
Topic Maps run from XML and is coming
back with Flowers

FLWR-­‐‑Style in the Topic Maps Query Language using a TMAPI-­‐‑
based implementation

Benjamin Bock
Topic Maps Lab, University of Leipzig

<bock@informatik.uni-­leipzig.de>

Sven Krosse
Topic Maps Lab, University of Leipzig

<krosse@informatik.uni-­leipzig.de>

Lutz Maicher
Topic Maps Lab, University of Leipzig

<maicher@informatik.uni-­leipzig.de>

Abstract

In its history, Topic Maps developed from a syntax-­‐‑based standard to a pure

datamodel without any syntax definedwithin its core datamodel. The syntaxes

defined by the ISO for the exchange of Topic Maps are conforming to the

generic data model, one of them, XTM, being based on XML. The usage of

XTM without a Topic Maps engine is cumbersome because of the generalized

schema and the merging rules. For example, extracting useful information

from XTMusing XSLT requires to query for the typing topics, which is a new

subquery just for selecting the right subject whereas it was the entity name

in a domain specific XML format. Querying the properties, called Names and

Occurrences in TopicMaps, requires additional subqueries because their types

and scopes are again Topics and not simple XML entity-­‐‑ and attribute names.

The Topic Maps Query Language which is the latest draft in the ISO stand-­‐‑

ardization presented here allows formulating queries against a Topic Maps

store in a concise way and outputting the result in various representations.

Our implementation TMQL4J uses any TMAPI-­‐‑compatible store to operate

on and allows optimized queries and outputting domain-­‐‑specific XML. This

is demonstrated by generating an ATOM feed for the subject identity record

service subj3ct.com.

Keywords: Topic Maps, XML, Topic Maps Query Language, TMAPI,
XTM, XSLT, FLWR

1

1. Introduction
Topic Maps was developed as an SGML and HyTime-­‐‑based standard [1] a decade
ago.With the advancements andpopularity of XML, the 2001 versionwas completely
transitioned to XML [2]. The XML version of Topic Maps disclosed the paradigm
to awider audience and enabled several implementations. In the continuing progress
of both, development and standardization, the stakeholders and editors came to
the conclusion that the datamodel should be independent of a notation or syntactic
representation [3]. While XML may be a good way to exchange topic maps, it is not
always ideal to handle them as XML internally. Especially the merging of constructs
-­‐‑ one of the core functionalities of the integration model ([4], Section 6) is described
significantly easier using the specialized data model instead of a notation-­‐‑based
model. Consequently, the Topic Maps community focussed on the development of
a data model and using XML Topic Maps just as one of several exchange formats.

Due to the way XML is intended to be used from a Topic Maps standards per-­‐‑
spective, the XML schemata defined in [2] and [5] are not designed to be extended
or modified ([2]: Introduction). This major drawback eliminates the possibility to
exploit one of the core features of the Extensible Markup Language: Extensibility.
Another way is to be found.

Firstwe are going to describe the TopicMapsDataModel and how it is currently
accessed using APIs. Then we will illuminate different ways of representing and
querying a topic map in different containers, document-­‐‑based and in relational
databases. After that we will compare several possibilities to query a topic map.
Finally we will show an application of the here-­‐‑proposed and recommended way
to query a Topic Map for XML data, creating a feed for the Web 3.0 identity service
subj3ct.com. We conclude with a self-­‐‑assessment and outlook.

2. The Topic Maps Data Model
The TopicMaps DataModel [4] is defined in terms of XML Infoset [7]. It is a generic
model to encode knowledge and connect encodedknowledge to relevant information
resources. This means it is not dedicated to a specific usage or model but generally
usable for any particular or general application. A topic map consists solely of topics
and role-­‐‑based associations between topics. Topics represent subjects of discourse
whichmay be anythingwhatsoever, regardless of whether it exists or has any other
specific characteristics, about which anything whatsoever may be asserted by any
meanswhatsoever ([4], section 3.14). Topics consist of their characteristics, i.e. names

and occurrences. Names in turn may consist of several variants thereof. Associations
consist of roles, each role referring to a player which is one topic. Figure 1 shows
the hierarchical aspect of this meta-­‐‑model, the class names being representative for
a set of instances thereof.

2

Topic Maps run from XML and is coming back with Flowers

Figure 1. Hierarchical aspect of the TMDM

Names, occurrences, associations, and roles are typed. Types are again topics.
Names, variants, occurrences, and associations are referred to as statements, while
roles are not statements on their own but only within their specific association. The
validity of a statement may be constrained by a scope. A scope is a set of topics and
may be empty. The empty scope is called the unconstrained scope. Figure 2 shows
the seven entities of themeta-­‐‑model, i.e. topicmap, topic, name, variant, occurrence,
association, and role, in their inheritance hierarchy. The inheritance hierarchy shown
also introduces another abstract construct: reifiable. In the class model of TMDM,
all constructs except topics have a restricted set of properties. The concept of reific-­‐‑
ation allows to make additional assertions about a construct by creating a topic
representing this construct. All assertionsmade about this topic are in fact assertions
about the reified construct. Obviously a topic is not reifiable because all assertions
can be made directly to it.

Figure 2. Class diagramm showing inheritance in the TMDM

3

Topic Maps run from XML and is coming back with Flowers

A topic may have any number of types, instances, supertypes, or subtypes; each
of these is again a topic. Additionally, some of the topics are used as type or in the
scope of a construct. These topics constitute the ontology. A topic map usually con-­‐‑
tains a model of the real world. For practical reasons, the ontology for a specific
application should be further restricted. This task is done using a topicmap schema,
defined using the TopicMapsConstraint Language [8]. A topicmap schemadefined
in TMCL is again a topic map.

All constructs (including topics) can uniquely be adressed using item identifiers.
An item identifier is a locator, i.e. a string conforming to the IRI notation defined in
RFC 3987. Additionally, topics are addressable using subject identifiers and subject
locators. Subject identifiers point to subject indicators in an attempt to unambigu-­‐‑
ously identify the subject represented by a topic to a human being ([4], section 3.16).
Thus subject identifiers are indirect, symbolic representations of a topic. A subject
locator refers to the information resources that is the subject of a topic. The subject
identifier http://www.topicmapslab.de/ represents aworking group at theUniversity
of Leipzig while the subject locator http://www.topicmapslab.de/ represents the
website of this working group. These two different locators refer to two different
subjects and therefor point to two different topics. However, these topics would
most likely be associated somehow to each other in a topic map.

A topic can be refered to by any number of identifiers (greater zero). Any topics
sharing a common item identifier or subject identifier must be merged by the Topic
Maps engine. Item identifiers and subject identifiers share the same notion of indir-­‐‑
ectly adressing a subject, consequently they'ʹre treated equally and combined (i.e.
given two topics, one with an item identifier x and one with a subject identifier x,
these two are merged). Any two topics sharing a common subject locator must also
be merged because they describe the same resources. When merging two topics,
these two are replaced by a new one having the union of all their properties (with
duplicates removed). The concept ofmerging facilitates having one single construct
representing a real world concept, thus eliminating the need for joins etc.

2.1. TMAPI
The TopicMapsApplication Programming interface [9] is a community-­‐‑driven effort
to create a minimal but universal API for programmatically accessing andmanipu-­‐‑
lating data conforming to the TMDM. TMAPI consists of a number of interfaces
defined in Java. Each TopicMaps construct is represented by an interface. Addition-­‐‑
ally there are interfaces for several indexes, exceptions, and locators. A Topic Maps
engine is a library implementing these interfaces. The defined goal of TMAPI is to
do for Topic Maps what SAX and DOM did for XML: providing a single common
API which all developers can code to and which means that their applications can
bemoved fromone underlying platform to anotherwithminimum fuss ([9], section
"ʺWhy Bother?"ʺ).

4

Topic Maps run from XML and is coming back with Flowers

The original TMAPI 1.0was designed to represent an in-­‐‑memory representation
of (an earlier version of) XTM. During its development, TMDM was in an early
stage. This led to the decision to fix TMAPI to an intermediate state between XTM
1.0 and XTM 2.0, the latter being the biunique counterpart to TMDM. This discrep-­‐‑
ancy is being fixed with TMAPI 2.0 which is aligned to TMDM. However, it has
insufficient support for the supertype-­‐‑subtype relationship and allows the imple-­‐‑
mentation some freedom of interpretation regarding the TMDM'ʹs requirement to
represent the type-­‐‑instance relationship between topics as queryable associations.
This may require additional handling for some queries and hinders exchange of
implementations. On the other hand, this relief simplifies the implementation of
engines and is therefor an understandable approach.

TMAPI being defined using the Java-­‐‑language inspired interfaces for other
programming languages like PHPTMAPI for PHP. Similar APIs are being used in
Ruby, Python, C#, and C++. Some of the implementing engines offer enhancements,
the one for Ruby is described below.When refering to TMAPI in the following, any
of the before-­‐‑mentioned interfaces on the abstraction level of Java TMAPI 2.0 and
their implementations are included.

2.2. Ontopia Interfaces and Tolog
For a long time Ontopia was the strongest commercial Topic Maps engine vendor
and implementation. It is implemented in Java and comes with a huge set of tools
and extending packages. The recent open sourcing of Ontopia brought a popularity
boost to the engine and therefor its interfaces and query language tolog. Ontopia'ʹs
interfaces are similar to TMAPI'ʹs but they additionally feature transactions, concur-­‐‑
rency management etc. There is no need to look at Ontopia'ʹs interfaces in detail as
they are easily mapped to TMAPI, even though they were not inspired by TMAPI
in the first place.

Tolog (written in all small letters originally) [10] is a logic-­‐‑based query language
inspired by Prolog'ʹs Datalog and SQL. It was Ontopia'ʹs (the company'ʹs) approach
to the a Topic Maps Query Language and since serves as a temporary solution as
long as the official TMQL standard is not completed [TOLOG, chapter 6]. Ibidem
has been shown that tolog queries can be implemented efficiently on top of Topic
Maps engines using a relational database as backend.

While the tolog language'ʹs implementations can execute quite sophisticated
queries, it lacks on flexibility regarding the query results. It can only return topics
and the other contructs but not any other representation like custom XML. This
drawback excludes the otherwise useful language for our purpose: returning custom
XML from a Topic Maps query.

5

Topic Maps run from XML and is coming back with Flowers

2.3. Ruby Topic Maps'ʹ Approach to TMAPI
Ruby Topic Maps [11] is a Topic Maps engine written in the Ruby programming
language. Froma language style perspective, Ruby has several advantages compared
to Java and therefor enabled several tweaks in the API. Besides language-­‐‑specific
enhancements, other features where implemented to minimize the effort needed to
implement an application on top of RTM'ʹs API. Finally, the functional features of
Ruby offer powerful functions on sets, simplifying the further processing of the
query results.

As mentioned before, type and scope of a construct is always a topic resp. a set
of topics. Hence the typing or scoping topic(s) must be queried before they can be
used in another query. Here, query refers to a method call, not to a complex query
with multiple processing steps. In TMAPI this requires to
1. create a locator representing the string of the IRI: topicMap.createLocat-­

or("some:IRI");;
2. query the topic using the locator either as subject identifier, subject locator, or

item identifier: topicMap.getTopicBySubjectIdentifier(theLocator);;
3. use the topic in the query.
Wherever the TMAPI interfaces expect a topic, it is possible to use a string, a locator,
or a topic in RTM. This eliminates the first two of the three steps above but creates
the necessity to specify how the IRI string is to be interpreted. RTM allows two
syntaxes for that, one inspired from theCompact TopicMaps notation [12]: Prefixing
item identifiers with "ʺ^"ʺ and subject locators with "ʺ="ʺ, while subject identifiers are
used without prefix. The other is inspired from the JSON Topic Maps notation [13],
using the prefixes "ʺii:"ʺ, "ʺsl:"ʺ, and "ʺsi:"ʺ with the obvious meanings. Another feature
to point out here is the (switchable) inference of supertypes resp. subtypes when
querying.

While RTM'ʹs API provides several benefits over TMAPI, its disadvantages are
the restriction to use Ruby, only indirectly supported output formats using program-­‐‑
ming, and the lack of integrated query optimization facilities.

3. Storing a Topic Map and Accessing the Store

3.1. XTM and other document-­‐‑based formats
The XML Topic Maps Serialization Format, Version 2.0 [5] is defined using RELAX
NG [6] and an exact counterpart of the TMDM. It features some shortcuts to allow
smaller files like an instanceOf-­‐‑Element instead of a type-­‐‑instance association.
Furthermore it uses different XML elements for the value of an occurrence resp.
variant to allow a simpler schema while being precise about the content. Names,
occurrences, and variants share the value property in TMDM. The datatype of a

6

Topic Maps run from XML and is coming back with Flowers

name is imlicitly xsd:string. The datatype of occurrences and variants can be
anything, including xsd:anyURIwhere the value is persisted in a resourceRef element
instead of a resourceData element. A XTM file does not need to be completely
merged. It is allowed that there exist two topic definitions in an XTM file which are
semantically identical but not yet brought together. Under certain conditions this
complicates queries against an XTM file. This restriction is ignored in the example
of querying an XTM2 file using XQuery presented later.

For the same reasons XQuery is not the right tool for this job, neither XSLT solves
this problem. The disadvantage lies in the non-­‐‑matching layers ofmodeling: XQuery
and XSLT are optimized to operate on domain-­‐‑specific XML documents where the
schema of a XTM document is generic from a users perspective. Of course the XTM
schema is domain-­‐‑specific from anXML-­‐‑perspective, but it just serves as a container
format in the case of XTM.

The above-­‐‑mentioned Compact Topic Maps notation is, besides XTM, the only
other ISO-­‐‑standardized format for Topic Maps. It is optimized for users to write
down a topic map directly in a file. This file format is not supported by any query
languages directly and, compared to XML, hard to parse. Another common format
is the also above-­‐‑mentioned JTM. Neiter CTM nor JTM is free of the drawbacks
explained for XTM.

3.2. Relational Databases and NOSQL Approaches
There is no standarized schema in which a topic map should be represented with
a relational database. However, several imlementations, including Ontopia and
RTM, are able to use relational databases to persist their data. A topic map repres-­‐‑
ented in one of the schemas of the two mentioned implementations is persisted
fully merged. It is theoretically possible to query a topic map using SQL directly
from the database. This assumes detailed knowledge of the specific database schema,
of additional index tables etc. and is not recommended by the authors.

A trend in these days is called NOSQL. NOSQL is loosely summing up all non-­‐‑
relational data stores. There are no citable academic publications for NOSQL yet,
so we have to refer to the homonymous entry in the English Wikipedia. NOSQL
focusses on horizontal scalability while not necessarily requiring the ACID guaran-­‐‑
tees provided by relational databases. To short cut this divagation: All query lan-­‐‑
guages created for other data models suffer the mismatch between their particular
way ofmodeling data and the TopicMapsway. The consequent and obvious solution
is to create a query languagewhich fits the TMDMand allows advanced processing
to fulfill the user'ʹs expectations.

7

Topic Maps run from XML and is coming back with Flowers

4. Querying a Topic Map

4.1. Querying an XTM File Using XQuery
It was already argued not to use XQuery [14] to query an XTM file. Nevertheless
we will show an XQuery example to directly compare it with the TMQL approach.
The Italian Opera topic map is a commonly used example in the Topic Map com-­‐‑
munity. We'ʹre assuming a completely merged topic map so we don'ʹt have to care
about duplicates. Take the following example for a query of all cities mentioned in
this topic map:

Example 1. XQuery cities from the Italian Opera topic map by id

declare default element namespace "http://www.topicmaps.org/xtm/";;
.//topic[./instanceOf/topicRef/@href="#city"]

In this query, a city is refered to by its fragment identifier #city which points to a
topic elementwithin the samefile. This topic element contains additional information
like a subject identifier (http://psi.ontopedia.net/City), names in different lan-­‐‑
guages (each language designated by a scoping topic in the name elements) and so
on. To combine and integrate information from several sources -­‐‑ one of the core
competences of Topic Maps -­‐‑ a published subject identifier (PSI) should be used.

Example 2. XQuery cities from the Italian Opera topic map by PSI

declare default element namespace "http://www.topicmaps.org/xtm/";;
.//topic[./instanceOf/topicRef/@href=concat(

"#",
//topic[./subjectIdentifier/@href=

"http://psi.ontopedia.net/City"]/@id
)]

If we now (simplifying but wrongly) assume that for each result /count(./name)
equals 1, we can append /name/value/string(.) to get all city names. Still, we did
not query for city names constrained using a given scope. We did not take into ac-­‐‑
count that instanceOf can be equally modeled as association and so on. We stop
here and move on to TMQL which fits the given purpose much more natural.

4.2. TMQL Path and SELECT Queries
It was shown thatwithin anXMLenvironment, using TopicMaps in formof generic
XTM documents may be cumbersome. It is highly desirable to create documents
which adhere to a given schema or may be easily transformed to one using XSLT.
One approach to thiswas the creation of TM/XMLwhich provides a domain-­‐‑specific

8

Topic Maps run from XML and is coming back with Flowers

representation of a topic map. The schema of TM/XML is dependent of the topic
map'ʹs schema, not the desired output schema.We present a draft of the TopicMaps
Query Language [15] standardwhich features a query stylewhich is heavily inspired
byXQuery FLWORand allows outputting domain-­‐‑specificXMLdocuments queried
from a TopicMap. This draft uses a path style as its fundamental processingmodel.
The path style is also exposed to the user and can be used, especially for queries for
a result with a uniform structure. A third query style is the SELECT style which
was inspired by SQL. Within a TMQL processor, both FLWR style and SELECT
style can easily be converted to Path style. The expressiveness of these three styles
is identical. The only differences are that path expressions cannot have explicit
variables and that FLWR is the only style able to output complex content [BA06].

The expressions in a path style navigate along predefined axes. The separator
used is >>. The resulting values can be filtered using boolean conditions or used as
new starting points for further navigation ([15], section 6.6.1). The following TMQL
path query extracts all cities from the Italian Opera topic map.

Example 3. TMQL path querying cities from the Italian Opera topic map

http://psi.ontopedia.net/City >> instances

The alignment of the query languate to the data model obviously simplifies the
structure of the query significantly. Every navigation item is a set of Topic Maps
constructs, locators or simple values (e.g. string). All merging is provided by the
engine. All inferencing of subtypes etc is done automatically. If there was a subtype
of City, e.g. Capital, the list of capitals would be included in the list of cities. There
is a shortcut for the instances axis shown in the following snippet:

Example 4. TMQL path querying cities from the Italian Opera topic map using
shortcut

// http://psi.ontopedia.net/City

Except for another single character to signify the traversal of the instances axis this
cannot be any shorter. There are shortcuts formany axes but their terminal symbols
are still disputed. We look forward to a normative standardization of the query
language as an ISO standard.

4.3. The TMQL FLWR Query Style
The FLWR style is a reason to look at a slightly more sophisticated query and using
XML output. The following code snipped shows a TMQL FLWR query to get all
operas and their composers. Aswe use the namespace http://psi.ontopedia.net/
multiple times it is useful to define a prefix o for this. The query result is to be
wrappedwithin a root element, named root in the example. In the following a naïve

9

Topic Maps run from XML and is coming back with Flowers

approach to the processing model is explained using the example: The set of all in-­‐‑
stances of opera is iterated and assigned to the variable $OPERA variable. The set in
the variable is then iterated over to find all instances matching the pattern in the
WHERE-­‐‑clause. In each iteration, the variable $COMPOSER is assigned to thematching
counterpart in the association. The boolean expression in theWHERE-­‐‑clausematches
an association typed by o:composed_by which contains two roles, one of type
o:Composer and one of type o:Work. For eachmatching association anXML template
is filled with the elements given in the templates and the subqueries in curly braces
evaluated.

Example 5. TMQL FLWR querying operas and their composers

%prefix o http://psi.ontopedia.net/
RETURN
<root>
{
FOR $OPERA IN // o:Opera
WHERE o:composed_by(o:Composer : $COMPOSER , o:Work : $OPERA)
RETURN
<composed_by>
<opera>
{ $OPERA / tm:name }

</opera>
<composer>
{ $COMPOSER / tm:name }

</composer>
</composed_by>

}
</root>

5. Application: A subj3ct.com feed

5.1. About subj3ct.com
Subj3ct describes itself as infrastructure technology for Web 3.0 applications. The
criterion for being "ʺWeb 3.0"ʺ is the focus on subjects and semantics rather than
documents and links. The goal of Subj3ct is to provide technology and services to
enable applications to define and exchange subject definitions [17]. Its goal is not
to collect any data but only the information relevant to uniquely identify subjects.
Subj3ct provides a web based search interface which provides links to resources
about the subjects as well as a REST API for identifier and full text search.

The Subj3ct data is updated using ATOM and SKOS feeds. ATOM is an XML-­‐‑
based format and SKOS is transferred in RDF/XML format which is, as the name
suggests, also XML-­‐‑based. To update subj3ct.com from a Topic Maps-­‐‑based applic-­‐‑

10

Topic Maps run from XML and is coming back with Flowers

ation, the most obvious way is to use a TMQL FLWR query which is suggested in
this paper. The ATOM variant will be discussed here.

Because everybody can publish everything about any subject, some way of
weighting relevant sources is useful. Subj3ct assigns trust scores to identifiers. "ʺThe
Trust Score provides a rough measure of how likely it is that the creator of an
identifier agrees with any statement being made about the identifier"ʺ ([17], chapter
4.1). This does not mean a trust in the creator of an identifier or the individual who
creates statements about that identifier. Neither does it qualify the content which
may be returned when requesting any URLs contained in those statments.

5.2. Updating subj3ct.com via ATOM
The following figure shows an excerpt of the ATOM feed provided by the top-­‐‑
icmapslab.de community portal. Besides the standard ATOM elements used in the
header part, the entries are the interesting part. Additional to the classic atom entries,
a subj3ct.com ATOM feed includes links with special rel attributes. The attribute
values SubjectIdentifier and SubjectEquivalence are used to designate the subject
identifiers.We assume that the different nameswere chosen to distinguish between
those primarily used in the source providing the feed and external ones.

In the ideal case, the subject identifier points to a subject indicator (which is a
resource describing the real world concept, as said before). Practically often the
representation is at another address which is thought to be provided using link
elements with a rel="SubjectRepresentation". As the topicmapslab.de portal is a
subject-­‐‑centric portal, all these links match in the example.

Example 6. Excerpt of the ATOM-­‐‑based topicmapslab.de people update feed.

<?xml version="1.0" encoding="UTF-­8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Subject Identifier for People at Topic Maps Lab</title>
<id>http://www.topicmapslab.de/people?locale=en</id>
<updated>2010-­01-­22T11:45:14Z</updated>
<author>
<name>Topic Maps Lab</name>
<uri>http://www.topicmapslab.de/</uri>

</author>
<entry>
<title>Benjamin Bock</title>
<id>http://www.topicmapslab.de/people/Benjamin_Bock</id>
<updated>2010-­01-­18T18:12:23Z</updated>
<summary>Is involved in ";Ruby Topic Maps";

and ";Topic Maps Lab Community Portal";</summary>
<link href="http://www.topicmapslab.de/people/Benjamin_Bock"
rel="SubjectIdentifier"/>

11

Topic Maps run from XML and is coming back with Flowers

<link href="http://www.topicmapslab.de/people/Benjamin_Bock"
rel="SubjectRepresentation"/>

<!-­-­ snip -­-­>
<link href="http://bock.be/njamin" rel="SubjectEquivalence"/>
<link href="http://psi.ontopedia.net/Benjamin_Bock"
rel="SubjectEquivalence"/>

</entry>
<entry>
<title>Sven Krosse</title>
<id>http://www.topicmapslab.de/people/Sven_Krosse</id>
<!-­-­ snip -­-­>

</entry>
<entry>
<title>Lutz Maicher</title>
<id>http://www.topicmapslab.de/people/Lutz_Maicher</id>
<!-­-­ snip -­-­>

</entry>
</feed>

5.3. Using TMQL FLWR to Create a Feed for subj3ct.com
The following code snipped shows a single TMQL FLWR query to create the com-­‐‑
plete ATOM feed for subj3ct.com in one step. In this example the header is returned
in one step. For simplicity the current time is chosen for the updated element. Of
course, this could also be determined by the modification time of the topic which
wasmodified last. In the first FOR part of the query all people are queried. The WHERE
clause constraints the list to only those person-­‐‑topics which have been marked as
published using the corresponding occurrence. For each person an entry is returned
which is then filled using subqueries for all properties requested. Please notice the
use of built-­‐‑in functions for matching regular expressions.

Example 7. A TMQL FLWR query to create a subj3ct.com ATOM feed

%prefix tml http://www.topicmapslab.de/
%prefix t http://www.topicmapslab.de/types/
RETURN
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Subject Identifier for People at Topic Maps Lab</title>
<id>http://www.topicmapslab.de/people?locale=en</id>
<updated>{ fn:current-­dateTime }</updated>
<author>
<name>Topic Maps Lab</name>
<uri>http://www.topicmapslab.de/</uri>

</author>
{

12

Topic Maps run from XML and is coming back with Flowers

FOR $person IN // tml:people
WHERE $person / t:published
RETURN
<entry>
<title>{ $person / t:firstname } { $ person / t:lastname}</title>
<id>{ $person >> indicators [0] }</id>
<updated>{ $person / t:updated_at }</updated>
<summary>{ $person / t:summary }</summary>
{
FOR $si in $person >> indicators
WHERE fn:regexp($si >> atomify,

"http://www.topicmapslab.de/people/.*")
RETURN
<link href="{$si}" rel="SubjectIdentifier"/>
<link href="{$si}" rel="SubjectRepresentation"/>

}
{
FOR $si in $person >> indicators
WHERE not fn:regexp($si >> atomify,

"http://www.topicmapslab.de/people/.*")
RETURN
<link href="{$si}" rel="SubjectEquivalence"/>

}
</entry>

}
</feed>

Compared to a previous approach (which collected the information neededusing
RTMAPImethod calls and then outputting a string), the time needed for implement-­‐‑
ationwas reduced; the amount of code is smaller while maintaining a good readab-­‐‑
ility.

6. Conclusion and Outlook
The creation of the ATOM feed query is mostly a work of taking an existing feed
and replacing all repeating parts with FOR-­WHERE expressions and selecting the
properties also easy to create. The syntax of TMQL FLWR has many parallels to
XQuery and thus can easily be learned. A big advantage of TMQL is the alignment
to the data model and the therefor concise and fitting syntax. The ability to output
XML eases the integration with other applications significantly.

We implemented TMQL in Java using the before mentioned TMAPI interfaces.
The implementation is called TMQL4J and we use it for several academic projects.
Our implementation is published as part of the Ontopia open source project [18].

13

Topic Maps run from XML and is coming back with Flowers

Additionally, Ruby Topic Maps will be enhanced by an additional package rtm-­‐‑
tmql allowing ease of use within the Ruby library.

The query language is still a work in progress and may change before its final
standardization in ISO, therefor the implementation will also change. The naïve
implementation of the processing model showed significant worse performance
compared to the highly optimized tolog engine used in Ontopia. Some obvious
optimizations already show massive performance increases. An reasonable next
step would be not to implement TMQL on top of TMAPI but to directly access a
backend optimized for the engine.

The current draft of the upcoming TMQL standard describes only read access.
Several parties are working on drafts supporting modifing access. With a stable
query language for reading andmodifying TopicMaps, a solid foundation for wide
adoption will be laid.

Bibliography
[1] ISO/IEC IS 13250:3004: Information Technology -­‐‑ SGML applications -­‐‑ Topic

Maps (Second Edition). International Organisation for Standardization, Geneva,
Switzerland, 2003

[2] Members of the TopicMaps.Org Authoring Group: XML Topic Maps (XTM) 1.0.
http://topicmaps.org/

[3] ISO/IEC JTC 1/SC34 N0266: Topic map foundational model requirements.
International Organisation for Standardization, Geneva, Switzerland, 30October
2001. http://www1.y12.doe.gov/capabilities/sgml/sc34/document/0266.htm

[4] ISO/IEC IS 13250-­‐‑2:2006: Information Technology—Document Description and
Processing Languages: Topic Maps — Data Model. International Organisation
for Standardization, Geneva, Switzerland, 18 June 2006. http://
www.isotopicmaps.org/sam/sam-­‐‑model/2006-­‐‑06-­‐‑18/

[5] ISO/IEC IS 13250-­‐‑2:2006: Information Technology—Document Description and
Processing Languages: Topic Maps — XML Syntax. International Organisation
for Standardization, Geneva, Switzerland, 2006. http://www.isotopicmaps.org/
sam/sam-­‐‑xtm/2006-­‐‑06-­‐‑19/

[6] Clark, James – Cowan, John – MURATA, Makoto: RELAX NG Compact Syntax
Tutorial. Working Draft, 26 March 2003. OASIS. http://relaxng.org/
compact-­‐‑tutorial-­‐‑20030326.html

[7] W3C: XML-­‐‑Infoset, XML Information Set (Second Edition), W3C
Recommendation, 4 February 2004. http://www.w3.org/TR/2004/
REC-­‐‑xml-­‐‑infoset-­‐‑20040204

14

Topic Maps run from XML and is coming back with Flowers

[8] ISO/IEC FCD 19756: Information Technology — Document Description and
Processing Languages: Topic Maps Constraint Language. International
Organisation for Standardization, Geneva, Switzerland, 15 July 2009. http://
www.isotopicmaps.org/tmcl/2009-­‐‑07-­‐‑15/

[9] Ahmed, Kal; Garshol, Lars M.; Grønmo, Geir O.; Heuer, Lars; Lischke, Stefan;
Moore, Graham: TMAPI 1.0. http://tmapi.org/

[10] Garshol, Lars M.: tolog A topic map query language. Ontopia, 24 August 2007.
http://www.ontopia.net/topicmaps/materials/tolog.html

[11] Bleier, Arnim; Bock, Benjamin; Schulze, Uta; Maicher, Lutz: JRuby TopicMaps.
in: Linked Topic Maps, LIV Series volume XIX, 12 November 2009.

[12] ISO/IEC WD 13250-­‐‑6: Information Technology — Document Description and
Processing Languages: Topic Maps — Compact Syntax. International
Organisation for Standardization, Geneva, Switzerland, 15 May 2008, http://
isotopicmaps.org/ctm/ctm.html

[13] Cerny, Robert: JSONTopicMaps 1.0. 23 June 2009. http://www.cerny-­‐‑online.com/
jtm/1.0/

[14] W3C: XQuery 1.0: An XML Query Language 23 January 2007. http://
www.w3.org/TR/xquery/

[15] ISO/IEC WD 18048: Information Technology – Document Description and
Processing Languages – Topic Maps – Query Language. International
Organization for Standardization, Geneva, Switzerland, 2007-­‐‑07-­‐‑13 http://
www.isotopicmaps.org/tmql/

[16] Barta, Robert: Towards a Formal TMQLSemantics. in: Leveraging the Semantics
of Topic Maps, Springer 4 September 2007.

[17]Moore, Graham;Ahmed, Khalil: Subj3ct -­‐‑ A Subject Identity Resolution Service.
in: Linked Topic Maps, LIV Series volume XIX, 12 November 2009.

[18] Garshol, Lars M.; Grønmo, Geir O.: Ontopia: Tools for building, maintaining,
and deploying TopicMaps-­‐‑based applications. Ontopia 5.0.0, 8 July 2009, http://
code.google.com/p/ontopia/

15

Topic Maps run from XML and is coming back with Flowers

16

