possible Solutions

Traditionally, two different approaches can be taken to deal with uncertain facts in
knowledgebases. The first approach is to abandon the monotonic nature of reasoning
and is thus known as non-monotonic reasoning. The second approach is based on
statistical considerations and commonly implemented with Bayesian Networks.
Within classical formal logics such as predicate logic, any new assertions that are
introduced in a knowledge base must be mutually consistent with all other assertions
that already exist in that knowledge base. It is impossible to create new assertions
that retract any existing statements. Thus, these systems are said to be monotonic.
In order to deal with uncertain facts, monotonic reasoning is not appropriate since
it does not allow for creating exceptions to otherwise generally valid rules. However,
most human reasoning is exactly about creating generally valid rules and yet accepting
exceptions to them. Non-monotonic reasoning tries to reproduce this kind of reasoning
with approaches like non-monotonic logic, default logic and circumscription. The
problem with non-monotonic reasoning is that although inference tasks are expected
to become simpler and representation of concepts should be easier, the opposite is the
case:

“Although there are cases in which non-monotonic inference has a com-
plexity which is comparable to classical inference, the general picture shows
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that tractable problems may become intractable [. . . ], intractable problems
may become ‘more’ intractable, decidable problems may become undecid-
able, and undecidable problems may become ‘more’ undecidable [. . . ].

[. . . ]

In fact, if we want to make inference more efficient, we have to give up either
soundness or completeness. The general idea about NMR is that it can be
seen as a fast but unsound approximation of ordinary reasoning.” [CDS96]

Integration into OWL and possible extensions of the language are being investigated,
but no results exist so far.
Statistical methods such as Bayesian Network reasoning have been used for OWL
ontologies e.g. by Ding and Peng, in whose approach “the OWL language is first
augmented to allow additional probabilistic markups so that probability values can
be attached to individual concepts and properties as well as their interrelations in an
OWL ontology” [DP04]. This is an example of the probabilistic markup syntax, taken
from [DP04]:

<prob:PriorProbObj rdf:ID="P(Animal)">
<prob:hasVariable>
<rdf:value>&ont;Animal</rdf:value>

</prob:hasVariable>
<prob:hasProbValue>0.5</prob:hasProbValue>

</prob:PriorProbObj>

Results have been promising accoding to the amount of interest in the Semantic Web
community.
Summarized, solutions for dealing with uncertainty are needed in order to represent
knowledge that is closer to human common sense. While formal approaches such as
non-monotonic reasoning have shown to be very complex, statistical methods may be
an interesting alternative, as recent research activities show.
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The significant interest in ontologies as “knowledge stores” is not surprising, as stan-
dards like OWL and Topic Maps offer a simple, yet powerful way to create ontologies
and develop ontology-centric applications. The standards clearly address a very broad
audience of researchers and developers and aim at the mainstream implementation
of ontologies in applications that somehow deal with knowledge representation and
knowledge management. The predefined ontological vocabularies are generic enough
to facilitate the use of ontologies in almost any area of research.
Most problems that are related to ontologies are however not apparent at first sight,
but emerge upon closer examination of the principles that form the foundations of
ontologies. There are two distinguishable groups of issues related to ontologies, with
different impacts on the future evolution and adoption of ontologies.
First, almost all currently available tools still focus on researchers in the area of ontol-
ogy development as their primary target audience. For developers of standard software
products or even end-users, practically no appropriate tools exist at the time of writ-
ing. This is not very surprising, as ontologies are still being researched mostly at a
theoretic level with a lot of work yet to be done, e.g. in the field of inference engines.
This observation can for instance also be made by looking at the query languages that
are available today, which are often in experimental state and not yet intended for
actual “every day use”. Also, the process of exchanging information across ontology
boundaries is still quite unclear and poorly defined, apart from the (obvious) use of
URIs as global identifiers for concepts. Therefore, most projects that already use on-
tologies to store information usually concentrate only on their own, locally available
ontologies, without placing much emphasis on information exchange. These group of
issues is however not critical, as proposals for possible solutions exist that may be
applied and improved in the near future.
The second group of problems is by far more crucial for the long-term success of
ontologies, even though (or maybe because) they are not so apparent. Due to the
existence of detailled standards and the large amount of work being done in the field
of ontologies, certain very fundamental questions one might expect to be already an-
swered are actually still heavily discussed, although they are very important even for
the ontology standard itself. Many issues are even not discussed on a open basis, but
appear to be deliberately ignored by certain parts of the community or dismissed with
vague indications. This is for instance the case with the problematic notion of iden-
tity and the related questions of how to establish identity for arbitrary subjects in a
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globally valid way (see Chapter 2). In my optinion, these questions are not adequately
addressed by the RDF and OWL community, and also the Topic Map approach is far
from being perfect, although establishing identity is one of the most important aspects
of ontology design. Another example is the unrestricted use of URIs as only identifiers
for all concepts, which is again addressed only in a very fuzzy way. Solution proposals
often mistake technical interoperability (which is what URIs are actually intended for)
for true semantic interoperability (which is independent from technical standards such
as URIs).
These issues bring up the question whether ontologies can live up to the great expecta-
tions in context with the Semantic Web initiative: are ontologies suited for mainstream
applications besides research projects and isolated solutions for some special applica-
tions? A strong contraindication is given by the nature of humans itself: as correctly
pointed out by critics, humans tend to be lazy, imprecise, and not always commited to
truth [Doc01]. It is therefore almost impossible to redefine human knowledge in such
a precise, unambiguous way that is needed to represent that knowledge in an ontology.
After all, it is an undeniable fact that the Semantic Web requires a transformation
of knowledge representation from the natural language documents (books, web pages
etc.) we use today to collection of ontologies that can also be interpreted by machines,
although this pviewpoint is not very common among ontology researchers. Actually,
this process is an adaption of human knowledge to a lower, “binary” level of machine
interpretation, where only true or false statements exist. Humans can of course profit
from this transformation process, because e.g. it allows for creating really precise
search engines that reveal exactly those informations that we are looking for, but it
is very questionable if such a transformation process can be successful at all, just by
looking at the immense costs of such an undertaking.
There is however another, somewhat different way to take advantage of ontologies and
their capabilities for improving knowledge management and automated processing of
information. The basic idea is to combine natural language processing approaches
(NLP) and ontologies in order to significantly improve the automated interpretation
of ordinary documents originally intended for human interpretation. Ontologies could
be used to represent some kind of common sense knowledge, which is indispensable for
correct interpretation of information. By using an ontology, actual knowledge could
be added to the syntactical and statistical methods used so far, allowing for semantic
interpretation of a document. The key difference to the knowledge transformation
process described above is that initially the ontology does not contain specific domain
knowledge, but enables the interpreter to process documents and extract additional
information from them. This will surely not solve all problems that are inherent to
ontologies, but might facilitate the creation of large ontologies with domain specific
knowledge. A number of works describing such systems exist [AKM+03,HSC02,PSL03,
NV04], but a in-depth discussion is outside the scope of this thesis.
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