
I hereby declare that, except where specifically indicated, the work submitted herein is my
own original work.

Signed: _____________________. Date: ____________

Topic Maps for the Cambridge Advanced
Modeller

by

Clive Stevens (CTH)

Fourth-year undergraduate project

in Group C, 2011/2012

Topic Maps for the Cambridge Advanced Modeller

by Clive Stevens (CTH)

Fourth-year undergraduate project in Group C, 2011/2012

Technical abstract

This project aims to create a Topic Maps toolbox for the Cambridge Advanced Modeller

(CAM). The toolbox should allow creation of simple Topic maps and strict Topic maps, and

should also provide users with the ability to perform suitable Topic Maps operations. The

motivation behind this project is to open up Topic Maps technology to University of

Cambridge Engineering Design Centre (EDC) researchers and collaborators, a group of

people already familiar with CAM.

Topic Maps is a standard for information management and interchange. A Topic map

represents a collection of statements, in which attributes (termed Occurrences) and

interrelations (Associations) are specified for primary subjects (Topics). A Topic can represent

a subject as abstract as the user desires – anything from a physical object, to an idea, to an

opinion on an idea. Topic Maps is a concept formally defined in ISO 13250 (referred to in this

project as strict Topic Maps), making it suitable for computer implementation.

Simple Topic Maps is a concept defined in the context of this project to be a simplified

version of the strict Topic Maps standard. Defining fewer constructs, it is easier to use, but

restricts possible analysis.

CAM is a configurable software platform developed by the EDC, which allows users to

model, simulate, and analyse processes (typically design processes of products, or service

processes). Models consist of instance elements joined by instance connections, both of which

may have a number of instance properties. Instance properties are used to specify attributes of

instance elements and instance connections, for example, an instance element may have a

Name instance property. CAM defines a modular interface, which permits toolbox

development and makes this project possible. Toolboxes typically define new model types.

A Topic Maps toolbox has successfully been developed. Any Topic map conforming to the

strict Topic Maps standard may be represented in full using the toolbox. Simple Topic maps

may also be created using this toolbox.

The Topic Maps toolbox includes a number of new property interface implementations that

ii

define the new types of instance property required for Topic Maps. These include a property

allowing the selection of a single instance element from a model, a property allowing a list of

items to be created, a property with an editable drop-down box user interface component, and

a property with a tree user interface component. These property interface implementations

have been developed in a generic way, and may be useful to future toolboxes.

Various Topic Maps operations are provided by the toolbox – version conversion, validation,

and export operations. The version conversion operations convert strict Topic maps into

simple Topic maps and vice versa. The validation operation and export operation are only

defined for strict Topic maps. The validation operation checks if a Topic map conforms to the

Topic Maps standard. The export operation exports a Topic map to an XTM document that

may be used in other Topic Maps applications.

There are several Topic Maps operations that remain to be implemented. An import operation

and a merge operation will be developed before the toolbox is made available from the CAM

website on 1st July 2012. The import operation is essentially the reverse of export – a CAM

Topic map model is created from a Topic map defined in an XTM document. The merge

operation detects and merges any duplicate items in a Topic map.

Figure 1: A Topic map created using the CAM Topic Maps toolbox to discuss Quentin

Tarantino. Topics are represented by pink circles, Associations by blue squares, and

Occurrences by green circles.

iii

Contents
Technical abstract . ii

Acknowledgements . 2

Notation . 2

1. Introduction . 3

1.1. Topic Maps . 4

1.1.1. Theory: information . 4

1.1.2. Topic Maps constructs . 6

1.1.3. Topic Maps properties . 8

1.1.4. Simple Topic Maps . 9

1.1.5. Current Topic Maps applications . 9

1.2. Cambridge Advanced Modeller . 10

1.2.1. Beginnings .10

1.2.2. Diversification .11

1.2.3. Use .11

2. Requirements and analysis . 13

2.1. Topic Maps requirements .13

2.1.1. Strict Topic Maps . 13

2.1.2. Simple Topic Maps . 13

2.2. CAM structure . 14

2.2.1. Data-model and meta-model . 14

2.2.2. Connections .16

2.3. CAM modular interface . 17

2.3.1. Property interface . 17

2.3.2. Menu item interface . 18

2.4. Software requirements specification . 19

2.4.1. Topic map version selection . 19

2.4.2. Strict Topic Maps visual instance elements19

2.4.3. Simple Topic Maps visual instance elements 20

2.4.4. Strict Topic Maps properties . 20

2.4.5. Simple Topic Maps properties . 21

2.4.6. Conversion operations and strict Topic Maps operations 21

2.4.7. External interface requirements . 21

2.4.8. Additional requirements . 21

1

3. Design and implementation . 22

3.1. CAM implementation . 22

3.2. Property interface implementations .22

3.2.1. List selection P3Element property . 23

3.2.2. Editable list selection property . 27

3.2.3. Single line set property . 29

3.2.4. Tree property .31

3.2.5. Topic, Association and Occurrence display names 33

3.3. Palette implementations . 36

3.4. Menu item interface implementations . 36

3.4.1. Strict Topic map properties . 36

3.4.2. Conversion operations . 37

3.4.3. Validation operation . 38

3.4.4. Export XTM operation 39

4. Evaluation . 41

4.1. Achievement of objective . 41

4.2. Toolbox design . 41

4.2.1. Performance . 41

4.2.2. Robustness to changes in CAM . 42

4.3. Testing . 42

4.4. Challenges encountered . 43

5. Conclusions and future work . 44

References . 46

Appendix A: Risk assessment retrospective . 48

Acknowledgements
I would like to thank both of my supervisors for the assistance they have given me with this
project – Dr Nicholas Caldwell was particularly helpful in discussions regarding the direction
of my project, and Ms Seena Nair proved invaluable when discussing technical issues.

I would also like to thank H. Nam Le, an EDC diploma student, for conducting a brief
usability test on the Topic Maps toolbox.

Notation
Topic Maps refers to the technology, Topic map refers to a Topic map item.

2

1. Introduction

The solution-neutral problem statement of this project was to enable researchers and

collaborators of the Engineering Design Centre, University of Cambridge (the EDC) to

capture information.

The following critical decisions were made prior to finalising the project objective:

• Information would be captured in the form of a Topic map. Topic Maps is a

technology specifically designed for this purpose.

• Topic maps would be created in the Cambridge Advanced Modeller (CAM) for

reasons discussed below.

The final objective of this project, therefore, was:

“To design and implement Topic map representation and algorithms for use in the

Cambridge Advanced Modeller software platform”

Topic Maps is a technology for managing knowledge and information. This is an area of

particular interest to the EDC. It is, therefore, useful to add Topic Maps functionality to CAM,

a stable application already familiar to EDC researchers.

The EDC are attempting to consolidate the tools that have been developed on the CAM

platform, enabling their researchers to easily explore links between related models through

the same piece of software. Adding a Topic Maps toolbox will allow a greater number of links

to be explored.

Some research partners of the EDC are heavily involved in Topic Maps. Adding a Topic Maps

extension to CAM will allow the EDC to work more closely with their collaborators inside

the CAM platform, creating more research opportunities.

This project's objective is not to create a revolutionary new Topic Maps application, but to

open up Topic Maps technology to a specific group of people. The Topic Maps application

resulting from this project is, therefore, a lot simpler and less functional than the visual Topic

Maps editor proposed by Thorsten Witt [1]. His proposal is for a complete, standalone Topic

Maps application with similar structure to the Ontopia suite and Networked Planet Web3

platform (discussed in section 1.1.5), with the addition of a complex visual Topic map editor.

The remainder of this chapter introduces Topic Maps as a method of representing information,

and gives an overview of the CAM software platform.

3

1.1. Topic Maps

Topic Maps is a technology that allows information to be formally recorded, viewed and

analysed. Developed in the 1990s, it is a relatively mature technology that has been

standardised in ISO 13250 [2].

1.1.1. Theory: information

All information, even that without structure, can be viewed as a collection of statements

discussing a number of subjects. The wording of the statements and the choice of subjects are

not unique, however, and must be decided after careful consideration. For example, consider

the following information on Quentin Tarantino (an extract from Quentin Tarantino's

Wikipedia entry [3]):

The following statements have been extracted from this information. Sensible subjects have

been italicised (and square bracketed where required for clarity), other possible subjects have

been underlined.

1. According to [Filmreference.com - Quentin Tarantino Biography (1963-) [4]],

Quentin Tarantino's full name is Quentin Jerome Tarantino.

2. Quentin Tarantino was born on March 27, 1963.

3. Quentin Tarantino's nationality is American.

4. Quentin Tarantino works as a [film director], [screenwriter], [producer],

[cinematographer] and [actor].

5. Quentin Tarantino's career began at some point in the [decade beginning in 1990].

6. Quentin Tarantino's career is an independent filmmaker.

7. Quentin Tarantino uses the following techniques in his films: nonlinear storylines and

the aestheticization of violence.

8. Reservoir Dogs is a film by Quentin Tarantino.

9. Pulp Fiction is a film by Quentin Tarantino.

10. Reservoir Dogs was released in 1992.

4

Quentin Jerome Tarantino [4] (… born March 27, 1963) is an American film

director, screenwriter, producer, cinematographer and actor. In the early 1990s,

he began his career as an independent filmmaker with films employing

nonlinear storylines and the aestheticization of violence. His films include

Reservoir Dogs (1992), [and] Pulp Fiction (1994) …

11. Pulp Fiction was released in 1994.

The subjects that have not been identified as sensible are better interpreted as the nature of

relationships between sensible subjects. For example, in statement 3, the relation between the

subjects Quentin Tarantino and American is nationality.

Considering the subjects from all statements other than 1, 8 and 91, two distinct categories of

subject are apparent. Some subjects appear in multiple statements and are subjects that more

statements may be made about (e.g. Quentin Tarantino), whereas some subjects appear just

once and are only of interest in that particular statement (e.g. American). This is the

distinction between data and attribute (data about data) often noted in Computer Science (for

example, XML uses Attributes to represent data about data, and Elements to represent data).

Subjects are classified as attributes if they are only of interest in the context of the statement

they appear in. This classification is not unique, however, and may even change with purpose.

Table 1.1 shows a possible, sensible classification.

Data items Attributes

Quentin Tarantino March 27, 1963

Reservoir Dogs American

Pulp Fiction Film director

Screenwriter

Producer

Cinematographer

Actor

Decade beginning in 1990

Independent filmmaker

Nonlinear storylines

The aestheticization of violence

1992

1994

Table 1.1: A classification of subjects from statements 2-7 and 10-11 of the Tarantino

example.

Statements 8 and 9 define the relations between multiple data items in a similar way to the

data-attribute statements 2-7 and 10-11. This distinction is important to note as data-attribute

statements are represented differently to data-data statements in Topic Maps.

1 Statements 1, 8 and 9 follow a different structure and will be discussed next

5

Statement 1 can be thought of as giving an alternate name to a subject. Quentin Tarantino and

Quentin Jerome Tarantino refer to the same subject with different names.

1.1.2. Topic Maps constructs

A Topic map can be viewed as a network of connected items. Each Topic Maps item is an

instance of a Topic Maps construct, which can be thought of as a schema for the item. The

different constructs are:

• Topic map – The whole network of items is represented by a Topic map item.

• Topic – A Topic item represents a single data item.

• Topic name – Each Topic item may have zero or more Topic name items, representing

subject names for the Topic.

• Variant – Each Topic name item may have zero or more Variant items, variations of

the Topic name.

• Occurrence – Each Topic may have zero or more Occurrences, each representing a

single attribute.

• Association – A data-data relation (a relation between multiple Topics) is represented

by an Association item.

• Association role – Each Association may involve multiple Topics, each of which have

a specific reason for being in the Association. These reasons are represented by

Association role items.

Example

Consider the Tarantino example. A Topic map might be created to represent the entire

collection of statements (Figure 1.1). All subjects classified as data in Table 1.1 would be

represented by Topics, and all subjects classified as attributes would be represented by

Occurrences. The Topic representing Tarantino would have two Topic names – Quentin

Tarantino and Quentin Jerome Tarantino. Statements 8 and 9 would each be represented by

an Association. The Association representing statement 8 would have two Association roles,

representing the roles played by the Tarantino Topic and the Reservoir Dogs Topic in the

Association.

6

Figure 1.1: A Topic map representation of the Tarantino example (created in CAM). Pink

ovals represent Topic items, green circles Occurrence items, blue squares Association items,

and blue connections Association role items.

Further discussion

A Topic may represent any conceivable subject, from a physical object, to an idea, to an

opinion on an idea. There is an infinite number of possible subjects, which makes identifying

individual subjects difficult. This is essential, however, as a statement is only meaningful if

the subjects it refers to are known. A subject indicator is defined as the smallest amount of

information that unambiguously identifies a particular subject. A Topic is linked to its subject

by either the address of the subject itself (through a Subject locators property), or the address

of a subject indicator defining the subject (through a Subject identifiers property). Topics may

have many subject identifiers and subject locators, each of which individually attempts to

identify the subject.

Topic names and Variants do not attempt to identify the subject of Topic items, but facilitate

discussion and analysis of Topic maps. Both Variants and Topic names have a Value property,

which is set to the subject name the item represents. The distinction between Topic names and

Variants is somewhat hazy, but generally a subject name should be classified as a Variant if it

is simply a translation of an existing Topic name to another notation or language. Consider a

7

Topic representing the Russian city Saint Petersberg. This Topic may have three Topic names:

the city's current name (Saint Petersberg), and its two past names (Petrograd and Leningrad).

The Saint Petersberg Topic name may have many Variants: it is referred to as Petersberg in

Russian literature [5], colloquially referred to as Peter [5], and may be written in short-hand

as St. Petersberg. Each Topic name has a specific nature, which is defined in a Type property.

Variants do not have this property as their type is implicitly defined as being equal to their

parent Topic name's type.

Occurrences have a Type property, defining the nature of the relation from the Occurrence to

its Topic. Associations and Association roles also have Type properties, defining the nature of

the Association, and the nature of the role played, respectively. Considering the Tarantino

example, the Occurrence American would have the Type Nationality. Statement 8 would

require the Topic Quentin Tarantino to play the Association role of Type Creator, and

Reservoir Dogs to play the Association role of Type Film, in an Association of Type Film-

Creator.

1.1.3. Topic Maps properties

There are a number of other Topic Maps properties, in addition to those mentioned in section

1.1.2. All Topic Maps properties are discussed below (boldface text is the name of a property).

Subject identifiers and Subject locators are properties of Topics and are discussed in section

1.1.2.

Value is a property of Topic names, Variants and Occurrences. It is discussed in section 1.1.2.

Type is a Topic defining the nature of Topic names, Occurrences, Associations and

Association roles. It is discussed in section 1.1.2.

Item identifiers is a property of all Topic Maps items. An item identifier uniquely identifies

the item it is a part of.

Scope is a property of Topic names, Variants, Occurrences and Associations. It is a collection

of Topic items that states when the particular item is valid.

Datatype is a string specifying how the Value property should be interpreted. Variants and

Occurrences have datatype properties. Topic names have the fixed datatype: string.

A Topic may be created to further discuss a particular item in a Topic map. In other words, a

Topic may be created whose subject is another item in the Topic map. This process is known

8

as reification. All Topic Maps constructs, apart from Topics, have a reifier property that may

identify a Topic whose subject is the item in question.

The relations between all Topic Maps constructs are also defined as properties. Topic maps

have the properties Topics and Associations. Topics have the properties Topic names and

Occurrences. Topic names have the property Variants. Associations have the property

Association roles. Association roles have the property Player (linking to the Topic that plays

the particular Association role in the Association).

Consultation of the Topic Maps Datamodel ISO standard [2] is recommended for a more

detailed discussion of Topic Maps constructs and their properties.

1.1.4. Simple Topic Maps

In some situations, a Topic map conforming to the Topic Maps standard may be too complex.

The user may want to create a simple Topic map without concerning themselves over the finer

points of the standard. Therefore, this project introduces the concept of simple Topic Maps, a

simplified version of the full Topic Maps standard.

No formal specification for simple Topic Maps exists. In the context of this project, a simple

Topic map will consist of the four main Topic Maps constructs – Topics, Occurrences,

Associations and Association roles – each with a reduced number of properties. Topics will

have two properties – Subject, a description of the subject, and Occurrences, the Occurrences

belonging to the Topic. Occurrences will have two properties – Value, the attribute

represented by the Occurrence, and Type, a Topic item equal to the Type of the Occurrence.

Associations will have a single property – Association, a description of the Association type.

Association roles will also have a single property – Role played, a description of the role

played by the Topic in the Association.

1.1.5. Current Topic Maps applications

Ontopia is a mature suite of open source Topic Maps applications containing a HTML form

based editor, a graphical visualiser (displays Topic maps as a collection of connected nodes,

Figure 1.2), and a browser (displays Topic maps as a set of linked web pages) [6]. All user

actions are made through a HTML interface to a core engine that sits behind an Apache

Tomcat server.

Networked Planet have a product called Web3 Platform. While not marketed as such, it can be

9

identified as a Topic Maps application from the introductory video [7] (it is marketed as a

solution for managing and publishing semantic data). This video shows a visual Topic Maps

constraint editor2 and a HTML form based Topic map editor (Figure 1.3). All user actions are

made through an Internet Information Services (IIS) server to a SQL server.

Figure 1.2: Screenshot of Vizigator, the

Ontopia graphical visualiser (from the

Ontopia website [8]).

Figure 1.3: Screenshot of the Networked

Planet Web3 platform (from the Web3

introductory video [7]).

1.2. Cambridge Advanced Modeller

CAM is a Java software platform developed and maintained by the EDC. It includes facilities

for creating and visualising many types of linkage model using diagrams, Dependency

Structure Matrices (DSMs) or force-directed network layouts [9]. It is free for research,

teaching and evaluation use [10].

1.2.1. Beginnings

CAM was originally named P3 Platform, and was developed to facilitate modelling,

simulation and analysis of the dependencies and flows in complex systems. Typical complex

systems would be design processes of products, or service processes, where simulation and

analysis could be used to help identify bottlenecks, optimise processes and identify

unnecessary rework. Specifically, the P3 Platform allowed users to create and analyse Applied

Signposting Models (ASMs), which can be thought of as flow charts with underlying logic

that gets executed when analysis is performed.

2 A Topic Maps constraint document can be thought of as a schema for a Topic map

10

1.2.2. Diversification

As the P3 Platform evolved, it was noticed that modifications could be made to extend its

application. The existing user interface could be retained, and a modular interface

implemented, allowing toolboxes to be created to support other model types. These

modifications were done, and the project renamed to CAM, an extensible platform that would

allow users to create projects involving multiple models of different types.

Since then, a number of toolboxes have been created [11], such as an ASM toolbox (adapted

from the original P3 Platform ASM implementation), a DSM toolbox, and a Change

Prediction Method toolbox. While many toolboxes have already been developed,

opportunities for new toolboxes are often identified, such as the Topic Maps toolbox

developed in this project.

1.2.3. Use

In CAM, projects are viewed as workspaces containing multiple workbooks, and each project

is stored in a single XML file. Each workbook is a different model with a specific model type.

Workbooks may be sub-divided into worksheets at the user's discretion to logically sub-divide

the model.

Models are created by dragging and dropping schema element icons (Figure 1.4f-j) from a

palette onto a worksheet. Instance connections can be made between instance elements

(Figure 1.5) using the connection tool (Figure 1.4c). The schema elements on the palette, the

way they look and their properties are all defined by the toolbox in current use. The possible

instance connections, and their properties are also defined in the toolbox.

Figure 1.4: The ASM CAM palette. Icons a-e are defined by CAM and f-j are defined by the

ASM toolbox.

The possible simulation and analysis is defined at a toolbox level, and can be carried out by

selecting appropriate options from the Tools and Analysis menus.

11

Figure 1.5: A small ASM model in CAM.

12

2. Requirements and analysis

This chapter considers the functional requirements of any strict or simple Topic Maps

application, discusses the various CAM implementation details that influence the Topic Maps

toolbox requirements, and formally states the implementation requirements for the toolbox.

2.1. Topic Maps requirements

The user must be able to create simple and strict Topic maps. The user may have difficulty

deciding on the particular version to choose when starting a new Topic map, and may wish to

change versions mid way through creation. Methods for converting between the two versions

are, therefore, required.

2.1.1. Strict Topic Maps

A strict Topic Maps application must provide the user with methods to create, modify and

delete an item of any Topic Maps construct (section 1.1.2). The modification method should

permit the user to change any of item's properties (section 1.1.3).

Various Topic Maps operations exist to aid the analysis and interpretation of a Topic map. For

completeness, a Topic Maps application should allow the user to:

• Determine if a particular Topic map is valid according to the Topic Maps standard.

• Use Topic Maps applications interchangeably, by implementing appropriate import

and export algorithms.

• Merge a Topic map, an operation where duplicate Topic Maps items are identified and

merged into a single item, reducing redundancy [2].

More complex operations also exist for constraining the structure of a Topic map [12], and for

querying a Topic map [13]. While useful, these two procedures are particularly complex and

will not be implemented in this project.

2.1.2. Simple Topic Maps

To create a simple Topic map, the user must be able to create, modify and delete an item of

any of the simple Topic Maps constructs (defined in section 1.1.4). The modification method

must allow the user to modify any of the item's properties (also defined in section 1.1.4).

13

Aside from conversion to a strict Topic map, no operations exist for a simple Topic map.

2.2. CAM structure

As mentioned in the Introduction, CAM has a modular interface, permitting toolbox

development. Toolboxes, depending on their complexity, may contain one or both of the

following components:

• A CAM module – A Java package containing additional modular interface

implementations and classes required by the toolbox. These packages are all located in

the modules subdirectory of the CAM installation. Toolboxes requiring

implementations of one or more of the CAM modular interfaces (section 2.3) have a

module component.

• A CAM palette – A set of text files defining the palette's schema elements, and the

palette configuration. Each schema element defines the instance properties and

appearance of its instance elements. The palette configuration defines the permissible

connections between instance elements of different types. Palettes are located in their

own subdirectory of the palette subdirectory of the CAM installation. Toolboxes

implementing a new model type require a CAM palette component.

The contents of the modules and palette directories are indexed at runtime, and included in

the program. This design allows end-users to tweak a palette's default look without needing to

modify and rebuild any code, and allows power-users to create new modules without having

to rebuild the core CAM modules.

Consider a family tree model type. At the simplest level, this would require the ability to

uniquely identify individuals, and define the relationships between them. Assuming an

individual's name is unique, a simple CAM palette could be created to define the family tree

model type.

2.2.1. Data-model and meta-model

Details

After loading the contents of the modules and palette directories, CAM creates a network of

schema objects (schema elements and schema properties) known as the CAM meta-model.

14

These schema objects act as factories1 for instance objects (instance elements and instance

properties), which, when created, are added to the CAM data-model (Figure 2.1).

Figure 2.1: CAM's meta-model and data-model design.

Graphical representation

Schema elements are represented by icons on the palette toolbar (Figure 1.4). Dragging and

dropping a schema element icon from the toolbar onto the worksheet triggers the schema

element to instantiate an instance element, displayed at the drop location.

Example

Considering the family tree example, a family tree palette would define one schema element,

named Person, which would have two schema properties – Full name and Title. If CAM is

executed, schema objects will be instantiated (to represent the Person schema element, and

Full name and Title schema properties) and added to the meta-model. If the user triggers a

Person instance element to be created, it would be given two instance properties, one created

by each of the Full name and Title schema properties. The newly created Person instance

element would then be added to CAM's data-model (along with its instance properties).

The palette toolbar would look similar to the ASM palette toolbar (Figure 1.4), but would

have a single icon representing the Person schema element, in place of the five ASM schema

element icons.

1 A factory is part of a computer programming design pattern where one object (the factory) is used to
instantiate other objects.

15

Figure 2.2: A family tree worksheet, on which are two Person instance elements connected by

a Relationship instance connection.

2.2.2. Connections

Details

In a similar manner to declaring schema elements, each palette may define one or more

schema connections, each of which may have a number of schema properties. Schema

connections are added to CAM's meta-model when created, similarly to schema elements.

Each palette may also declare constraints on the permitted connections, which each specify a

schema connection and two schema elements. Instance connections of the schema connection

are then used to connect instance elements of the two schema elements.

When the user creates a connection between two instance elements, CAM determines the

schema of the created instance connection from the palette's constraints. An instance

connection is instantiated from this schema and added to the CAM data-model.

Graphical representation

Instance connections are created using the connection tool (Figure 1.4c) to join two instance

elements. Once created, an instance connection appears as a visual link between the two

instance elements.

Example

Considering the family tree example, a family tree palette would define one schema

connection, named Relationship, which would have one schema property – Relationship

name. Also defined in the palette would be a single constraint, detailing two Person instance

elements may be connected using a Relationship instance connection.

If the connection tool is used to join two Person instance elements, a Relationship instance

connection would be created and added to the data-model. This instance connection would

have a Relationship name instance property.

16

2.3. CAM modular interface

Modular interfaces are plug-in points in CAM's implementation designed to be extended by

toolboxes. Two such interfaces are discussed in this section.

2.3.1. Property interface

Users edit instance properties of an instance element or instance connection through a dialog

window containing one panel for each property of that element. Changes to instance

properties persist to CAM's data-model when the window is shut. Implementations of the

property interface define new instance property implementations, specifying the structure of

the property's data and how the user edits this data.

Recall the Person schema element from the family tree example has two schema properties –

Full name and Title. The Full name instance property data is a simple string of text, so an

appropriate editor component for this might be a text field. The Title instance property data is

a string equal to Mr, Mrs, or Miss. While this could be edited using a text field, the finite

number of possible values suggest a drop-down box would be more intuitive. A text field

property interface implementation with the universal identifier (UID) p3-single-line-

string-property and a drop-down box property interface implementation with the UID p3-

list-selection-property exist in one of the core CAM packages (Listing 2.1 and Figure

2.3).

The core CAM packages contains many other property interface implementations, allowing

font selection, and colour selection, among others.

Listing 2.1: An extract from a CAM palette file defining the Person schema element.

17

:class
class-name: "Person"

:properties
property-name: "Full name" "Joe Bloggs"
property-module: p3-single-line-string-property

property-name: "Title"
property-module: p3-list-selection-property
property-initialiser: "<initialiser><option>Mr.</option>

<option>Mrs.</option><option>Miss.</option></initialiser>"

Figure 2.3: A properties dialog window for the Person element defined in Listing 2.1.

2.3.2. Menu item interface

Recognising each model type may require its own tools and analysis, CAM provides an

interface to define new menu items, the selection of which, typically, would run a tool or an

analysis. When the user switches between workbooks, the contents of the Tools and Analysis

menus update to display menu items relevant to the new workbooks model type2.

Figure 2.4: A Product Variant Portfolio Plot of a CPM jet engine model.

2 At the time of writing, however, CAM has a bug causing new menu items to be retained even if they are not
relevant to the new workbook

18

For example, the Change Prediction Modelling (CPM) toolbox defines several

implementations of the menu item interface, used for creating various types of plot. Selecting

one of these menu options opens a dialog window, on which the plot options may be

modified. After the options have been confirmed, a plot is created and displayed in CAM

(Figure 2.4).

2.4. Software requirements specification

2.4.1. Topic map version selection

When the user starts creating a Topic map, they must be able to select the Topic map's

version. This functionality was achieved by defining two palettes, one for simple Topic maps

and one for strict Topic maps. The Topic map version is specified implicitly by the

workbook's palette.

2.4.2. Strict Topic Maps visual instance elements

A Topic Maps construct may be represented in CAM as a schema element or a schema

property. The property interface implementations required for this toolbox depend on the

palette's configuration – property implementations are likely to be required for the Topic

Maps constructs represented by schema properties.

Topic name items and Variant items could be considered as attributes of Topic items, and,

therefore, are more appropriately represented by instance properties of Topic instance

elements. If Association role items were to be represented by instance elements, they would

always have a single connection to a Topic (the Player) and a single connection to an

Association (the Association in which the role is played). Association role instance elements,

therefore, are redundant, and can be better represented by a single connection.

The resulting palette defines each Topic map item as a single workbook. Topic, Occurrence

and Association constructs are defined as schema elements. Schema connections represent the

Association role construct (a connection between a Topic and an Association) and the

Occurrences property of the Topic construct (a connection between a Topic and an

Occurrence). Topic name items and Variant items appear in Topic instance elements' instance

properties.

19

2.4.3. Simple Topic Maps visual instance elements

Because the structure of a simple Topic map is similar to that of a strict Topic map, the two

Topic map palettes should appear similar. Therefore, each simple Topic map is represented by

a single workbook, the simple Topic, Occurrence and Association constructs are represented

by schema elements, and schema connections represent the simple Association role construct

and the Occurrences property of the simple Topic construct (as described in section 2.4.2).

2.4.4. Strict Topic Maps properties

• Subject locators, Subject identifiers and Item identifiers properties consist of

collections of strings. CAM does not currently have a property interface

implementation for editing a collection of strings, and one will need to be

implemented.

• Value properties consist of a single string of text. CAM already has a text field

property interface implementation, which will suffice for Value properties.

• Datatype properties also consist of a single string of text. While this string may be the

identifier of any datatype defined in the XML Schema [14], three datatypes are more

commonly used than the rest – String, IRI3 and XML. CAM does not currently have a

property interface implementation that facilitates easy selection of an item from a

group of options, while also allowing additional options to be specified. One will need

to be created.

• Type and Reifier properties require the ability to select a single Topic item in the Topic

map. CAM does not currently have a property interface implementation allowing

selection of a specific instance element from a workbook. One will need to be created.

• Scope properties require the ability to select many Topic items from the Topic map.

CAM does not currently have a property interface implementation allowing selection

of many instance elements from a workbook, so one will need to be created.

• As discussed in section 2.4.2, Topic name items and Variant items will be created and

modified through instance properties of Topic instance elements. This structure is an

unusual feature of the toolbox, and will require the development of a specialised

property interface implementation.

3 The Internationalized Resource Identifier (IRI) is an extension of the URI to the full Universal Character Set

20

2.4.5. Simple Topic Maps properties

• Subject, Association and Role played properties all consist of a single string of text.

CAM already has a text field property interface implementation, which will suffice for

these properties.

• A simple Occurrence item's Type property is very similar to a strict Type property. The

strict Type property's interface implementation, therefore, will also be used for the

simple Type property.

2.4.6. Conversion operations and strict Topic Maps operations

The methods to convert between Topic map versions, and the operations mentioned in section

2.1.1, are all specific to the Topic Maps toolbox. Each will require an implementation of the

menu item interface.

2.4.7. External interface requirements

CAM and its toolboxes, together, are designed to be a standalone platform for creating and

analysing models. While it would be possible for the toolbox created in this project to use

TinyTIM (a Java Topic Maps engine [15]), or to implement TMAPI (a Java Topic Maps

application interface [16]), no real need has been identified for either. This toolbox, therefore,

has no external interface requirements, other than those discussed above to interface with

CAM.

2.4.8. Additional requirements

• Full documentation of code using Javadoc.

• Creation of a user guide for the toolbox.

• Good scalability of the toolbox – it should be possible to create large Topic maps

without too much performance degradation.

• Generic property interface implementations to facilitate inclusion in future toolboxes.

21

3. Design and implementation

This chapter continues the discussion of CAM's structure (from section 2.2), and discusses the

property interface implementations, two CAM palettes and menu item interface

implementations developed for the Topic Maps toolbox.

3.1. CAM implementation

Consider CAM's structure again. Schema elements are instances of the P3ElementSchema

class, instance elements are instances of the P3Element class, and schema properties are

instances of the P3PropertySchema class. Instance properties are instances of a subclass of

P3Property due to the vast differences between different properties. The meta-model and

data-model object networks are accessible through public static methods of the ASMNotifier

class, and so can be used by any class.

Instance connections are instances of the PaletteElementConnection class, a subclass of

P3Element. This particular choice of class hierarchy is due to instance connections having

instance properties in the same way instance elements do.

3.2. Property interface implementations

The property interface consists of three classes (Figure 3.1) – P3Property,

P3PropertyComponent and P3EntityInitialiser. Subclasses of the P3Property class

define the structure of the instance property's data, its initial value, and how it is saved and

loaded. Subclasses of P3PropertyComponent define the user interface (UI) components (how

the user interacts with instance property data) and how data is transferred between the UI

components and the P3Property subclass. Subclasses of P3EntityInitialiser control non-

trivial initialisation of instance properties, specifically any initialisation more complex than

specifying an initial value.

Figure 3.1: The property interface.

22

The P3EntityInitialiser class has an abstract loadXML(Element) method, which is called

to interpret a property initialiser XML fragment declared in a palette file. This enables generic

property interface implementations. For example, the drop-down box options for the p3-

list-selection-property are specified in a schema element's palette file (e.g. in Listing

2.1), instead of being hard coded into the P3Property implementation. This avoids needing a

new property implementation for every drop-down box property that defines a different set of

options.

The P3Property class has a private Object data member, accessed through methods

getValue() and setValue(Object). Instance property data should be stored in this member

to enable CAM functionality such as copying instance elements. The instance property data

should be saved to an XML element when P3Property.saveXML(Element) is called, and

loaded from an element when P3Property.loadXML(Element) is called.

The P3PropertyComponent class has a JComponent data member, accessed through

getComponent() and setComponent(JComponent), in which the user interface component is

stored. The JComponent data member may be a JPanel, on which other UI components may

exist. Stringified data is accessed from the P3PropertyComponent class by getValue() and

setValue(String) methods.

All implementations of this interface must define a P3Property subclass. A

P3PropertyComponent subclass is only required if the property defines a UI component, and

a P3EntityInitialiser subclass is only required if instance properties need non-trivial

initialisation.

3.2.1. List selection P3Element property

Recall from section 2.4.4, Type and Reifier properties require the ability to select a Topic

instance element from the Topic map. When a Type or Reifier instance property is modified,

there will always be a finite number of Topic instance elements in the Topic map. The UI

component used to interact with Type and Reifier properties, therefore, is a JComboBox object,

also known as a drop-down box or a list selection box.

This property interface implementation has been given the UID p3-list-selection-

p3element-property. The following classes have been implemented for this property:

• P3ListSelectionP3ElementPropertyInitialiser, a P3EntityInitialiser

subclass

23

• P3ListSelectionP3ElementProperty, a P3Property subclass

• P3ListSelectionP3ElementPropertyComponent, a P3PropertyComponent

subclass

• A class hierarchy in the p3ListSelectionP3ElementInitialiserElements

package (see Initialiser section)

Initialiser

To make the property as generic as possible, the drop-down box options are configured in a

schema property's property initialiser XML fragment in a palette file1. These options consist

of a sequence of static text options, and dynamic options formed from particular instance

elements' labels.

The format of dynamic options' labels are specified in label XML element. Labels may

contain literal text segments and segments equal to the value of a particular instance property.

The label XML element is a mixed element – it may contain child elements embedded in text.

Its child propertyname elements are replaced by the instance property value before displaying

the label.

Considering the family tree example, if the Person schema element is given a Partner p3-

list-selection-p3element-property schema property to record the person's current

partner, Partner instance properties might display the option Select partner: followed by a list

of Person instance element labels, formed from their Title instance property followed by their

Full name instance property followed by the string (Person) (Figure 3.2 and Listing 3.1).

Figure 3.2: A Partner instance property.

1 An XML Schema has been created for this XML fragment and will be made available on the CAM website
[10] when the toolbox is released

24

Listing 3.1: The Partner property initialiser XML fragment.

If done in a single class, parsing and interpreting this complex XML fragment would be tricky

to develop and maintain. A class hierarchy was, therefore, created in the

p3ListSelectionP3ElementInitialiserElements package (Figure 3.3). Each concrete

class is designed to parse, interpret and act upon a specific XML element.

Figure 3.3: P3ListSelectionP3ElementPropertyInitialiser class hierarchy.

When CAM is executed, P3ListSelectionP3ElementPropertyInitialiser objects

instantiate an object network (instances of classes defined in Figure 3.3) based upon the

property initialiser XML fragment defined in the palette file. This object network is specific

to a particular schema property, and is shared by all its instance properties across the CAM

model.

25

<initialiser>
<option>Select partner:</option>
<p3element element=”Person”>

<label>
<propertyname>Title</propertyname>
<propertyname>Full name</propertyname>
(Person)

</label>
<match type=”include”>

<all/>
</match>

</p3element>
</initialiser>

Property

The alphabetically ordered options in the drop-down box can only be determined immediately

prior to being displayed because instance elements may be created, modified or deleted at any

time, changing the options in the list. Looping over the entire data-model to determine

matches each time a list selection P3Element instance property is displayed is unfeasible –

scalability to large data-models would be extremely poor. CAM, however, has a mechanism

for notifying objects when an instance element is created, modified, or deleted. The static

ASMNotifier.dataModelHandlerObj object is notified when the CAM data-model is

modified, and passes the notification on to DataModelChangeListener listener objects.

The MatchElement class (Figure 3.3) implements the DataModelChangeListener interface.

After being added to the ASMNotifier.dataModelHandlerObj object's listeners list,

MatchElement objects are notified when instance elements are created, modified or deleted.

On receiving a notification, they assess whether the action causes the instance element to

change its matched status, from matched to unmatched or vice versa, and update the list of

matched elements accordingly.

As noted in the Initialiser section, an object network containing a MatchElement object is

shared by all instance properties of a particular schema property across all Topic map

workbooks in the CAM model. MatchElement objects, therefore, maintain a separate list of

matched instance elements for each workbook, the implementation of which is trivial. As a

corollary of this, MatchElement objects require the identity of the particular workbook for

which to construct the list of options. This can be trivially implemented in cases where the

instance property is directly contained in an instance element. However, property interface

implementations discussed in sections 3.2.3 and 3.2.4 may contain an instance property of this

type2, rendering the instance element indeterminable directly. The

ContainsListSelectionP3Element interface was created, and is implemented by

P3Property subclasses that contain a P3ListSelectionP3ElementProperty object to allow

the instance element to be determined.

A selection in the drop-down box is of a particular instance element or static text option.

Instance element labels may change when their instance properties are modified; the

selection, therefore, cannot be tracked using the option text. Each instance element has a data

item that uniquely identifies it across the model, accessible through the getUID() method. A

2 For example, Scope properties use a p3-list-selection-p3element-property instance property to select a
Topic instance element to add to the Scope list.

26

string formed from this identifier is used to track selection, and is the property's data item.

This means, however, the property's data item is not a user friendly string, a requirement for

Scope property (discussed in section 3.2.3). The P3ListSelectionP3ElementProperty class

implements the P3StringValueIsKeyProperty interface, providing a method to translate a

property data value into a user friendly string.

Component

The Topic Maps standard places no restrictions on the uniqueness of Topic names and

Variants across a Topic map, so many Topics may have the same display name. JComboBox

objects do not normally allow duplicate entries. In the case of this implementation, however,

it is reasonable to display duplicate entries – the user may create two Topic instance elements

with the same name and both should appear in the list. To implement this, a wrapper class has

been created for a String object, which performs a reference equality test when the

equals() method is called.

3.2.2. Editable list selection property

Recall from section 2.4.4, Datatype properties require the ability to select an entry from a list,

and to add an entry to that list. The visual component used to achieve this functionality is a

JComboBox object in which the editable flag is set to true (by calling setEditable(true)).

This allows the selection of options not in the list. An editable JComboBox object appears as a

hybrid between a normal drop-down box and a text field (Figure 3.4).

Figure 3.4: An editable JComboBox object (the Datatype property).

This property interface implementation has been given the UID p3-editable-list-

selection-property, and defines the following classes:

• P3EditableListSelectionPropertyInitialiser, a P3EntityInitialiser

subclass

• P3EditableListSelectionProperty, a P3Property subclass

27

Initialiser

There are several possibilities for the scope of new options added to the list. New options

might only be relevant to the instance property they are added to, or they may be relevant to

all instance properties with the same schema property. To allow the palette creator freedom to

choose the scope of new options, the property initialiser XML fragment contains a scope

attribute. The two possible values of this attribute are model (indicating options should be

identical for all instance properties of the particular schema property) or property (indicating

additional options should not be shared across the model).

Property

Specifying a new option in the editable drop-down box causes the currently selected option to

change to this new option, and causes the new option to be added to the instance property's

list of options.

The schema property has a list of default options, specified in the property initialiser XML

fragment. Each instance property with the scope property is given a new list of the default

options on creation so that modifications to an instance property's list are not reflected in

other instance properties' lists. Instance properties of a schema property with scope model

share the same options list object, and additions to this list are seen in all instance properties

with the same schema.

For the options lists to be re-created when a model is loaded in CAM, additions to each list

must be saved in the data-model whenever a save action occurs. Each instance of a schema

property with scope property saves its own additional options in the same location as its

selected option. Schema properties with scope model coordinate their instance properties in

such a way that options are saved to a single instance property. When the model is loaded

from a save file, this instance property reconstructs the schema property's list of options.

Component

The only difference between the component of this property interface implementation and the

component of the core CAM drop-down box property interface implementation is the editable

flag. This vast similarity suggests the component class of this property interface

implementation should be a subclass of the core CAM drop-down box property interface

implementation component class, P3ListSelectionPropertyComponent. The visibility of

the P3ListSelectionPropertyComponent class, however, is package-private, and the

28

subclass cannot be created. Instead, component objects of this property interface are created

by instantiating a P3ListSelectionPropertyComponent object, and setting the editable flag

on the drop-down box contained in the object. Whilst not ideal, this solution avoids code

duplication.

3.2.3. Single line set property

Recall from section 2.4.4, Subject locators, Subject identifiers, Item identifiers and Scope

properties each consist of a collection of objects. These objects are Topic instance elements in

the case of the Scope property, and String objects in the case of the other properties. While

not identical, the similarities between the Scope property and the Subject locators, Subject

identifiers and Item identifier properties can be exploited, and a single, generic property

interface implementation created to satisfy the requirements of all these properties – the single

line set (Figure 3.5).

The single line set property interface implementation may be used to edit any list of objects,

providing each object has a meaningful string representation and providing another property

interface implementation exists that can be used to edit items in the list. The Scope property's

editor is a p3-list-selection-p3element-property property; Subject locators, Subject

identifiers and Item identifiers properties use a p3-single-line-string-property editor.

In accordance with the requirements of the Scope, Item identifiers, Subject identifiers and

Subject locators properties, the single line set component does not permit duplicate entries in

the list.

Figure 3.5: Single line set instance property structure. The editor component is highlighted in

a red box.

The single line set property interface implementation has been given the UID p3-single-

line-set-property, and comprises of the following classes:

29

• P3SingleLineSetPropertyInitialiser, a P3EntityInitialiser subclass

• P3SingleLineSetProperty, a P3Property subclass

• P3SingleLineSetPropertyComponent, a P3PropertyComponent subclass

Initialiser

While no limitations have been placed on the specific property interface implementations that

may be used as a single line set editor, the user interface will only look reasonable in cases

where the editor component has a similar height to a button (Figure 3.6).

Figure 3.6: Single line set instance properties with different editors. The left property has a

p3-list-selection-p3element-property editor. The right proprty has a p3-color-

property editor.

The editor property interface implementation is specified by its UID in the property initialiser

XML fragment, along with its own initial value and property initialiser XML (Listing 3.2).

When a P3SingleLineSetPropertyInitialiser object loads an initialiser XML fragment,

an editor schema property object is created. When single line set instance properties are

created, they are given an editor instance property.

Listing 3.2: The single line set property initialiser XML fragment showing how the editor

schema property is defined. The defaultvalue attribute and inner initialiser element are

optional.

Property

The data item of the P3SingleLineSetProperty class is a list of String objects, each of

30

<initialiser>
<editor module=”Editor schema property UID goes here”

defaultvalue=”Editor schema property default value goes here”>
<initialiser>

Editor initialiser XML fragment goes here
</initialiser>

</editor>
</initialiser>

which is a previous return value of the editor P3PropertyComponent subclass's getValue()

method. If the editor P3Property subclass implements the P3StringValueIsKeyProperty

interface (like the p3-list-selection-p3element-property property), these data items

are not user friendly strings. The String objects stored in the P3SingleLineSetProperty

class's data item, therefore, may need to be translated into meaningful strings before being

displayed in the P3SingleLineSetPropertyComponent component. If required, this

translation is done using the lookup(String) method defined in the

P3StringValueIsKeyProperty interface.

Component

The user interface component of this property is a JPanel, on which there is an editor

component, an Add button and a JList object displaying the current list contents (Figure 3.5).

A pop-up menu also exists and is displayed when the JList object is right-clicked.

When the Add button is clicked, the P3SingleLineSetPropertyComponent object retrieves

stringified data from the editor component through the P3PropertyComponent.getValue()

method. This data is translated into a user friendly string if necessary (as described above),

and is added to the JList object if doing so does not cause a duplication.

An entry in the JList may be modified by highlighting an entry and selecting the edit option

in the right-click menu. This causes the entry to be removed from the JList component. The

value of the editor component this entry corresponded to is then determined, and the editor

component set to this value by the P3PropertyComponent.setValue(String) method. The

value is the actual string displayed in the list if the editor P3Property subclass does not

implement the P3StringValueIsKeyProperty interface. If the

P3StringValueIsKeyProperty interface is implemented, however, a reverse lookup is

required.

3.2.4. Tree property

Topic name items and Variant items naturally form a hierarchy – each Variant item belongs to

a Topic name item, and a Topic may have many Topic name items. This hierarchical structure

suggests a JTree component, a component often used to display file hierarchies (Figure 3.7).

JTree objects, however, display each node as a single string, and another method is required

to edit Topic name and Variant item properties. Editing a node, therefore, opens a new

properties dialog window through which, the instance properties of the Topic name or Variant

31

item may be edited.

Figure 3.7: A JTree component (from the Oracle Java tutorial website [17]).

The tree property interface implementation is of a generic tree hierarchy, where tree nodes

may have instance properties, edited through another properties dialog window. It has the

UID p3-tree-property and comprises of the following classes:

• P3TreePropertyInitialiser, a P3EntityInitialiser subclass

• P3TreeProperty, a P3Property subclass

• P3TreePropertyComponent, a P3PropertyComponent subclass

• P3TreePropertyNode, instances of which represent tree nodes

• P3PopoutPropertyDialogSchema, a P3ElementSchema subclass. Instances of this

class contain the schema properties of a tree node

• P3PopoutPropertyDialogElement, a P3Element subclass. Instances of this class

contain the instance properties of a tree node

Initialiser

This interface implementation allows different schema properties to be defined for nodes at

different levels in the tree. These schema properties are declared in groups in the property

initialiser XML fragment (similar to Listing 3.2). Each group of schema properties is declared

for a specific range of tree levels, along with the tree node label format for that range of levels

(similar to the label discussed in section 3.2.1). The maximum tree height, and initial tree

nodes are also specified in the property initialiser XML fragment.

When loading the property initialiser XML fragment, a P3PopoutPropertyDialogSchema

object is created for each group of schema properties defined, and is given an object of each

schema property in the group. These P3PopoutPropertyDialogSchema objects are stored in

a map container, mapping tree levels to the P3PopoutPropertyDialogSchema object

32

containing their schema properties. As multiple levels may map to a single

P3PopoutPropertyDialogSchema object, a many-to-one map is used as the container. Java

has no native many-to-one mapping class, so the idea presented in a Stack Overflow question

[18] has been used to implement the generic ManyToOneMappingSet class based on a

TreeMap object. This class implements the required addition and look up methods. Removal

of mappings was not required or implemented.

Property

The data item used in this property is a DefaultTreeModel object, whose nodes are

P3TreePropertyNode objects. Each node's user object is a

P3PopoutPropertyDialogElement object instantiated from the

P3PopoutPropertyDialogSchema object for the node's level. When instantiated, each tree

instance property receives a deep copy of the initialiser's initial tree. A deep copy is an

operation that duplicates an object entirely, including all of its data [19]. It is used in this

situation to ensure modifying one instance property does not affect other instance properties.

The display string of a tree node is the return value of the node's user object's toString()

method. The P3PopoutPropertyDialogElement class overrides the toString() method to

return an entry's label (discussed in the Initialiser section).

Component

When an edit action is performed on a node, the node's P3PopoutPropertyDialogElement

object's properties dialog window is opened to allow the user to edit the node's properties.

When the user finishes editing instance properties of an instance element, CAM may

determine whether changes should be persisted or discarded depending on the action

triggering the dialog to close. To avoid automatically persisting changes, the instance

property's DefaultTreeModel object must be unaffected when a user modifies the JTree

component. When a P3TreePropertyComponent object is created, therefore, it is passed a

deep copy of the P3TreeProperty object's DefaultTreeModel object. If changes are to be

persisted, the DefaultTreeModel in the instance property is replaced by the JTree

component's TreeModel object.

3.2.5. Topic, Association and Occurrence display names

Various property interface implementations are required for Topic Maps instance elements to

have appropriate display names. Topic display names are the Value property of one of the

33

Topic's Topic name or Variant items. Association display names are their Type Topic's display

name. Occurrence display names are their Value property, followed by their Type Topic's

display name in brackets. Association and Occurrence instance element display names should

update when their Type Topic instance element display name changes.

Figure 3.8: The display names of Topic, Association and Occurrence instance elements. The

pink oval represents a Topic, the blue square an Association, and the green circle an

Occurrence.

The additional property interface implementations required are:

• Hidden topic name property (UID: tmaps-hidden-topic-name-property) – The

display name of Topic instance elements.

• Hidden occurrence name property (UID: tmaps-hidden-occurrence-name-

property) – The display name of Occurrence instance elements.

• Tree name property (UID: tmaps-tree-name-property) – Used by Topic schema

elements to modify Topic name and Variant items.

• List selection P3Element name property (UID: tmaps-list-selection-p3element-

controls-name-property) – Used as the Type property of Association and

Occurrence items.

Hidden topic and hidden occurrence properties are modified implicitly by the user, and do not

show up on properties dialog windows. Their getP3Component() methods return null.

Topic display names

As mentioned above, a Topic instance element's display name property is a hidden topic name

instance property. It consists, simply, of a String data item, which is modified by the tree

name property implementation described below.

The generic tree property interface implementation is almost sufficient for a Topic name and

Variant items property. It provides all required functionality, other than allowing a Topic name

or Variant to be selected as the Topic instance element's display name. To leave a generic tree

34

property implementation, a new property interface implementation has been created

specifically for Topic name and Variant items – the tree name property. This implementation

is based on the generic tree property implementation, with the addition of a Set element name

menu item in the right click menu. Selecting this item causes the value of the Topic's hidden

topic name instance property to change to the value of the selected Topic name or Variant

node's Value instance property.

Each Topic's display node (the Topic name or Variant item that is the display name) must be

tracked, so that modifications to the item's Value instance property are reflected in the Topic

instance element's display name. The node cannot be stored as an object because changes are

made to a copy of the tree properties data item as opposed to the data item itself (Component

section of 3.2.4). The display name node is, therefore, tracked by its location, which is

updated when addition and deletion operations are performed on the tree.

Association display names

The display name of an Association is also a hidden topic name property, which is set to the

same object as the Association instance element's Type Topic's hidden topic name instance

property. Association instance elements' display names, therefore, automatically reflect

changes to the Type Topic's display name.

Association Type instance properties use the list selection P3Element name property interface

implementation, which is based on the list selection P3Element property (described in section

3.2.1) with the following addition. Changing the selected option in the drop-down box causes

the Association instance element's hidden topic name instance property object to change to the

selected Topic instance element's hidden topic name instance property.

Occurrence display names

Occurrence schema elements also have a hidden topic name schema property, utilised by the

Occurrence Type property in an identical manner to the Association's Type property. The

Occurrence display name, however, is not set to the hidden topic name instance property.

Instead, Occurrence display names are hidden occurrence name instance properties, which

construct the display name string from the Occurrence's Value and hidden topic name instance

properties.

35

3.3. Palette implementations

Putting together the simple Topic Maps and strict Topic Maps palettes simply involved

creating palette files to define the schema elements and schema connections, and their schema

properties (as discussed in section 2.4) and appearance.

Unlike many CAM model types, Topic Maps is very restrictive on the instance connections

permitted. Both palettes' connection constraints only permit connections between Topic

instance elements and Association instance elements, and Topic instance elements and

Occurrence instance elements.

Topic Maps instance connections have no directionality. Connecting an Association to a Topic

has the same meaning as connecting a Topic to an Association. The instance connections,

therefore, provide the user with the usual CAM arrow head selection instance properties, but

have the default value of no arrow head.

The Topic Maps standard does not define a symbolised representation of the constructs3. This

toolbox employs colours and shapes to distinguish between different constructs.

3.4. Menu item interface implementations

CAM's menu item interface consists of a single class: ASMApplicationMenuPlugin.

Subclasses of this class specify the implementation's operation, and the palettes for which it is

a valid menu item. When CAM is loaded, a single instance of each menu item interface

implementation is created. This instance is used whenever the menu item is executed.

3.4.1. Strict Topic map properties

Topic map items have two properties: Reifier and Item identifiers. In CAM, therefore, strict

Topic Maps workbooks must have a Reifier property and an Item identifiers property. As

CAM does not currently permit workbooks to have instance properties, Topic map properties

are edited through a menu item defined in the StrictTopicMapsPropertiesMenuPlugin

class. This menu item interface implementation makes use of the TopicMapP3Element class,

a P3Element subclass used to store Reifier and Item identifiers instance properties.

When the menu item is selected, a TopicMapP3Element object's properties dialog window is

3 Graphical Topic Maps is a standard under development [2] for a Unified Modelling Language (UML) style
representation of Topic Maps – consisting of text in boxes. This is not a symbolic representation, however,
and is inappropriate for the CAM toolbox.

36

opened in a similar manner to an instance element's properties dialog window. The Topic

map's instance properties may be edited in this window.

The StrictTopicMapsPropertiesMenuPlugin object used as the menu item does not

change when the user switches workbooks. It, therefore, stores the TopicMapP3Element

objects in a TreeMap, mapping each workbook UID to the TopicMapP3Element object

containing its instance properties.

When a model containing a strict Topic map workbook is saved, the Topic map's Reifier and

Item identifiers instance properties need to be saved. CAM, however, does not provide a

method that permits menu item interface implementations to store data. A new property

interface implementation has been created to achieve this functionality, which has the UID

tmaps-topic-map-p3element-container and coordinates saving and loading each strict

Topic map workbook's instance properties.

3.4.2. Conversion operations

Topic Maps version conversion operations have been implemented as menu interface

implementations. When a conversion menu item is selected, a dialog window wizard opens to

guide the user through the conversion process.

A conversion operation on a large Topic map may have a long execution time. To prevent the

user interface becoming unresponsive, conversions are done in SwingWorker threads. When

run, a conversion worker thread goes through the following process:

 1. A new Topic Maps workbook is created of the opposite version to the workbook being

converted.

 2. Worksheets are looped over, and

a) a new worksheet is created and added to the new workbook

b) for each original instance element, a new instance element is created and added to

the new worksheet

c) for each original instance connection, a new instance connection is created and

added to the new worksheet.

 3. The new workbook is added to CAM's data-model.

Steps 2a-c encompass new instance property creation for worksheets, instance elements and

37

instance connections respectively. Instance property creation is the only aspect of conversion

operations dependant on the conversion direction. When creating a new instance property, an

attempt is made to determine its value from the value of an instance property in the instance

object being converted.

CAM uses visualisation data objects to control each worksheet's layout. All instance elements,

instance connections and worksheets have visualisation data. For the converted worksheets to

have the same layout as the original worksheets, the visualisation data of each new object

must be a copy of the original object's visualisation data. Creating deep copies of visualisation

data objects proved convoluted because there were many interconnections, all of which

needed to be updated in the copy.

3.4.3. Validation operation

Validation is also an operation that has been implemented as a menu item interface

implementation. When executed, a new frame is opened (Figure 3.9) for the user to interact

with. This is a frame instead of a dialog to allow validation results to be viewed alongside

CAM.

Figure 3.9: The validation operation user interface.

If done in a single class, a Topic Maps validation algorithm would be tricky to develop and

maintain. Instead, a more robust method has been implemented, involving the Topic Maps

model discussed below.

Topic Maps model

The Topic Maps model is a class hierarchy, which has been created to represent each Topic

Maps construct as a single class (Figure 3.10). Methods have been implemented to create a

Topic Maps model representation of a Topic map from a strict Topic Maps workbook. When

created in this manner, any violations encountered of the Topic Maps standard are recorded in

38

the Topic Maps model for validation purposes.

Figure 3.10: The Topic Maps model class hierarchy.

When run, the validation operation spawns a SwingWorker thread, which creates a Topic

Maps model representation of the Topic map workbook being validated. After this model has

been created, the validation table (Figure 3.9) is populated with all violations encountered

during the Topic Maps model creation.

Double clicking an entry in this table focusses CAM on the instance element or instance

connection in which the violation of the standard occurred, highlighting the offending element

to the user.

3.4.4. Export XTM operation

Figure 3.11: The Export XTM dialog window.

The Export XTM operation has also been implemented as a menu item interface

implementation. When executed, a dialog window is opened (Figure 3.11), which allows the

user to select the the XTM document's save location, and to trigger the save. These actions are

39

performed on a dialog window instead of through a Save as dialog because the export

operation may have a long execution time, during which the dialog window prevents the user

from altering the Topic map.

The Topic Maps model created for the validation operation is also used in the export

operation. Methods have been added to each Topic Maps construct class to create an XTM

representation of the construct. The export operation executes as follows:

1. The Export XTM dialog window is opened.

2. After the Export button is clicked, a SwingWorker thread is spawned to create a Topic

Maps model representation of the Topic map.

3. After the thread created in step 2 completes, another SwingWorker thread is spawned

that generates an XTM document from the model created in step 2, and saves the

XTM document.

Any errors encountered during this operation (for example, invalid save location errors) are

reported to the user on the dialog window.

40

4. Evaluation

4.1. Achievement of objective

Recall from chapter 1, this project's objective was to design and implement Topic map

representation and algorithms for use on the CAM software platform. This objective has been

achieved successfully. Any Topic map that conforms to the Topic Maps standard may be

represented in CAM as a strict Topic map, without loss of information. All critical Topic Maps

operations have been implemented. The validation algorithm was considered the most

important of these as it is the only method for the user to determine whether a strict Topic

Maps workbook conforms to the Topic Maps standard.

The additional requirements on Javadoc and user guide creation (section 2.4.8) have also been

satisfied. Both the Javadoc and user guide will be made available from the CAM website [10]

when the toolbox is released.

4.2. Toolbox design

4.2.1. Performance

The CAM data-model increases in size as Topic maps grow. For scalability reasons, it is,

therefore, important to avoid iterating over the data-model where possible. At no point during

Topic map creation (a term encompassing instance element and instance connection creation,

and modification of instance properties) is the data-model iterated over. This has been

achieved using the dataModelChangeListener object (as described in section 3.2.1).

The conversion, validation and export operations will have longer execution times for large

Topic maps, which, due to the nature of the operations, is unavoidable. During each operation,

the user interface remains responsive (through appropriate use of worker threads), and ensures

the user is kept up to date with the operation's progress (through appropriate use of progress

bars).

The list of Topics in the Type, Reifier and Scope properties' drop-down box components will

grow as Topic map size increases. As the user must be able to select any Topic in the Topic

map, this growth of options is unavoidable. For ease of use, however, the Topics are ordered

alphabetically in the drop-down box options.

41

4.2.2. Robustness to changes in CAM

While CAM is a stable application, development is ongoing. Therefore, the toolbox has been

developed to be independent of internal CAM implementation details where possible. This

aim has been achieved in all but two areas of the toolbox – the conversion algorithms (section

3.4.2) and the display name properties (section 3.2.5). The conversion algorithms are not

robust to changes in CAM's visualisation objects' implementation details. The display name

properties are not robust to changes in CAM's method of constructing a display name string

from an instance property.

4.3. Testing

Unit testing was carried out as development progressed – each property interface

implementation and menu item implementation was tested thoroughly after being developed.

As CAM has no automated testing suite, all testing was carried out manually and over 100

Topic maps have been created to test various aspects of the different properties and menu

items. Property interface implementations were tested by considering their weak points and

creating Topic maps in such a way as to expose implementation flaws in these weak points.

Topic Maps operations were tested on complex Topic map workbooks that used all CAM

features, including instance element shortcuts, hyperlinked instance connections and layout

groups.

After toolbox development finished, a brief usability test was carried out, and the following

feedback was incorporated into the toolbox:

• The Value and Type sections of an Occurrence instance element's display name should

be separated more clearly. This was taken into account – the Occurrence's Type is now

displayed on a separate line to its Value.

• The default JTree folder and file node icons are not appropriate for Topic name and

Variant item icons. The Topic maps specific tree property implementation (UID

tmaps-tree-name-property, discussed in section 3.2.5) was, therefore, modified to

display node icons as coloured squares instead of folder and file icons (Figure 4.1).

42

Figure 4.1: The new Topic names property. Topic name items have blue icons, and Variant

items have green icons.

4.4. Challenges encountered

The main areas where challenges were encountered during development are outlined below:

• MatchElement objects using the dataModelHandlerObj object, and requiring the

workbook identity when contained in another property (section 3.2.1).

• Tracking the Topic display name node (section 3.2.5).

• Saving data from a menu item interface implementation (section 3.4.1).

• Deep copying visualisation data objects (section 3.4.2).

• A new release of CAM part way through development causing the display name

properties (section 3.2.5) to break.

• CAM coming with little code documentation, due to being a research funded project

with few resources.

43

5. Conclusions and future work

A simple, visual Topic Maps application is a feasible concept. Topic, Association and

Occurrence items may be represented by visual symbols, which may be connected using

connectors representing Association role items and Topic-Occurrence relations. Topic name

and Variant items may be represented as properties of Topic items.

As demonstrated in this project, CAM provides a suitable platform for a visual Topic Maps

application. The Topic Maps constructs map well onto the CAM meta-model, and Topic Maps

items and properties map well onto the CAM data-model. CAM also provides a suitable

interface on which to develop Topic Maps operations.

I feel work has generally progressed smoothly on this project. With hindsight, however, I

would probably have benefited from gaining a deeper understanding of CAM's

implementation prior to starting development. This would have resulted in a more efficient

development process, with less time spent tracing method calls through the core CAM classes.

I am currently working on an Import XTM operation, which will be completed before the

toolbox is released. I am developing methods to instantiate a Topic Maps model (discussed in

section 3.4.3) representation of an XTM document and to transform this representation into a

CAM workbook.

There are a few remaining Topic Maps operations, which may be developed:

• Allow a strict Topic map to be merged (section 2.1.1), an operation that I will also

complete before the toolbox is released. A merge operation involves the following

steps:

1. Create a Topic Maps model representation of the strict Topic map, to determine

possible merges

2. Display possible merges, and allow the user to select specific merges to perform

3. Determine and execute the required operations on CAM's data-model to perform

the selected merges

• Allow importing and exporting of Canonicalised XTM (CXTM) documents. CXTM is

an XML based document defined as part of the Topic Maps standard [2] with the

intended use of verifying the correctness of Topic Maps applications. Importing and

44

exporting a CXTM model would involve similar operations to importing and exporting

an XTM document. After implementation, these operations should be used to verify

the Topic Maps toolbox, possibly making use of the Topic Maps Test Suite [20].

Constraining and querying functionality (mentioned in section 2.1.1) could also be

implemented.

The Topic Maps toolbox is scheduled for release on the CAM website [10] on 1st July 2012.

45

References

[1] Witt, T. (2009). Diploma thesis: Conception and Implementation of a Visual Editor for

Topic Maps. Ludwig-Maximilians-Universität München.

[2] ISO/IEC 13250 (2008). Topic Maps. International Organization for Standardization,

Geneva, Switzerland.

[3] Quentin Tarantino Wikipedia article [accessed 28/25/2012].

http://en.wikipedia.org/wiki/Quentin_Tarantino

[4] The filmreference.com Quentin Tarantino Biography (1963-) [accessed 28/25/2012].

http://www.filmreference.com/film/96/Quentin-Tarantino.html

[5] Saint Petersberg Wikipedia article [accessed 28/25/2012].

http://en.wikipedia.org/wiki/Saint_Petersburg

[6] Ontopia – the product [accessed 28/05/2012].

http://www.ontopia.net/section.jsp?id=ontopia-the-product

[7] Networked Planet Web3 Platform [accessed 28/05/2012].

http://www.networkedplanet.com/Products/Web3/

[8] Ontopia graphical visualization [accessed 28/05/2012].

http://www.ontopia.net/page.jsp?id=vizigator

[9] Wynn, D.C., Wyatt, D.F., Nair, S.M.T. and Clarkson, P.J. (2010) An Introduction to

the Cambridge Advanced Modeller, Proceedings of MMEP 2010. Cambridge, UK.

[10] Cambridge Advanced Modeller [accessed 28/05/2012].

http://www-edc.eng.cam.ac.uk/cam/

[11] Cambridge Advanced Modeller toolbox documentation [accessed 28/05/2012].

http://www-edc.eng.cam.ac.uk/cam/documentation/Toolboxes

[12] IEC/ISO 19756 (2010). Topic Maps Constraint Language. International Organization for

Standardization, Geneva, Switzerland.

[13] IEC/ISO 18048 (2008). Topic Maps Query Language. International Organization for

Standardization, Geneva, Switzerland.

[14] XML Schema: Built-in Datatypes [accessed 28/05/2012].

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

[15] Tiny Topic Maps engine [accessed 28/05/2012]. http://tinytim.sourceforge.net/

46

[16] Common Topic Map Application Programming Interface [accessed 28/05/2012].

http://www.tmapi.org/

[17] Java Tutorials: How to Use Trees [accessed 28/05/2012].

http://docs.oracle.com/javase/tutorial/uiswing/components/tree.html

[18] Stack Overflow: Using Java map for range searches [accessed 28/05/2012].

http://stackoverflow.com/a/1314708/406813

[19] Object copy Wikipedia article [accessed 28/05/2012].

http://en.wikipedia.org/wiki/Object_copy#Deep_copy

[20] Topic Maps Test Suite [accessed 28/05/2012]. http://cxtm-tests.sourceforge.net/

47

Appendix A: Risk assessment retrospective

A risk assessment was carried out prior to commencing this project, in which computer and

monitor use were identified as the only potential hazards. This proved to be an accurate

assessment. Retrospectively, the method of risk assessment carried out successfully identified

all risks, and so would not be changed.

48

	Topic Maps for the Cambridge Advanced Modeller
	Technical abstract
	Contents
	Acknowledgements
	Notation
	1. Introduction
	1.1. Topic Maps
	1.1.1. Theory: information
	1.1.2. Topic Maps constructs
	1.1.3. Topic Maps properties
	1.1.4. Simple Topic Maps
	1.1.5. Current Topic Maps applications

	1.2. Cambridge Advanced Modeller
	1.2.1. Beginnings
	1.2.2. Diversification
	1.2.3. Use

	2. Requirements and analysis
	2.1. Topic Maps requirements
	2.1.1. Strict Topic Maps
	2.1.2. Simple Topic Maps

	2.2. CAM structure
	2.2.1. Data-model and meta-model
	2.2.2. Connections

	2.3. CAM modular interface
	2.3.1. Property interface
	2.3.2. Menu item interface

	2.4. Software requirements specification
	2.4.1. Topic map version selection
	2.4.2. Strict Topic Maps visual instance elements
	2.4.3. Simple Topic Maps visual instance elements
	2.4.4. Strict Topic Maps properties
	2.4.5. Simple Topic Maps properties
	2.4.6. Conversion operations and strict Topic Maps operations
	2.4.7. External interface requirements
	2.4.8. Additional requirements

	3. Design and implementation
	3.1. CAM implementation
	3.2. Property interface implementations
	3.2.1. List selection P3Element property
	3.2.2. Editable list selection property
	3.2.3. Single line set property
	3.2.4. Tree property
	3.2.5. Topic, Association and Occurrence display names

	3.3. Palette implementations
	3.4. Menu item interface implementations
	3.4.1. Strict Topic map properties
	3.4.2. Conversion operations
	3.4.3. Validation operation
	3.4.4. Export XTM operation

	4. Evaluation
	4.1. Achievement of objective
	4.2. Toolbox design
	4.2.1. Performance
	4.2.2. Robustness to changes in CAM

	4.3. Testing
	4.4. Challenges encountered

	5. Conclusions and future work
	References
	Appendix A: Risk assessment retrospective

