
TMAPI 2.0

 Lars Heuer1 and Johannes Schmidt2

1 Semagia
heuer@semagia.com

2 INSTANT Communities GmbH
js@sixgroups.com

Abstract. This paper introduces a new generation of the common
Topic Maps API (TMAPI) which has evolved from earlier versions
based on the Topic Maps Data Model (TMDM) and user experience.
TMAPI 2.0 aims to support TMDM and its constraints and to provide a
common, user-friendly API for Topic Maps application development
independently of a concrete Topic Maps processor.

1 Introduction

Topic Maps API (TMAPI) is a set of Java interfaces and was designed as
common programming interface for Topic Maps processors. The initial version
was released in the year 2004 and several Open Source and commercial
implementations support it. The API was not designed by recognized standards
body, but can be seen as a de facto standard for accessing and manipulating topic
maps in a portable way. It has been adopted and ported to other programming
languages (i.e. PHP5 [5] and .NET [8]) as well.

In the design phase the project members discussed if a programming language
neutral approach should be taken for the next TMAPI generation. Even if this
idea has its merit it was rejected since each programming language has its own
idiomatics and designing an API which meets a common subset of popular
languages was felt unpromising. Since the TMAPI project has historically a Java
background, the project members opted to focus this language again. Further, the
idea that the interfaces should constitute a solid foundation to implement the
upcoming standard Topic Maps Query Language (TMQL [3]) on top was also
rejected: The project should simply offer an API to access and modify topic maps
aligned to TMDM.

Maicher, L.; Garshol, L. M. (eds.): Subject-centric computing. Fourth International Conference on Topic
Maps Research and Applications, TMRA 2008, Leipzig, Germany, October 16-17, 2008, Revised Selected
Papers. (Leipziger Beiträge zur Informatik: XII) - ISBN 978-3-941152-05-2

130 Lars Heuer and Johannes Schmidt

2 Design Objective

Since the release of TMAPI 1.0 several Topic Maps standards have been
published, especially the Topic Maps Data Model (TMDM [2]) must be
emphasized here. Because the initial version of TMAPI does not support all
facets of TMDM well, the main design objective for 2.0 was TMDM compliance
and the observance of its constraints to some extend.

Due to reasons explained in the introduction, TMAPI 2.0 is explicitly Java-
centric and requires Java 1.5 since it utilizes generics and variable arguments;
translations to other programming languages should be handcrafted to account
for respective language specifics. The UML class diagrams for the core and the
index package provided by the TMAPI project can serve as starting points for
translations to other object-oriented programming languages.

While the first version does not offer any filtering methods (i.e. iterating over the
occurrences of a topic by the occurrence’s type), the second generation provides
simple filters to ease the development of applications. A more advanced filter
language was rejected for the time being but may find its way into a subsequent
release.

3 Status

The project members have published UML class diagrams which describe the
current status of the project. In favour of readability the class methods are
omitted.

These UML class diagrams were used as boilerplate for the project’s interfaces.

TMAPI 2.0 131

Fig. 1. Abbreviated UML class diagram for the "org.tmapi.core" package

While the first TMAPI version offers just 89 tests to ensure compliance, the new
release will provide a suite with approximately 250 tests. The enhanced test suite
ensures that different implementations are conform to certain requirements and
establishes a profound basis for application programmers to test particular Topic
Maps processors against. Further, these tests corroborate the claim that
applications which use the project’s interfaces are portable over different Topic
Maps processors.

132 Lars Heuer and Johannes Schmidt

 Fig. 2. Abbreviated UML class diagram for the "org.tmapi.index" package

4 Changes

The following sections enumerate important changes between TMAPI 1.0 and
2.0.

4.1 Changes in core

TMAPI 2.0 introduces several generalized interfaces like Reifiable, Typed,
Scoped, and DatatypeAware. These interfaces avoid redundant method
declaration (i.e. setType()/getType(), setValue()/getValue(), et al.).

Additionally, the ConfigurableHelperObject was eliminated since it was only
utilized by the Index interface. The indices are now available by simply calling
TopicMap.getIndex(Class indexInterface).

As mentioned above one objective was to enforce TMDM constraints. Thus
TMAPI 2.0 is more restrictive than its predecessor concerning model constraints
(i.e. disallows Role.setPlayer(null)).

The naming in TMAPI 2.0 is simplified for convenience:
• TopicName is called Name
• AssociationRole is called Role
• Topic Maps construct is called Construct (TMAPI 1.0’s equivalent is

TopicMapObject)

TMAPI 2.0 133

4.2 Changes in index

The main changing covers the reduction to only three indices:
• TypeInstanceIndex
• ScopedIndex
• LiteralIndex

This approach distances from a single construct view to a generalized view on a
topic map ("literal view", "typed view", and "scoped view"). From these views
specific constructs can be accessed (i.e. return all associations in scope x). Topic
Maps constructs are available in multiple indices, i.e. Occurrence in
TypeInstanceIndex, ScopedIndex, and LiteralIndex. The reduction to three indices
makes reindexing and / or synchronization more expensive: I.e. a
TypeInstanceIndex.reindex() operation has to resynchronize the information
about topics, associations, roles, occurrences, and names, while a TMAPI 1.0
AssociationsIndex.reindex() would only update the information about
associations. However the project members believe that Index implementations
will rather realize constant synchronization.

The IndexFlags interface was abolished. Its only method isAutoUpdated() is now
available in the Index interface.

4.3 Specific changes

DatatypeAware Is the superinterface for Occurrence and Variant. Therefore
it provides several methods for value assignments. It requires the Topic
Maps processor to set the datatype implicitly to xsd:string in
setValue(String value) and to xsd:anyURI in setValue(Locator value). For
convenience, it offers several methods to set and read values where the
datatype is implicitly assigned and introduces setValue(String value,
Locator datatype) in order to be consistent with TMDM’s concept of
datatypes; getDatatype() returns the Locator identifying the datatype of
the value.

Topic Provides filter methods getRolesPlayed(Topic type), getNames(Topic
type), getOccurrences(Topic type) which return only those constructs
which have the specified type. Further, various factory methods for Name
and Occurrence are provided, inter alia a method for creating names with
the default name type.

Association Does not allow null for player and type assignments. Further,
getRoleTypes() and a method to filter the association roles is provided.

Role Does not allow to set the role player and type to null.

134 Lars Heuer and Johannes Schmidt

TopicMap Provides getTopicBySubjectIdentifier() and getTopicBySubject
Locator() (moved from the index package). Even more importantly, the
TopicMap interface does not allow to create topics without any identity,
such as an item identifier, a subject identifier, or subject locator.

5 Conclusions and Further Work

The project is currently in alpha status but it should have reached a certain degree
of maturity when this paper gets published. TMAPI 2.0 benefits from the
meanwhile finalized TMDM. While the previous version supports the XTM 1.0
model [1] and some aspects of TMDM, TMAPI 2.0 has shifted to a TMDM
compliant API which also considers programmers’ convenience requirements.

Some interesting proposals, like a more advanced filter language or interfaces for
TMQL, have been delayed due to lack of human resources and time. Further,
TMAPI lacks of a standardized transaction management which seems to be
necessary prior TMAPI gets accepted in an enterprise context.

The remaining paper elaborates on the rejected advanced filter mechanism which
is meant to bridge a gap between a complete query language and a programming
API.

5.1 Filter Language

Even if TMQL is close to be an ISO standard, the success of Mircosoft’s LINQ
[4] and the recent popularity of domain-specific languages [6] has shown that
there is desideratum to have specialized languages available which solve
particular problems. Ideally, the developer can stay in the familiar programming
language.

The new TMAPI version supports some limited filter methods like navigating
from a topic to its occurrences which have a particular type, but these filter
methods are not satisfactory for more complex tasks like navigating to all
occurrences with a particular type and returning the value if the datatype is
xsd:string. To accomplish such a navigation, the application developer has to
write code against TMAPI which might be tedious or she has to switch to another
language like TMQL which requires some learning effort.

A simple, domain-specific filter language should be a good, intermediate solution
here: The developer stays in her familiar programming language and uses the
usual tools and can utilize type checking performed by the compiler.

TMAPI 2.0 135

Due to lack of resources the filter proposal has not been worked out completely,
but the general idea is, that the TMAPI project would provide a new, immutable
interface Filter which can be passed around to all kind of interfaces which
represent a particular Topic Maps construct.

One possibilty to create such a Filter would be the mentioned domain-specific
language:

// Return those role players which play the role "group" in a
// "member-of" association where the current topic plays the
// role "member":

Filter<Topic> filter =
 roles(member).parent(memberof).roles(group).select(player);

for (Topic player: topic.match(filter)) {
 doSomethingWith(player);
}

The language used to create the filter should be obvious: The filter takes the
current topic as context to navigate to the played roles and compares the role type
with the topic "member". For each role the parent association is visited and its
type is compared to the topic "member-of". From the association, the filter
navigates down to each role of type "group" and selects the player from it.

Even though the domain-specific language leaves room for improvement, the
equivalent TMAPI code is certainly longer:

// Visit all role the topic plays
for (Role r: topic.getRolesPlayed()) {
 if (!r.getType().equals(member)) {
 continue;
 }
 Association assoc = r.getParent();
 // Compare the association's type
 if (!assoc.getType().equals(memberof)) {
 continue;
 }
 for (Role role: assoc.getRoles()) {
 if (role.getType().equals(group)) {
 doSomethingWith(role.getPlayer());
 }
 }
}

Due to the immutability of Filter it can be reused in several contexts, while the
code on top of TMAPI is not easily reusable unless the developer creates a
library for common tasks.

136 Lars Heuer and Johannes Schmidt

Since not every TMAPI implementation has the necessary resources, the project
itself should provide a generic implementation. This default implementation
would therefore work with every TMAPI compatible implementation, even if it
might not be optimized for the specific Topic Maps processor.

A "service provider interface" would enable TMAPI implementations to provide
Topic Maps processor-specific, optimized implementations of the Filter.

The authors of this paper regard the filter language with a default implementation
as reasonable extension to the current interfaces since it provides rich navigation
facilities and reduces development time considerably.

References

1. ISO/IEC. 13250:2003: Information Technology — Document Description and
Processing Languages — Topic Maps. Technical report, International Organization for
Standardization, Geneva, Switzerland., 2003.
http://www.y12.doe.gov/sgml/sc34/document/0322f iles/iso13250 −
2nd − ed −v2.pdf.

2. ISO/IEC. IS 13250-2:2006: Information Technology — Document Description and
Processing Languages — Topic Maps — Data Model. Technical report, International
Organization for Standardization, Geneva, Switzerland., 2006.
http://www.isotopicmaps.org/sam/sam-model/2006-06-18/.

3. ISO/IEC. FCD 18048: Information Technology — Document Description and
Processing Languages — Topic Maps — Query Language (TMQL) 2008-05-15.
Technical report, International Organization for Standardization, Geneva, Switzerland.,
2008.
http://www.isotopicmaps.org/tmql/tmql.html.

4. Microsoft Corporation. The LINQ Project, 2005.
http://msdn.microsoft.com/enus/library/aa479865.aspx.

5. J. Schmidt. PHPTMAPI.
http://phptmapi.sourceforge.net/.

6. D. Spinellis. Notable design patterns for domain specific languages. Journal of System
and Software, 56(1):91–99, Feb. 2001.

7. TMAPI project. Topic Maps API.
http://www.tmapi.org/.

8. TMAPI4NET project. TMAPI for .NET.
http://code.google.com/p/tmapi4net/.

