
University of Konstanz
Department of Computer and Information Science

Masteresis for the degree
Master of Science (M.Sc.) in Information Engineering

ImplementingWeb Applications Using
XQuery

XML from Front to Back

Michael Seiferle
/

Konstanz, March , 

 Referee: Prof. Dr. Marc H. Scholl
ⁿ Referee: Prof. Dr. Marcel Waldvogel
Supervisors: Alexander Holupirek & Dr. Christian Grün

Z (D) Entwickler sehen sich heute immer häuĕger und mit einer
immer grösser werdenden Anzahl an XML-Daten konfrontiert. Es liegt auf der Hand, dass diese
mit dafür konzipierten Datenbanksystemen verwaltet werden. Innerhalb eines modernen XML-
Datenbank-Management-Systems (XML-DBMS) kann XML effizient gespeichert werden und es
stehen domänenspeziĕsche Sprachen, wie XQuery, zur Weiterverarbeitung zur Verfügung. Gleich-
wohl wird die Konzentration auf die Datenhaltung allein den Herausforderung nicht gerecht; In-
formationen in Anwendungen „zum Leben zu erwecken“ ist mindestens genauso wichtig. Die vor-
liegende Arbeit untersucht Chancen und Probleme der Webapplikationsentwicklung in einer rein
auf XML-Technologie beruhenden Systemarchitektur.

Wir beschäigen uns mit der Frage, ob sich die Entwicklung grundlegend vereinfachen lässt, indem
man konzeptuellen Ballast, den moderne Web-Frameworks wie Ruby on Rails oder CakePHP mit
sich bringen, in weiten Teilen obsolet macht. Der reine XML-Stack bringt hierzu die notwendigen
Voraussetzungenmit: einheitliche Programmierparadigmen und die durchgängige Verwendung ei-
nes Datenmodells in allen Schichten der Applikation.

ZurKlärung der Frage beschreibenwir dieKonzeption vonBXW, einemXQuery-getriebenen
Anwendungsserver. BX W ist eine auf der XML-Datenbank BX basierende Technologie-
studie, die es erlaubt Web-Applikationen allein unter Verwendung von WC Standards zu realisie-
ren. Ergebnis ist ein leichtgewichtiges Anwendungsframework mit dessen Hilfe Expertensysteme,
wie beispielsweise ein Online Public Access Catalogue (OPAC), implementiert werden können. Ei-
ne abschließende Evaluation, basierend auf echten Daten der Bibliothek Universität Konstanz, zeigt
die positiven Ergebnisse unserer Studie.

A (E) With the ever growing amount of XML encoded data readily available in
many application domains, the need to efficiently store, process & query these data has become evi-
dent. Yet, managing these bits of information is only half the story; bringing data to life by means of
deploying data centric applications is just as important. is thesis investigates chances and chal-
lenges of deploying and implementing Web Applications in a pure XML technology stack, based
exclusively on W3C standards.

With this thesis, we claim that application development may be fundamentally simpliĕed by remov-
ing the conceptual baggage introduced with popular, modern frameworks such as Ruby on Rails
or CakePHP. Inside the pure XML technology stack developers, are neither faced with differing
programming paradigms nor will they have to convert their data back and forth between multiple
application layers.

We support this claim by presenting BX W, a proof-of-concept application server. Based on
the BX XML database and XQuery processor, we describe the implementation and components
of a lightweight application framework. e thesis concludes with the evaluation of a proof of con-
cept: a library catalog retrieval system, based on real-world data of the Library of University of
Konstanz.

i

Contents

 Introduction 

 Concepts: Web Application Frameworks 
. Model-View-Controller . 

.. The Model . 
.. The View . 
.. The Controller . 

. State-of-the-Art Implementations . 
. Challenges . 

.. Real World Data . 
.. Modeling in XML . 
.. Programming XML: XQuery & XPath 

 BaseXWeb: XQuery-drivenWeb Application Framework 
. Background . 

.. Maturity of Web Applications & Frameworks 
.. Impedance Mismatch . 
.. Frameworks: Pros and Cons . 

. Related Work . 
.. eXist — The XQuery Servlet . 
.. Sausalito— XQuery in the cloud 

. System Overview . 
.. Application Layout . 
.. The Servlet Implementation: Request-Response-Loop 
.. XQuery Processing & XML Persistence: Database Server 
.. Application Framework . 

. Evaluation: Performance & Costs of the Glue Code 
.. Benchmark Scenario . 
.. Result interpretation . 

 Application: Bootstrapping an Expert Retrieval Systemwith BaseXWeb 
. KOPS - An Online Public Access Catalog 

.. Bootstrap an XML-OPAC system 
.. Basic System Setup . 
.. Setting up a Project . 

. Evaluation Setup . 
. Queries and Performance Results . 

.. Keyword Search . 
.. Phrase Search . 
.. Boolean Search . 

. Summary . 

 Conclusion & Future Work 

 Attachments 

iii

 Introduction

Web application development has undergone serious paradigm shis, coming from hyper-
linked bits of information, as proposed by Tim Berners-Lee in  [], to fully Ęedged
applications running inside a user’s browser, ideally indistinguishable from desktop appli-
cations. In the beginning said bits of information were mainly static and scientiĕc data.
is changed signiĕcantly in the mid s—when public interest in the internet, thanks to
the world wide web, rose. e community soon realized that instead of serving only static
documents, they could as well use scripts or programs that dynamically generate HTML
content and deliver it to the client.

is set way for the common gateway interfaceƬ, a de facto standard that allows web servers
interfere with external applications. Perl and PHP are particular popular scripting lan-
guages in this context, although more recently Python and Ruby joined the company.

In the early days, web applications usually have been large, monolithic systems that were
neither easy to maintain nor easy to extend. Jazayeri in [, p. ] compares these early days
of web development to the evolution soware engineering made in the late s, yet at
a much greater pace. Along with HTML’s content model of intermixing data and layout,
the inter-weaved scripting languages—not yet forcing a separation of data and business
logic—added another layer of confusion.

Soon aer that, the Model View Controller Pattern (MVC), ĕrst described by Trygve Reen-
skaug [], was rediscovered for web application development and has been extremely suc-
cessful to date.

In a nutshell, an MVC application is divided in interchangeable parts, consisting of:

Models representing knowledge and encapsulating data access
Views acting as a visual representation of the model
Controllers being the link between the user and the application

Ƭhttp://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

  Introduction

Details on MVC in web applications and state-of-the-art implementations, as well as the
application of the MVC pattern in the context of XQuery web application development,
will be covered in more depth in the following chapters.

Likewise, interactive HTML applications also gained momentum with the introduction of
Ajax in  []. is equipped application developers with new concepts to create an
even more interactive experience on the web.

Indubitably, developing web applications has not only become more streamlined, but also
matured to a much more scalable and maintainable process. However, developers still face
amultitude of involved technologies, ranging fromHTML, client-side scripting, server side
scripting to database query languages. ese are the concepts that web application frame-
works try to hide from the developers.

erefore the recent rise of specialized NoSQL data stores not only pushed another tech-
nology on the stack, but even more so showed that developers tried to overcome certain
Ęaws, in both performance and Ęexibility, of traditional relational databases.

Emerging from a database context, the main contribution of this work is to provide imple-
menters and soware architects with a development stack, consisting of a lightweight appli-
cation server in company with a soware framework written in XQuery, which is built with
XML technologies from front to back. Suggested approach not only takes away the need
to master a plenitude of technologies, but also tackles some of the shortcomings relational
database management systems face.

 Concepts: Web Application Frameworks

Web application frameworks usually try to make developers’ lives easier by providing func-
tionality commonly needed in developing web applications [, p.]. ese building blocks
assist developers in creating dynamic websites, web services and web applications.

Besides this rather weak deĕnition, there is no common agreement on what a web applica-
tion framework actually is, but in the course of time, some common features evolved []
that are widely accepted to play a key role in the web application framework architecture.

Data Persistence

Virtually all applications today need to persistently store and process data. In all but the
most trivial applications, pages are generated on request, based on server side stored data.
In addition users are oen required to change this data in order to administer their appli-
cations. ese requirements already led to concepts that provide developers with:

An API to access the data storage
An Object-Relational-Mapper to simplify storage and retrieval, this if oen

combined with an
A SQL Builder that provides developerswith an interface that simpliĕes query

generation

Keith et al. in []

Security

As web applications oen offer services tailored for speciĕc users it is crucial to identify
these users and ask them for their credentials, if the resource they are about to request
requires authentication. e framework also has to persist their session andmay keep track
of user groups or roles the logged in users belong to.

  Concepts: Web Application Frameworks

Caching

To improve performance many applications cache resources that are either expensive to
generate or unlikely to change much over time. As an example, consider navigations: even
on dynamically generated web pages they usually remain very stable, so there is no need to
regenerate them upon each request.

Templating

It is usually perceived good practice to separate data and representation. In [] this is even
said to be “[…] one of the most fundamental heuristics of good soware design”. ere-
fore most web application frameworks offer a templating engine that provides a consistent
interface to build HTML (or any presentation language) blueprints with developer deĕned
ĕelds that are subsequently ĕlled with data. Templating engines range from simple logic-
less templatesƬ to very sophisticated buildersƭ that deĕne a DSLƮ themselves and may even
contain control structures.

Scaffolding

Scaffoldingmay be understood as a special case of templating. Scaffolded components pro-
vide the user with generated, ready-to-use implementations of CRUD⁴ functionality. is
is usually done via introspection and allows application developers to gradually ĕnish the
application based on the automatically generated code. Scaffolding has been strongly pro-
moted by Ruby on Rails and was since then adopted by many frameworks.

⋆ ⋆ ⋆

Using a web application framework makes development and implementation a faster and
more robust process, as the used framework predeĕnes the functionality and terminology.
e framework ideally fosters code reuse, thus clearly following the principle of not repeat-

Ƭi.e., {{ Mustache }}, http://mustache.github.com/
ƭi.e., Smarty, http://www.smarty.net/
ƮDomain Speciĕc Language, a language tailored to solve a very speciĕc set of problems
⁴named aer: CREATE, READ, UPDATE, DELETE, characterizing the database interaction found in database

driven applications

http://mustache.github.com/
http://www.smarty.net/

. Model-View-Controller 

ing oneself, while at the same time decoupling interdependencies of application compo-
nents.

Most of the general-purpose frameworks implement the MVC architectural pattern. e
following overview will concentrate on general concepts of MVC and later on cover some
state-of-the-art web application frameworks, tackling different application domains each.

. Model-View-Controller

Controller

View

Presentation

Model

Data Stores

User Action

Request Data
Modify Data

Load view
Provide Data

Dispatch

F .: Model-View-Controller Overview

MVC is a well-known and generic soware pattern. It splits code into three distinct, loosely
coupled components, which interact with each other using well-deĕned interfaces. e
pattern is used to make program design more Ęexible and extensible: features can be easily
changed and enhanced without endangering the already existing functionality. is idea
is based on one basic observation: while user interfaces frequently change and need to
be deployed in manifold areas (examples are different platforms and types of applications,
web applications, mobile apps & desktop applications), the domain logic of an application is
usually much more stable. Using MVC even encourages collaboration in soware projects,

  Concepts: Web Application Frameworks

as one developer might start implementing views and presentational logic while another
one copes with data abstraction and domain logic.

.. The Model

e model is about all data-related issues and logic. In traditional soware development,
this oen translates directly to underlying tables or views located in a databasemanagement
system. e model is also accountable for enforcing various constraints on data structures,
such as known from relational databases. Some papers [, ] also differ between an ac-
tive model, which has a notiĕcation mechanism—usually implemented with the Observer
pattern—and notiĕes its views or controller of changes, and the passive model, which is
completely unaware of the fact that it belongs to a MVC architecture. In general, web ap-
plications are stateless and follow a strict request-response cycle, which is why we will talk
about passive models in the following unless mentioned otherwise.

.. The View

eonly task of the view component is to request data from themodel, and present it to the
end-user. Usually, a view is instantiated by the controller, which also passes on the required
data. Note that views are not authorized to perform any updates: the controller triggers all
changes and modiĕcations in the data structures.

.. The Controller

Controllers maintain the state and business logic of the application; they act as glue be-
tween the models and their views. ey process user actions and provide their respective
views with data obtained from the model. As controllers have originally been designed for
the implementation of graphical user interfaces of desktop applications, they have been the
interface responsible for dispatching the event loop of particular views. Controllers receive
events from a view (triggered by the user’s keyboard or mouse, or timers) and update the
state of a model. While, in its pristine deĕnition, a controller was not supposed to act as a
mediator between the view and the model, this gradually changed with the emergence of
web-based frameworks. e special characteristics of web applications lead to the dissem-
ination and adoption of various controller patterns, most notably that of the:

. State-of-the-Art Implementations 

Front Controller as a single point of entry for processing new HTTP requests,
Page Controller coordinating the logic on single web pages, and
Application Controller deĕning the business logic of the entire application.

ese controllers are oen cascaded: the front controller accepts incoming requests, passes
them on to a page controller’s action, which in turn generates a new view, sends it back to
the page controller, which then sends the ĕnalized response back to the client.

From an architectural point of view, different actors on different application layers are dri-
ven by different requirements; this further extends the separation of concerns adequately
in the context of web applications, as the following illustrates: the HTML format, which
represents the view in the eyes of the web server, becomes the model once it is received and
rendered by the user’s web browser, and the document’s object model (DOM) is modiĕed
by, e.g., JavaScript, which handles local user interactions.

. State-of-the-Art Implementations

e following paragraphs are to be taken as a guideline and overview on what categories of
web application frameworks exist. We will start by covering Ruby on Rails, as its approach
might feel natural to most developers coming from traditional three-tiered applications.

Ruby on Rails

One of the most popular frameworks for web application development today is, without a
doubt, Ruby on Rails. It uses an MVC architecture and includes a lot of tools to facilitate
web development. Ruby on Rails comes with a collection of tools, among them WEBrick,
a Ruby-written web server application, and lots of prebuilt rake⁵ tasks. ese tasks aid with
low-level maintenance such as creating databases or application modules.

Ruby on Rails set industry standards with its extensive framework support for AJAX in
companywith graceful degradation, called unobtrusive javascript. is allowsAJAXdriven
websites to still function in browsers without javascript support by falling back on pure
HTML.

⁵a tool similar to make, written in Ruby

  Concepts: Web Application Frameworks

Views are implemented, as in almost any other scripting language based framework, via em-
bedded scripting language code. Developers simply interweave HTML markup and Ruby
Code—wrapped in special HTML tags such as in the following snippet:

<%puts ”Hello World”%>

Rails also provides Scaffolding, the fully automatic generation of a skeleton application, by
introspecting databasemetadata. It has inspired lots of other frameworks since. Scaffolding
allows developers to quickly setup the basic building blocks for an application. From a
implementers perspective, the implementation of basic CRUD operations demands for lots
of developer time and usually is error prone andmay even lead to security risks with regards
to SQL injections. is is what Ruby onRails initially wanted to helpwith: by examining the
underlying data, Rails was able to generate the HTML pages and Ruby glue code to create,
list, edit and delete entries from a database.

e scaffolding feature, in turn, is based on top of a core part of the framework: ActiveRe-
cord. ActiveRecord is an object-relational-mapper that encapsulates all database related
actions. It allows developers to use their database records as if they were ordinary Ruby
objects, containing methods and attributes to perform validations or transformations. is
simpliĕes development a lot and even allows for compound (Ruby) objects that may span
several database tables (a sketch of this concept is given in Listing ).

Listing  deĕnes an Object called Textdocument. It inherits from ActiveRecord and by
convention maps to a database table named textdocument. It has a property indicating
that the ĕeld pages contains a list (i.e., has_many) of Page object instances. e related
page objects are looked up in the database. By convention, this means that there has to
exist a table called pages, containing at least one row named textdocument_id. ese
page objects are then fetched, transparently to the developer, and converted to a Ruby object
instance as the property is accessed.

Class Textdocument < ActiveRecord :: Base
has_many :pages

end

Listing : Ruby on Rails Model example.

. State-of-the-Art Implementations 

ActiveRecord comes with the additional beneĕt of being database independent. Several
adapter implementations exist for all major database management systems.

Rails was one of the early popular frameworks that introduced the concept of database
migrations, which allowed developers to dynamically adapt their database schemata. Mi-
grations allow developers to create tables programmatically and keep track of different ver-
sions.

GoogleWeb Toolkit

F .: GWT example: a mail client running
inside the browser.

Google’s Web Toolkit (GWT)–shis focus, when
compared to Ruby on Rails, or other more tradi-
tional development models. Core of GWT’s devel-
opment philosophy is using a single programming
language, JAVA, to develop web applications both on
client and server. Its specialty is a Java to JavaScript
cross-compiler, which transparently maps Java objects
and method calls to JavaScript that may be executed
in the client’s browser. is is particularly appealing,
mainly for the following reasons:

IDE support as debugging, testing and developing can take place inside a powerful IDE
such as Eclipse⁶ or NetBeans⁷

RPC Remote Procedure Calls are transparentlymapped to AJAX requests where necessary
Objects that are shared between the client (browser) and the server conform to a single

speciĕcation and do not require manual conversion
GUI frontend interactivity is added by using pre-built widgets. ose widgets may either

be programmed, in a way similar to Java’s own Swing, or added declaratively in an
XML dialect

e technically most interesting part of the framework is, by far, the cross compiler: it does
not only bridge the gap between client and server, but also takes care of compatibility issues,
which developers usually encounter when targeting multiple browsers.

⁶http://www.eclipse.org/
⁷http://www.netbeans.org/

  Concepts: Web Application Frameworks

Yet GWT does not provide any database interaction. Instead this is le completely to the
developer and dedicated frameworks such as Hibernate⁸.

Google itself uses GWT for the development of Google Mail, Google Maps, or the now
discontinued Google Wave.

To recap the above example, redeĕning the Textdocument object in Java is straightfor-
ward: Once an instance of Textdocument was used on the client-side implementation,

public class Textdocument {
List<Page> pages;

}

Listing : GWT/Java Model example.

GWT translates this (for the sake of brevity some GWT speciĕc boilerplate code has been
stripped) to the following piece of Javascript:

this$static.example_client_Textdocuments_pages = // this$static.example contains
// a reference

new java_util_ArrayList_ArrayList__V; // to the class fields

Listing : GWT/JavaScript Model example, the source code is highly optimized and rather
not intended for humans to read

SproutCore

F .: SproutCore in action on iWork.com,
showing an Office document.

To complete the overview, we will conclude with a
description of SproutCore, a framework that tackles
only the client. SproutCore is an open source frame-
work written in JavaScript and licensed under the
MIT License. SproutCore claims to deliver “desk-
top caliber applications” to the browser. Contrary
to Google Web Toolkit or Ruby on Rails, SproutCore
does not involve database interaction, instead it al-
lows data to be pushed and pulled from speciĕc URLs.

⁸http://www.hibernate.org/

iWork.com

. State-of-the-Art Implementations 

e developers characterize Sprout as follows:

“SproutCore applications move business logic to the browser so they can re-
spond to your users’ taps and clicks immediately, avoiding an agonizing roundtrip
across oen intermittent network connections.

As web application users go increasingly mobile, applications can no longer
depend on reliable connections to a remote server to do the heavy liing.

At the same time, web browsers continue to radically improve their ability to
quickly process data and deliver polished user interfaces—a perfect opportu-
nity to rethink the architecture of modern web applications.” []

As SproutCore only runs inside the browser it relies heavily on observing the Document
Object Model and allows an event-driven development model that is notiĕed once DOM
or data changes. Implementers deĕne data Ęows and how their applications are supposed
to react on events. It is built to make use of the most recent HTML features.

Textdocuments = SC.Application.create();
Textdocuments.Textdocument = SC.Object.extend({
// initialize the document with an empty list of pages
pages: []
});

Listing : SproutCore Javascript Model example

SproutCore contains a rich set of UI Widgets, which resemble their desktop application
counterparts, and a versatile templating engine. Financially, SproutCore is backed by Ap-
ple—who in turn implemented their icloud.com browser fronted with SproutCore—and
has an ever-growing community.

icloud.com

  Concepts: Web Application Frameworks

. Challenges

.. Real World Data

When storing real world data in database-driven applications we usually face the challenge
to ĕt it into evenly sized, pre-deĕned rows and columns. is proves not only to be concep-
tually difficult, but also poses computational challenges that tend to scale rather badly.

inking of, for example, a document store, one can easily come up with a relational map-
ping that captures key characteristics, such as every document having a unique id, a name,
a creation date and is located at a speciĕc URL. For a (relational) database architect, this
immediately translates itself to a schema like the following:

DOCUMENT(id, name, crdate, uri, content)

Developers may now access each document, its metadata, and its content by executing a
simple query as shown in Listing :

SELECT id, name, crdate, uri, content from DOCUMENT

Listing : SQL: Retrieving a list of documents

is solution will work just ĕne, as long as we think of a document in terms of a single
stream of data—the content—stored as a large blob. By building this model we lose the
means to access a document at a ĕner level of granularity. A modeling decision made up-
front will limit future use-cases, as we will, e.g., never be able to query a single page inside
a document.

To allow for even ĕner granularity, the database architect could have come up with the
following decision:

DOCUMENT(id, name, crdate, uri)

PAGE(document_id, page_id, content)

. Challenges 

emodel stores individual pages inside the PAGE table, uniquely identiĕed by a compound
key consisting of the foreign key document_id that connects each page with a speciĕc doc-
ument and a page_id that identiĕes a page inside a document.

To access a document, developers will have to rebuilt a complete document at runtime as
depicted in Listing 

SELECT d.id, d.name, d.crdate,d.uri,
p.content, p.page_id

FROM DOCUMENT d,
PAGE p

WHERE d.id = p.textdocument_id
ORDER BY d.id,

p.page_id

Listing : SQL: Retrieving a list ofwhole documents by implicitly joining the DOCUMENT and
PAGE relations

Yet we have not reached the ĕnest level of granularity possible, thus still reducing the po-
tential of our application in terms of Ęexibility and extensibility. If, at any given time, a
problem demands for individual paragraphs to be extracted from our document base, we
(once more) have to split the pages relation⁹ to come up with a model like the following:

DOCUMENT(id, name, crdate, uri)

PAGE(document_id, page_id)10

PARAGRAPH(document_id, page_id, paragraph_id, content)

In further consequence, a change of the relational model demands for changes at the ap-
plication level: involved joins will have to be rewritten, possibly in numerous locations.
e same holds for making the remaining application aware of the changed data model: as

⁹N.B. we are aware that paragraph splitting could (and in practice most probably will) be handled at the
application level, yet this again fosters the creation of non-reusable code and only shows the inĘexibility of
our model

Ƭ⁰is relation might be completely removed in the course of normalization, if it carries no attrib-
utes other than the two listed.

  Concepts: Web Application Frameworks

queries are only executed at runtime, developers will have no means to be sureƬƬ to actually
have changed all relevant functions.

Even though Object Relational Mapping (ORM) and dedicated libraries will take most of
these tedious tasks off a developers to-do list, the very existence of such mappers shows the
relevancy of making modeling decisions carefully. us in day-to-day business, changes
to the relational model are usually avoided. In consequence the decision which and how
data is stored has to be well thought out. Adding new components or attributes to a model
once an application has gone into production, generally tends to be costly and error prone.
On the other hand, storing the model at its very ĕnest granularity (e.g., each sentence, or
even each word/character, individually in the case of the aforementioned example) wastes
resources and adds lots of complexity to query evaluation as, most probably, such a ĕne
level of granularity is not going to be needed for most of the use cases.

.. Modeling in XML

is is where XML technologies come into play. In the context of this thesis, we stress three
main arguments for considering XML as the model of choice:

Data Exchange. XMLhas been designedwith data interchange inmind [], and succeeded
to become the premier format for data interchange on the web. Hence there are nu-
merous programs and resources that process or produce XML natively.

Modeling Freedom. Due to XML’s design, architects may model structured content, semi-
structured data andunstructured data. In addition standards, such asXMLSchema []
allow developers to regain power, in terms of type safety, over their data.

Expressiveness. With XQuery [] implementers are provided with a fully capable pro-
gramming language, which is well suited to deĕne business logic and data manipu-
lation. While before these two tasks were most oen clearly separated by a context
switch between scripting languagesƬƭ and database languagesƬƮ.

ƬƬe.g., in terms of static type checking
Ƭƭe.g., PHP, Ruby, Python or Perl
ƬƮi.e., SQL

. Challenges 

Besides that, XML and the web are natural partners by design: When Tim Berners-Lee
motivated the “Rule of least Power” he not only insisted on using the tool most suitable for
the job, but also technology that is most suitable to convey information:

“A different sort of scalability can be found when comparing Turing-complete
languages. Although all have equivalent expressive power, functional languages
such as Haskell and XSLT facilitate the creation of programs that may be eas-
ier to analyze than their imperative equivalents. Particularly when such lan-
guages are further subset to eliminate complex features (to eliminate recur-
sion, perhaps, or to focus on template forms in XSLT), the resulting variants
may be quite powerful yet easy to analyze. When publishing on the Web, you
should usually choose the least powerful ormost easily analyzed language vari-
ant that’s suitable for the purpose.”

Tim Berners-Lee in []

For that reason, from a soware development point of view, it is all about abstraction,
abstraction at retrieval time. And these abstractions are made notably easy by opting for
XQuery as the processing language of choice. Let services decide which data they need and,
instead of tailoring data ĕrst, we will tailor information on demand.

.. Programming XML: XQuery & XPath

In a nutshell, XQuery relates to XML the same way SQL relates to relational data: it pro-
vides the means necessary to select and manipulate speciĕc parts of XML documents. But
despite data manipulation and retrieval, there is more to XQuery: it is a general-purpose
programming languageƬ⁴, suitable to tackle all kinds of problems.

XQuery is a conglomerate of several W3C speciĕcations:

XPath as speciĕed by the WC in [] is “an expression language that allows the process-
ing of values conforming to the XQuery . and XPath . Data Model”. e basic
building blocks of an XPath expression are so-called steps, made of: an axisƬ⁵, a node

Ƭ⁴c.f. Kilpeläinen [] on XQuery for problem solving
Ƭ⁵such as: child, parent, following-sibling. (for a complete list please refer to the spec)

  Concepts: Web Application Frameworks

testƬ⁶, and an optional predicate that further restricts the sequence of items that is
to be returned by a given step. An example showing how to hierarchically address
elements inside an XML document can be found in Listing  on page .

XQuery and XPath Data Model, the XDM, as speciĕed by the WC in [] makes up the
information atomsof the language. In addition to the types deĕned inXMLSchema []
it extends this model most notably by supporting sequences of heterogeneous val-
ues (i.e., atomic values such as, strings, but also complex types like nodes and docu-
ments). is data model, while tailored for processing XML, may as well be used to
handle arbitrary data types, such as JSON or relational data in a uniform manner.

XQuery is a standard deĕned in []. XQuery makes use of XPath expressions in order
to select speciĕc parts of a document, and is a strict superset of XPath. It further
provides control structures to iterate over sequences of XDM instances. Supplemen-
tal to SQL’s SFWƬ⁷, XQuery implements FLWORƬ⁸ expressions. XQuery scripts may
be organized in modules, each inside its own namespace, which are further broken
down in function deĕnitions. is fosters reusability and readability of XQuery code
and libraries. Another distinction to XPath is XQuery’s ability to explicitly construct
new XDM instances programmatically. is enables implementers to transform one
XDM instance—e.g., a sequence of numeric values—to, for example, an (X)HTML
list.

e example in Listing  on the facing page is strongly hypothetical, but is equally relevant
in practice: without ever explicitly converting data, we seamlessly switch between simple
types, such as integers or strings, and complex elements and preserve their structure. is
lays foundation for the expressiveness and power XQuery hands on to developers.

Ƭ⁶such as: only attributes, only elements, only elements with a speciĕc name
Ƭ⁷SELECT, FROM, WHERE
Ƭ⁸FOR, LET, WHERE, ORDER, RETURN

. Challenges 

declare function local:even-squares($range as xs:integer+)
as element(ul){
{

for $x in $range
let $y := $x * $x
where $x mod 2 = 0
return { $y }

}
};
sum(local:even-squares(1 to 20)/li)

Listing : AnXQuery example showing some of the unique concepts XQuery and the XDM
provide: We deĕne a function, even-squares that accepts a sequence of integers as its
input, and returns an XML fragment. e FLWOR expression inside the function
body iterates through each integer, skipping the odd ones, and constructs a new
element containing the current integer’s square. is sequence of s is then wrapped
inside an and returned. On this result sequence we apply the XPath expression /li,
to select each of the constructed li elements and compute their sum.

 BaseX Web: XQuery-driven Web Application Framework

. Background

.. Maturity of Web Applications & Frameworks

Deploying applications for the web has become the preferred mode of operation for both
end-user and expert systems. e web is ĕlled with all kinds of hosted soware solutions,
ready to satisfy almost all information needs that might possibly arise.

ere exist numerousmachine-readable resources, almost always fostering XML as a lingua
franca. Considering that every major news site offers RSS or Atom feeds, there are also
REST and SOAP, the de facto standards for program-to-program data exchange and remote
procedure calls on the web. In the same way, numerous websites offer applications which
can be used with any browser—most famous Google Search, serving as an retrieval tool for
literally billions of people each day. anks to Google pioneering the web as an application
platform, users aremore andmore willing to accept using their browser for tasks other than
just surĕng the web. In addition, applications—like Google Mail or Google Reader that feel
almost like native applications—most oen surpass their desktop counterparts, in terms of
features, by tightly integrating independent remote services.

A landmark, the introduction of Ajax [], showed the way for the years to come: Emerging
from a past, where developers thought of JavaScript mostly as a tool to validate forms be-
fore sending them, or used it to swap images on mouse-over, Ajax raised the bar: instead of
developing applications for a single target operating system, developers were now equipped
with a tool chain that allowed them to build applications once and run them on any ma-
chine connected to the internet. Likewise all of the heavy liing could now be off-loaded
to dedicated server machines, while clients only had to cope with result representation.

is development led companies to focus on web applications. Even major players, like
Apple’s iPhone or Palm’s webOS, opted for web applications on their platform. In the be-
ginning both even lacked native development kits. Clearly, both Palm and Apple wanted
their developers to deploy applications directly to the web, without opening their archi-
tecture to any native code. From a developers perspective this approach was perceived

  BaseX Web: XQuery-driven Web Application Framework

ambivalently: there was no need to worry about low-level concepts, such as device types or
soware versions, yet on the other hand this was part of the problem. Developers had no
means to directly access the hardware at all, which was limiting in many cases.

Since then, the frontier between the browser and native applications has been vanishing.
e standardization of H addressesmanyof the aforementioned issues, among them:

Offline Support gives H applications a dedicated storage—provided by the runtime
environment—to locally cache their data. In addition, developers may subscribe to
certain events, check for online connectivity, and perform synchronization. So in-
stead of uploading user data to the server right away, applicationsmay decide to store
sensitive information only on a client’s machine.

File Access gives developers access to the local ĕle system, such that HTML applications
may store and retrieve ĕles. is represents a major advantage over the status quo,
where developers oen switch to proprietary techniques, such as Flash, to access the
ĕle system of a client.

Connectivity via WebSockets allows bi-directional communications, as such the remote
server is able to notify the client of events.

Graphics enables developers tomake use of D acceleration hardware with very low effort.

.. Impedance Mismatch

Object Relational Mapping is a very powerful mechanism, yet it forces developers to live
compromises. ese compromises are mainly due to a clash of paradigms once the object-
oriented—data & functionality deĕned in a procedural manner–and the relational repre-
sentation—tuples & set-data models—are mapped to one another.

One might argue that building web applications in a functional language like XQuery we
would never encounter this problem, which is true to some extent. Nevertheless, with
XQuery we are able to retrieve and manipulate persisted data, mostly in the same manner
that developers are used to when working with Object Relational Mappings. But contrary
to the latter, XQuery has been designed to actually work on these data structures natively,
so the efforts of conducting conversions back and forth are no longer required. In XQuery
we can safely assume that the data we work on is persisted seamlessly.

. Background 

e problem of conversion is known as Object Relational Impedance Mismatch, and inves-
tigates the issues developers face when persisting objects as relations. In [] the authors
identify categories of object relational impedancemismatch, which are grounded in object-
oriented paradigms:

Structure. Objects hold both, data—it may even be part of class hierarchy—and function-
ality. e relational model has no notion of such object-oriented concepts. A tuple
in a relational model is only deĕned by its data, and hierarchies always involve more
than one relation. When using XML and XQuery, we do not encounter any persis-
tence issues, XML data never carries functionality and provides native support for
hierarchies.

Identity. An object has an identity that is not dependent on its internal state (i.e., the data
it is holding). Running an object-oriented application twice, the very same object,
deĕned by its internal state, may have a different identity, as it is only a runtime con-
struct. In the relational model, the identity of a tuple is given by its data and primary
key. is makes it a trivial task to absolutely identify a tuple, while we have no way
of absolutely identifying an object inside an object-oriented program.

Encapsulation. Objects hide their state via methods. Programmersmaymodify these data
in a well-deĕned way. Rows on the other hand have no such concept, their state is
their data and has no such protection. Although database systems provide users with
mechanisms to secure their tuples.

Processing model. Relational data processing involves transactions that are sequential, set
based applications of functions over tuples. In contrast to this, the object-oriented
model, at its core, is the logical grouping of data and functionality. From a relational
perspective the deĕnition of two entities belonging to a different category differs only
by the chosen column names and data types. From an object-oriented perspective
two distinct entities can, and usually will, differ with respect to attached functionality.

.. Frameworks: Pros and Cons

e former observations proof the ambiguity developers usually face when deciding for
or against such assisting frameworks. e beneĕts are obvious: implementation details
and caveats are hidden from the developer. is technique of abstracting implementation
details—and concepts—is used with great success and at various levels in soware engi-

  BaseX Web: XQuery-driven Web Application Framework

neering. For example, most programmers will never write a line of assembly code, why
should they? It is perceived hard to read, hard to debug and usually hard to collaborate on
in teams. Frameworks are, without a doubt, extremely successful and popular in the web
world, mainly for the following reasons:

Comfort. e framework handles tedious tasks such as the creation of nicely readable
URLs, form generation, data validation or access control

Code Reuse. As numerous problems have to be solved over and over again, frameworks
assist developers in writing reusable bits of logic once, and using it in many places

Database Access. With the help ofObject RelationalMapping a developer is presentedwith
an uniĕed development stack, where objects and tables seem smoothly integrated

Inversion of Control. Makes the program’s Ęow of control obey to the framework. us
the framework deĕnes both what is done and when it is done

On the other hand, when hiding away concepts from the developer, frameworks take away
power, in terms of programmatic expressiveness, the developer otherwise had. e devel-
oper is forced to stay inside the black box the framework provides. is black box, actually
counter intuitively to all relief it provides, may add another layer of complexity to a project.
When moving away from predeĕned paths, be it due to requirements that are not covered
by the framework, or a lack of understanding how to make right use of its functionality,
development tends to be even more cumbersome than it was without a framework.

. Related Work 

. Related Work

e idea of using server-side XQuery implementations to foster application development
is not new and has been around for quite some time in competing open source implemen-
tations such as the Sausalito projectƬ, which claims to bring XQuery to the cloud, or eXist-
dbƭ, one of the early native XML database systems. Both implementations use different
approaches and focuses to achieve this goal.

ey mainly differ in two aspects, while the latter is more database-centric, the former is
aboutXQuery-powered application logic (exposing data-centric services through aRESTful
interface and delegating storage considerations to arbitrary backend systems).

.. eXist — The XQuery Servlet

eXist-db is one of the oldest open source native XML database management systems, and
has always been driven by a growing community. eXist itself runs out of the box and comes
packaged with an installer for convenience.

eXist […] a native XML database system, which can be easily integrated into
applications dealing with XML in a variety of possible scenarios, ranging from
web-based applications to documentation systems running from CDROM. e
database is completely written in Java andmay be deployed in a number of ways,
either running as a stand-alone server process, inside a Servlet-engine or directly
embedded into an application.

Wolfgang Meier (project leader) on the goals of eXist []

Besides traditional APIs, eXist as well offers all of its functionalities via two web services,
an XQueryServlet and an REST-style API.

In order to generate a web page, eXist uses the XQueryServlet to generate XHTML. eXist’s
XQuery processor is contained in the servlet andmaps aURL to anXQuery script ĕle inside
the ĕle system.

Ƭhttp://www.28msec.com
ƭhttp://exist.sourceforge.net/

http://www.28msec.com
http://exist.sourceforge.net/

  BaseX Web: XQuery-driven Web Application Framework

is approach is similar to the scripting style of developingweb applications and as such, has
a low entry-barrier for developers familiar with languages such as PHP or Perl. is very
basic toolset already allows developing whole applications, including a database backend,
in XQuery. It is also worth mentioning that eXist’s complete administration interface is
implemented inXQuery, and completedwith eXide, anXQuery IDEƮ that allows developers
to implement, run and debug XQuery modules directly in the browser.

eXist’s REST implementation runs inside a Servlet context as well, but contrary to the
XQueryServlet it stores its XQuery modules directly inside the database. e most recent
development version of eXist also introduced RestXQ: a JAX-RS⁴ inspired API that allows
developers to map URLs to XQuery functions using annotations.

eXist also beneĕts from a big pool of community created extension modules, which cover
lots of problem domains. In this regard eXist may deĕnitely be seen as the implementation
setting the standards.

.. Sausalito— XQuery in the cloud

In , Kaufmann and Kossmann were the ĕrst to examine the beneĕts of developing web
applications with XQuery. eir conclusion favored the approach:

[…]that the WC family of standards is very well suited for this task and has
important advantages over the state-of-the-art (e.g., JEE, .Net, or PHP). Most
importantly, using XQuery and WC standards only ensures a uniform tech-
nology stack and avoids the technology jungle ofmixing different technologies
and data models. As a result, the application architecture becomes more Ęex-
ible, simpler, and potentially more efficient.

Kaufmann and Kossmann in []

is research found its commercial descendant in the company msec and their prod-
uct Sausalito, “a suite of tools that allow to write, test, and deploy full-Ęedged web-based
applications, entirely written in XQuery” [].

ƮAvailable at http://demo.exist-db.org/exist/eXide/index.html
⁴c.f. http://jcp.org/en/jsr/detail?id=311

http://demo.exist-db.org/exist/eXide/index.html
http://jcp.org/en/jsr/detail?id=311

. Related Work 

msec argues that “XQuery has an extremely powerful support for database queries, script-
ing, and full-text search. By using a single programming on all tiers, Sausalito is collapsing
web servers, application servers, and databases into a single stack.” []. ey consequently
use XQuery for: writing application code, deĕning data- and access-structures and data-
base access.

Its functions can be invoked with any HTTP client, in general however, Sausalito is an
application server for RESTful services. Application logic is completely implemented in
XQuery, and the Zorba XQuery Processor⁵ is used for evaluating the queries.

e general project structure for a Sausalito project, as described in [], is as follows: All
XQuery code is structured in XQuery modules. Each module usually concentrates on one
very speciĕc aspect of the application. Sausalito further discriminates between three kinds
of modules: Handler, Library and External Modules.

H  “contain XQuery functions (called handler functions) that build the
REST-based interface of your application. Each of the functions is directly exposed using
REST and can be called by making an HTTP request with a path component that is iden-
tiĕed by the module’s ĕle name and the name of the function.” [] Each handler’s task is to
orchestrate HTTP requests and implement business logic. In the context of MVC their role
resembles that of a controller.

T LM deĕne general-purpose functionality, whichmay be used by other
libraries or the handler modules. Some Library Modules even come prepackaged with
Sausalito and cover a wide range of features from image processing to authentication. ese
libraries are not exposed via REST directly, but otherwise do not have any special rules to
follow.

E  contain additional XQuery modules, provided by any third party.

In order to deploy a Sausalito application, msec hosts a cloud infrastructure on Ama-
zon Web Services. Once deployed, Sausalito can be seen as a solution for building RESTful

⁵http://zorba-xquery.com/

http://zorba-xquery.com/

  BaseX Web: XQuery-driven Web Application Framework

services with XQuery running in the cloud. e framework uses sophisticated distributed
commit protocols [], as it supports several storage backends. e database backends sup-
ported cover distributed key-value-stores, e.g., MongoDB or SimpleDB, or JSON stores, as
well as the ĕle system. Figure . illustrates Sausalito’s integrated application stack.

S

Web Server

Zorba
(XQuery Processor)

Sausalito XDM Store

Amazon’s
Simple Storage Service

(S3)

Browser Mobile

REST interface

F .: Sausalito’s integrated application stack.

Distinction

So as to beneĕt from both approaches—eXist’s direct style and Sausalito’s service oriented
architecture—we present BX W. BX W aims to be a framework that enables
developers to rapidly implement XML-based web projects. A focus has been put on rely-
ing exclusively on WC standards, hence fostering research efforts that inĘuenced these
standards.

e main goals we set up for BX W are versatility and Ęexibility with respect to dif-
ferent problem demands:

() a service-oriented architecture, ready to serve XML or JSON to frontend systems, built
on the foundations of a pure X-technology stack

. Related Work 

() providing a general-purpose MVC architecture, as an infrastructure for own applica-
tions covering all application layers, ranging from rendering to storage

In order to separate concerns regarding storage, processing and rendering of data we opted
for an MVC architecture. e following chapter will provide an overview of the steps nec-
essary to piggyback a web application framework on top of the BX database engine.

  BaseX Web: XQuery-driven Web Application Framework

. System Overview

From the beginning, BX W was designed to be just another database client, as this al-
lowed us to leave BX’ core unchanged. BXW sends requests expressed in XQuery,
and retrieves results (serialized as XML, binary or JSON) from the processing engine.

clients
request

response

BX

BX-W

BX-W

XQuery

XML

clients

F .: System overview: BX W’s mode of operation

In BX W, a project holds the “business logic”, i.e., the functions we want to perform
on the stored data in distinct XQuery modules. Usually this means retrieving data from
a database, responding to a client request, and subsequently return a serialized result to
the client. As web applications demand for processing options that go beyond XQuery’s
deĕned capabilities, such as cookie handling and setting of HTTP headers, we extended
BX in a non-intrusivemanner. eEXPath packaging speciĕcation[]⁶ is a community
driven project that deĕnes standards for developers building XQuery extension libraries.
ese libraries may then be installed into the database management system and extend the
query functionality. Whenever developers encounter cases, which demand for explicitly
modifying a HTTP Response, they may do so by calling functions from the prepackaged
web extension module.

BX W’s architecture is grounded on well established building blocks. e use of Java
Servlet Technology provides “developers with a simple, consistent mechanism for extend-
ing the functionality of a web server”⁷. e framework itself is deployed as a web (appli-

⁶http://expath.org/spec/pkg
⁷ http://www.oracle.com/technetwork/java/javaee/servlet/index.html

http://expath.org/spec/pkg
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

. System Overview 

cation) archive⁸, and encapsulates all needed functionalities in a single package. e war
can then be deployed in a dedicated runtime environment, the Servlet Container. During
development and testing the jetty:// web server⁹ was used as a runtime environment,
c.f. Figure .: As we make use of BX’ internal APIs for query processing, BX W
directly beneĕts from all tweaks, features, and optimizations performed by the BaseX query
processor.

W

Servlet:
Cookies
Sessions

Templating

XHTML

Search
Forms

Web Services

BX

DB:
Persistence
Querying

DB Client DatabaseDatabase

W A

F .: System overview: BX W building blocks

Designed with the goals of a uniĕed data modeling language, XML in partnership with
XQuery is an ideal match to model, process, and present information resources.

With BX W we remove the need for glue code between various interconnected layers
of an application, c.f. Figure .. In addition, we can now work without data conversions,
which have been needed before in order to match each layers processing paradigms.

Regarding the high-level architecture, we decided to obey the MVC pattern, as its com-
ponents closely resemble the XML technologies implemented with BX W. Martin

⁸in war format
⁹ http://www.eclipse.org/jetty/

http://www.eclipse.org/jetty/

  BaseX Web: XQuery-driven Web Application Framework

Fowler names three layers in enterprise architectures, which correlatewith theModel-View-
Controller Architecture:

Presentation. Provision of services, display of information (e.g., in windows
orHTML, handle user requests such asmouse clicks, keyboardhits, HTTP
requests, command line invocations)

Domain. e logic that is the real point of the system
Data source. Communicate with databases, messaging systems, transaction

managers, and other packages
Fowler [] on architectural patterns

PHP
Ruby

…

SQL
NoSQL

XML Database

(X)HTML

BX W

XQuery

Persistence

Business Logic

Presentation

F .: Sketch of the architectural model of traditional web applications compared to BX
W. e BX W application server provides a complete runtime to host XQuery
built web applications, while only talking the native languages of the web

Following this high-level overview, we switch to an introduction of the application layout
in the following section. Aerwards we will describe each of the involved components and
their responsibilities, by following a complete request-response-cycle.

. System Overview 

.. Application Layout

Applications implemented in BX W comply with a ĕxed project directory layout:

e models folder contains XQuery Mod-
ules that encapsulate database interaction,
and it may contain XML Schema ĕles in or-
der to validate data before persisting it.

e controllers folder contains XQuery
modules (referred to as controllers) that en-
capsulate the business logic.

e layouts folder contains (X)HTML ĕles
with markers that direct BX W to in-
sert evaluated content when sending a re-
sponse.

e views folder contains a folder for each
controller available inside the application
and has XQuery ĕles—named actions—that
respond to a unique URL.

MyWebApplication
├── models
│ ├── fsml.xq
│ └── (fsml.xsd)
├── controllers
│ └── deepweb.xq
├── layouts
│ ├── ajax.html
│ └── default.html
└── views

└── deepweb
 ├── search.xq
 ├── ls.xq
 ├── dir.xq

└── action.xq

is procedure asks implementers to explicitly categorize their ĕles, depending on their
functionalities, and comes with two beneĕts:

Facilitate Collaboration. Once learnt, a team of developers may independently work on
small subsets of features. Front-end developers, for example, work only on views,
while XQuery developers concentrate on a speciĕc set of controllers.

Meaningful URLs. As we are able to map this directory layout to a generic URL, only a
small set of rules is required to provide meaningful URLs.

  BaseX Web: XQuery-driven Web Application Framework

.. The Servlet Implementation: Request-Response-Loop

is section investigates implementation work and engineering, which have been con-
ducted in order to teach our servlet XQuery. We will describe what is necessary to per-
form a complete round trip, as depicted in Figure . on the facing page: a client request→
server side parsing of the request URL → building & processing the query → embedding
the result in a layout → transferring the result back to the client.

Incoming HTTP requests that refer to an application running in BX W must comply
with the following syntax: /app/$controller/$action. e servlet will interpret the
URL and guarantee that the prerequisites below are fulĕlled:

• anXQuerymodule controllers/$controller.xqmay exist in the current project’s
directory; if it does, a Ęag is set

• an XQuery ĕle views/$controller/$view.xq must exist in the current project’s
directory

An existing view is read intomemory, otherwise anHTTP/404 error is sent to client’s browser.

If the ĕrst prerequisite is met, and the controller module exists, it will be imported into
the view. is ensures that all functions deĕned in the controller namespace are available
to the view. is convenience function allows the implementer to call controller functions
without manually importing each controller that belongs to a view.

Aer that, the fully assembled view is submitted to the BX database server.

Usually HTTP requests contain parameters, other than the actual URL, such as GET, POST,
or COOKIE, which need to be processed by the web application framework. In BX W
such parameters are bound to an external static variable, typed as a mapƬ⁰, so its values are
accessible from inside the framework. e standardization of maps is in progress at the
time of writing, and currently based on a WC Working DraƬƬ. ey have been proposed
as an additional data type that allows implementers to use hash maps, hence they were a
perfect match to resemble request parameters.

Ƭ⁰XQuery’s notion of Key-Value-Pairs
ƬƬhttp://www.w3.org/TR/xpath-functions-30/

http://www.w3.org/TR/xpath-functions-30/

. System Overview 

Aforementioned parameters are then visible in a view, as maps with the names: GET, POST,
orCOOKIE. To access a speciĕc parameter a developer accesses its index: $POST(”firstname”).

Layout

GET:
/app/controller/index

C
GET or POST Request

AS
Servlet

controller.xq
business logic

index.xq
template

BX

XQuery

Result
Result

/app/controller/index

response Object
Body

Cookies

+-+ BaseX.org

To maximize
your
productivity
and
workflows, we
offer
professional
support, highly
customized
software
solutions and
individual
trainings on
XML, XQuery
and BaseX. Our
product itself
is completely
Open Source
(BSD-licensed)
and platform
independent;!

BaseX is a very light-weight, high-performance
and scalable XML Database engine and
XPath/XQuery Processor, including full
support for the W3C Update and Full Text
extensions. An interactive and user-friendly
GUI frontend gives you great insight into your
XML documents.

BaseX is a very light-weight, high-performance
and scalable XML Database engine and
XPath/XQuery Processor, including full
support for the W3C Update and Full Text
extensions. An interactive and user-friendly
GUI frontend gives you great insight into your
XML documents.

F .: Full request-response cycle: accessing an URL triggers the construction step to assem-
ble the complete XQuery for submission. is query is then executed, i.e., database
elements are fetched and processing is done, and returns its result sequence. is se-
quence is then embedded into an layout and streamed to the client.

Now that we have assembled the complete query and bound all request parameters to
their respective maps, we have a fully working query that is ready to be dispatched to the
XQuery engine. To the server this query looks like any other query and is processed with-
out any special arrangements. In case the implementer needs to set parameters related to
the HttpServletResponseƬƭ instance, he could do so with the help of the  extension
module: e invocation of any of these functions sends a notiĕcation via BaseX’ events
mechanism to a watcher running inside the servlet. e notiĕcations implement the com-
mand pattern in XML, an example is shown in Listing  on the next page. e servlet is
notiĕed with a certain event and parses its XML payload to subsequently invoke the speci-
ĕed method with the given arguments.

Ƭƭ http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html

  BaseX Web: XQuery-driven Web Application Framework

Meanwhile, the servlet receives the evaluated query results fromBX.e servlet embeds
this response in layouts/default.html, unless the developer set a different template, via
XQuery serialization options, and Ęushes the response to the ServletOutputStream. It
includes the (optionally modiĕed) headers and the complete body that make up the full
web page.

<command name=”set-cookie”>
<session>21d87371-9e01-4b3c-936a-4c80bad47019</session>
<arg>Cookiename</arg>
<arg>This is the cookie’s value</arg>

</command>

Listing : XML Fragment notifying the servlet to add a cookie to the response. An excerpt
of the implemented functions may be found in Listing  in the Appendix

.. XQuery Processing & XML Persistence: Database Server

A highly performant and at the same time very Ęexible storage layer is provided by the
BX database server. BaseX is a native XML database system and XQuery processor. e
XMLStore supports updates and, beside the usual name, path, and value indexes, maintains
a dedicated full-text index structure. Christian Grün has described it in excellent depth in
his dissertation [].

From inside the web framework, BX is used both as a persistence layer, addressing stor-
age demands and as a processing layer, implementing business and presentation logic. is
approach allows developers to leverage XML’s Ęexible, document-oriented storage model
in conjunction with XQuery, a general-purpose programming language with powerful re-
trieval capabilities.

.. Application Framework

e coming sections deal with the XQuery Application Framework and its implementation
in more detail. Development of the basic architecture was driven by portability demands;
the main goal was using as little implementation dependent glue code or vendor speciĕc
functions as possible. As XML deĕnes a family of languages by design, processing tools
such as XQuery enable developers to concisely steer content creation.

. System Overview 

TheModel: XML, Schema & XQuery

As shown in Section .., XML allows developers to overcomemany pitfalls when it comes
to modeling data: Ęexible and complex models are implicitly deĕned by the hierarchical
structure of the data. As such, XML developers can rely on a toolchain of modeling related
helpersƬƮ. Inside BX W a model resembles an XQuery module, implementing func-
tions that handle retrieval, validation and updating of underlying databases. is allows
developers to:

retrieve well-deĕned XML fragments off the database for further processing
validate fragments before persisting them inside the database
decouple data related tasks from business logic processing

S  V. When it comes to XML data modeling, XML Schema [] im-
mediately springs to mind. XML Schema has been initially developed to “considerably
extend[s] the capabilities found in XML document type deĕnitions (DTDs)” []. Schema
is represented in XMLƬ⁴ and can in turn be processed by numerous dedicated tools, and
even XQuery. Schema allows deĕning structural constraints, e.g., certain elements have to
occur at speciĕc locations, as well as data types. Types are subdivided in simple (for exam-
ple numerical, textual) types and complex types that deĕne element structures. Listing 
on page  shows a complex type constructed of several simple types.

is allows BX W to make use of Schema when needed by the developer. Developers
may decide to run fully-Ęedged Schema validators, such as Apache XercesƬ⁵ on demand. In
addition developers may even implement dedicated modules in XQuery that perform basic
validity checks by parsing and evaluating the Schema deĕnitions.

S. Based on this observation, we decided to implement very basic Schema
powered scaffolding that while only supporting a subset of XML Schema’s features, serves
well to quickly sketch a basic CRUD application layout. Similar to inspecting a relational

ƬƮe.g., SyncRO So’s oXygen XML Editor, Microso’s XML Schema Designer, or Altova’s XMLSpy
Ƭ⁴contrary to Document Type Deĕnitions, which are part of the XML Speciĕcation but do not share XML’s

syntax
Ƭ⁵ http://xerces.apache.org/

http://xerces.apache.org/

  BaseX Web: XQuery-driven Web Application Framework

database’s DDLƬ⁶, BX W comes with an XQuery module containing functions that
allow users to automatically create HTML form elements, for XML fragments, based on a
Schema deĕnition. e process is diagrammed in Figure ..

The View: XHTML

e view is the centerpiece of user interaction. As such it plays a crucial role inside BX
W’s architecture: each view corresponds to a unique URL. From the framework’s per-
spective, views are plain XQuery scripts that are used, in their most simple manifestation,
to retrieve processed data from a controller, work up HTML, and present it to the user’s
browser. Hence, the framework is able to leverage XQuery’s transformation and serial-
ization properties in order to provide a Ęexible, self-contained templating language. e
results of a view will then be embedded inside a conĕgurable HTML layout template.

Ƭ⁶Data Deĕnition Language, a language to describe data structures

<people>
 <person>
 <name>John XML</name>
 <dob>1998-02-10</dob>
 </person>
 <person>
 …
</people>

M D
doc('DB')/people.xml
models/mymodel/person.xsd

…
 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
…

XML Schema Definition

1) model:findByName("John XML")

2) call generic form generator

XML Database

<label>Name</label>
<input type="Text" value="John XML"
data-dojo-type="Text"/>

<label>Dob</label>
<input type="Text" value="1998-02-10"
data-dojo-type="Date"/>

P
controllers/people.xq

V
views/people/edit.xq

<h2> Edit Person</h2>
<form action="/app/people/update">
{
 people:generate-edit-form($person-name)
}
 <button>
 Write Update
 </button>
</form>
a

Controller asks the model for the

matching person and calls

people:generate-edit-form("John XML")

F .: e scaffolding process chain: given an arbitrary XML fragment, the generic form gen-
erator tries to ĕnd a schema ĕle containing possible type information. e fragment is
recursively processed in a depth-ĕrst traversal. For each element and its attributes, the
generator returns HTML form elements, populated with the given values, labels and
possibly type information.

. System Overview 

S. e XQuery-powered views become even more interesting with the new
serialization parameters introduced with XQuery .: output no longer has to be serialized
as XML but the original speciĕcation is extended to support various formats. In the context
of web applications, serialization formats besides (X)HTML, such as JSON as well as raw,
i.e., BASE encoded binary streams, are suited to serve even more application domains:

JSON as web front ends become more and more JavaScript driven, using JSON to pass
around objects gained a lot of momentum. Despite using (X)HTML for AJAX calls,
which involves parsing responses inside JavaScript, developers are now able to create
native JavaScript Objects and directly work with those on the client.

Binary Data such as media ĕles, can be streamed directly to the browser from inside the
framework. As BX, since version ., allows users to store binary ĕlesƬ⁷ in a ded-
icated backing store, retrieving and serving those ĕles from the database is a viable
option compared to plain ĕle-system storage.

From inside a view, setting the appropriate options, as shown in Listing , can trigger a
serialization other than XML:

declare option output:method ”jsonml”;
<person>

<name>John XML</name>
<dob>1998-02-10</dob>

</person>

Listing : BX W view, serializing its output to JSON. e result will be serialized as
[”person”, [”name”, ”John XML”], [”dob”, ”1998-02-10”]]

BX will handle these serializations automatically, and offers an API for client applica-
tions to retrieve the output parameters set. BX W will take these parameters into ac-
count when generating the HTTP response that is sent to the client. e appropriate HTTP
headers, e.g. Content-Type:application/json as in Listing , will be set. Depending
on the content type the automatic layout inclusion is omitted. Binary ĕles for example are
always sent to the browser as is—there is no need to wrap an HTML layout around an im-
age.

Ƭ⁷A feature included in the process of turning BX in a database ĕle system (see BX FS [] for details)

  BaseX Web: XQuery-driven Web Application Framework

C . Another argument in favor of a pure XML approach is that correct
(X)HTML comes at essentially no additional cost. e correct nesting of elements and
syntactic properties of the output are checked at parse time. is behavior is highly desir-
able with current browsers, as each browser has its own handling of erroneous documents.
Despite producing only syntactically correct fragments, developers are now also enabled to
pass around and store native templates directly from inside the languageƬ⁸. is approach
is also in use in Facebook’s XHPƬ⁹, an implementation in PHP that “[...] has enabled us to
build better websites faster” [].

Controller: Business Logic in XQuery

e controller can be thought of as the negotiator between a view and its model(s). ere-
fore controllers are XQuery modules that expose functionality speciĕc to working within
one or more models. inking of applications that allow users to list, ĕlter and display
speciĕc pieces of information, a controller function may handle each of these tasks with a
dedicated function. As such, the controller requests the data, e.g., speciĕc database entries
in alphabetical order, from the model and returns those to the view.

A I. XQuery, in its current state, has no language features that enable dy-
namic function invocationƭ⁰. Hence dynamically loading modules is impossible in day-to-
day practice. So as to avoid including cumbersomeXQuerymodule imports in the prologue
of every view the Servlet implementation takes care of checking whether a controller for the
current view exists. In case it exists the Servlet prepends its import-statement to the view
before processing it. is ensures that each view imports at least its belonging controller
into its controller-namespace, so the developer is able to use its functions. is mecha-
nism might become obsolete in the future, as XQuery . plans to add support for dynamic
function invocation, which could lead to small changes in the overall architecture: a view
would no longer actively request controller functionality, but instead be passively provided
with data generated by a controller’s function.

Ƭ⁸c.f. http://validator.w3.org/docs/why.html on why validation and thus syntactically correct markup
is essential.

Ƭ⁹https://github.com/facebook/xhp
ƭ⁰apart from util:eval, which in general should be avoided

http://validator.w3.org/docs/why.html
https://github.com/facebook/xhp

. System Overview 

U F. Another speciality, rooted in XQuery’s functional nature, is the
handling of side effects and updates: Updating Functions never return any value, in con-
sequence developers are not able to use imperative style such as: if(update($record))
then ”Update succeeded” else ”Update failed”. Instead, implementers will have to
check preconditions, such as the presence and validity of all values that need to be updated
inside the model, and subsequently issue the actual updating query if all preconditions are
met. In addition, updating and non-updating functions must not be interweaved, thus an
updating function is not allowed to call a non-updating function and vice-versa. is forces
developers to rely on a pattern known as “Post/Redirect/Get” []:

Post. e page receiving the post, processes the data and instead of returning a result page,
it sends a redirect header.

Redirect. Converts the POSTed data to GET data and redirects to the result page.
Get. Data is now available for a result view that either conĕrms the update was successful,

or in case of incomplete data shows the input form again. As the input data is still
available in GET, the form ĕelds may be pre-populated.

is process is modeled in XQuery as shown in Listing .

if(model:check($POST))
then(

web:redirect(”/app/model/view/?entry={$POST(’uuid’)}”,
web:get-params($POST),
”Your Comment has been saved”),

model:insert($POST)
)

else
web:redirect(”/app/model/add/”,
web:get-params($POST),

”Please fix the following errors.”)

Listing : P-R-G pattern. A controller implementing the PRG pattern. If all
validation criteria aremet, themodel’s insert function is called and a redirect header is sent.
In case the check fails, the user is redirected to the referring page.As the input parameters
have been stored in $GET, a pre-populated form may be displayed to the user again, so he
can ĕx the errors.

  BaseX Web: XQuery-driven Web Application Framework

Despite suiting XQuery’s processing model, the Post-Redirect-Get pattern comes with the
advantage of avoiding duplicate form submission in cases when a user reloads the page that
processed the POST input data.

. Evaluation: Performance & Costs of the Glue Code 

. Evaluation: Performance & Costs of the Glue Code

e BX W framework is built directly on top of BX. As such, it directly beneĕts
from, and depends on, the performance of BX’. In order to benchmark BX W,
we decided to judge the overall performance by the number of complete transactions per
second. We chose not to measure the raw performance of the underlying database system,
but the actual cost of interfacing the servlet engine with an XQuery processor. e results
for the plain execution of an XQuery expression in the local mode of BX without con-
currency is providedƭƬ to give an impression of what would technically be possible.

is synthetic benchmark is conducted with two application scenarios in mind: we bench-
mark a static view—i.e., no database interaction is used, andXQuery is only used to generate
markup—and a view that involves database interaction in order to retrieve elements and
tailor them to produce the desired output markup.

For each scenario, we benchmarked a total of . requests, increasing the number of
concurrent users each time the benchmark was invoked. e number of concurrent users
will be {, , , , , }.

.. Benchmark Scenario

e benchmarks are conducted on a machine with the following conĕguration:

Hardware iMac,; Intel Core i, , GHz;  GB Ram
Soware MacOS ..; Java .._; jetty ...v; BXW .., BX .

e HotSpot™ -server optimizations are enabled, the maximum amount of useable mem-
ory is ĕxed to 4096MB for all benchmarks. To warm up the JVM and operating system
caches, all benchmarks are run once before measuring the actual time.

ƭƬthe column BX depicts the number of requests a standalone instance of BX is able to handle

  BaseX Web: XQuery-driven Web Application Framework

Baseline

Concurrency  rq / sec

1 1475.00

10 2728.50
20 2414.81
40 2193.10

80 2401.56
160 1328.62

e baseline results are benchmarked against an emptyƭƭ
index.html document without any XQuery processing
involved in order to obtain the maximum possible num-
ber of requests per/ second. Even with  concurrent
requests, jetty handles the load well and serves around
 empty result pages per second.

Simple XQuery view

Conc.  rq / sec BX

1 409.82 5882.35
10 483.05 —
20 492.38 —
40 486.29 —
80 489.18 —
160 480.81 —

e Simple XQuery view evaluates the sequence 1 to 10
and embeds it into a layout template before sending it
back to the user. e table shows the performance re-
sults for query evaluation, embedding of the results into
the layout, and transferring the result page to the client.
e maximum number of requests served is around 
per second for  concurrent users.

XQuery viewwith Database Interaction

Conc.  rq / sec BX

1 334.39 2173.91
10 381.11 —
20 378.81 —
40 373.00 —
80 363.72 —
160 337.43 —

e XQuery view with database interaction evaluates a
sequence of book elements, stored in the BX data-
base, embeds it as {$bookname} into a tem-
plate and sends it back. e table shows the performance
for retrieving the sequence, converting it to an H
list, embedding the results into an HTML template, and
transferring the result page to the client. e maximum
number of requests served is ڐ per second for  con-
current users.

ƭƭsize zero

. Evaluation: Performance & Costs of the Glue Code 

.. Result interpretation

While we have to pay a certain prize for integrating the XQuery processor into a Servlet’s
processing pipeline, the result of  requests per second shows that the overhead is sur-
prisingly low, and could even be optimized if necessary.

ere are two major bottlenecks. e ĕrst one is an external one: jetty only serves around
. requests per second for the NOOP baseline results.

e second one, ismore interesting with regards to BXW: the actual costs introduced
for parsing the URL, checking for the availability of the corresponding view and controller
ĕles and sending the complete query to the server. is process has to be repeated for every
request and involves I/O on the machine running jetty. is process could be optimized by
introducing a caching infrastructure, that holds the fully assembled query for each unique
URL and its HTTP parameters. By doing so, we already avoid the I/O related to checking
the presence of views and controllers. is approach could eventually even be extended
to cache the query results instead of only assembled queries. is way, costly I/O could
be avoided at both ends, the Servlet engine and inside the BX database management
system.

BaseX-Web & Real World Data

In the following chapter, we will show the implementation of an application implemented
in BX W. e application will be designed around a corpus, provided in XML, which
contains library data found in the University of Konstanz. We start by rapidly bootstrap-
ping an expert retrieval system, which is particularly easy for a real-world scenario when
using our framework. We will then evaluate BX W in terms of performance and ex-
tensibility.

 Application: Bootstrapping an Expert Retrieval System with

BaseX Web

Under the patronage of “OpenAccess” universities and other public authorities are currently
in the process of setting up institutional repositories (IR). IRs collect research articles, jour-
nals and other intellectual output of an institution. ey can be seen as the single source to
access any digital asset an institution can provide. Among other things, IRs are responsible
for the preservation and archivation of the stored data. e ultimate goal, however, is to
provide public access to the material. erefore, state-of-the-art soware for running IRs
is online-based to provide open access to a worldwide audience. Obviously a sophisticated
retrieval system to tap the full potential of the digitally stored documents is crucial. On
the foundation of our architecture kickstarting such a system is not only elegant, but also
straightforward.

e Library of the University of Konstanzmaintains an institutional repository, calledKon-
stanz Online Publication System (KOPS). In order to support public access it is run as an
Online Public Access Catalog (OPAC) system. e open source soware package DSpace
provides the tools for management of digital assets and is the system behind KOPS. It is
realized as a web application and therefore suited well to be re-implemented with the help
of our architecture.

Our goal for this chapter is to demonstrate that a basic OPAC system can easily be imple-
mented by XML databasemanagement system and its extensions. BXW is the frame-
work used to develop an alternative, lightweight XML OPAC system. Given the raw data
from KOPS and nothing at hand than BX, BX FS [] and BX W, we strive to
kickstart a performant expert retrieval system with signiĕcantly less implementation effort
and architectural overhead than existing solutions.

. KOPS - An Online Public Access Catalog

According to Babu and O’Brien [] web-based online public access catalogues began to
appear in the late s. As catalogues, they demonstrate advances on traditional OPACs,

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

especially in terms of remote access by users and their potential to integratemany document
types and sources via a single interface.

Web OPACs provide the following functionality []:

• e usual features of traditional OPACs such as,
– storing bibliographic and sometimes full-text databases
– providing direct access to a library’s bibliographic database
– providing instructional help
– display of search results in readily understandable form
– sometimes remote access from the library’s location
– information about community events
– providing links to circulation ĕles, reference help etc.
– providing search through a variety of access points such as author, title, key-

word, subject, periodical title, series, class number, ISSN or ISBN, etc.
• eability to use hypertext links to facilitate navigation throughbibliographic records
• A move towards emulation of the appearance and search features similar to those

found in search engines
• Linking to full text when available
• Ability to help bring a convergence in searching of all electronic information available

through one interface, e.g., catalogues, CD-ROMS, Internet sources etc.

e Library of the University of Konstanz provides such a web-based OPAC called “Kon-
stanz Online-Publikations-System” (KOPS). e information platform is integrated in the
Network of Open Access Repositories, an initiative to support “open access to knowledge
in the sciences and humanities” [].

With the help of KOPS:

• Members of the University can publish digital documents and make them available
on the internet.

• An online search interface is available that supports simple and advanced keyword
search options as well as full-text retrieval.

. KOPS - An Online Public Access Catalog 

At the time ofwriting, KOPS contains , library entries. , entrieswere only library-
oriented metadata with no document attached, and , were available with the complete
full-text.

.. Bootstrap an XML-OPAC system

Our goal is to demonstrate that a modern XML database management system like BX
is able to implement an expert retrieval system, such as KOPS, without ever leaving the
uniĕed X technology stack.

With the help of two extensions to the XML-DBMS, namely BX FS, which allows to uni-
formly express (arbitrary) ĕle system content in XML [], and BX W, our proposed
web application framework, we expect to realize a much more simple and lean system ar-
chitecture. Conventional architectures (such as the before mentioned DSpace system) are
constructed as a combination of different products (i.e., a relational database management
system, a separate full-text index engine (such as Apache’s Lucene) and many more). Pro-
grammers and administrators have to be experts in a multitude of subcomponents. Inter-
dependencies have to be mastered and a lot of glue code, written in different languages, is
necessary to ĕnally construct the main system.

In our approach a major advantage is stemming from this fact that programmatic access to
all system components (such as full-text indexes) is provided in a consistent and transpar-
ent way through a single language, XQuery. A core idea of BX W is to establish an
application framework in which no glue code is required. Impedance mismatch can easily
be avoided since we operate on a single data model throughout the complete system stack
(data is XML, business logic is XQuery, result presentation is XHTML).

Utilizing BX FS we are able to provide a low entry barrier for the data. We load in-
formation “as is” and have no need to deĕne a data model in advance. Data is uniformly
expressed in XML.

In the following, wewill provide an overview of the steps required to kickstart a base system.
It will later on be conĕgured towards an online retrieval system.

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

.. Basic System Setup

Setting up the basic infrastructure is straight-forward. All we need is a server with Java
installed and support for the Filesystem in Userspace (FUSE) framework. Next, we setup
the BX database server and load the BX FS extension.

As mentioned the library data set consists of , publications. In principle, there are two
ways to import them into the database system.

e ĕrst and simplest approach is to just make use of the generic BX FS’ transducers
described in [].

e PDF transducer extracts content from the original regular ĕle and aggregatesmetadata,
annotations, full-text, and embedded images into a uniĕed XML representation. e orig-
inal ĕle is stored as raw data as well. Performing a bulk load of the initial data is a three step
procedure:

. Use BX FS and mount an empty database as ĕle system in userspace
. Copy the original PDFs into the database/ĕle system
. Construct an XML view of the data by utilizing BX FS’s transducers

e resulting database will contain a uniform view on themetadata, formerly available only
to dedicated programs; it will allow us to handle these data in a standardized and generic
way. roughout thewhole process, ourmapping does not contain any information speciĕc
to our use case. Instead, we extract all information as is, leaving alone any assumptions
which data we are going to need aerwards. Listing  shows how full-text of a document
is stored in the databaseƬ.

Librarians have manually processed documents in KOPS and valuable bibliographic meta-
data is available for each entry. anks to the extensible architecture of the BX FS
transducer facility, we additionally can leverage such non-standard metadata. A special-
ized transducer can be plugged into the transducer chain in order to obtain the data as
opacinfo (see Listing  on the next page).

ƬA more detailed database excerpt is shown in Appendix Listing  on page 

. KOPS - An Online Public Access Catalog 

<folder name=”fulltext”>
<folder name=”pages”>

<folder name=”page” number=”1”>
<fact name=”text”>

Interactive exploration of fuzzy clusters using Neighborgrams
Michael R.Berthold — Bernd Wiswedel — David E.Patterson

Department of Computer and Information Science,University of Konstanz,Box M712,78457 Konstanz,Germany

Data Analysis ResearchLab,Tripos Inc.,USA

Abstract
We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a
given,labeled data set.

The presented method is therefore best suited for applications where the focus of analysis
lies on a model for the minority class or for small to medium-sized data sets.

The clustering algorithm creates one dimensional models of the neighborhood for a set of patterns
[…]

</fact>

Listing : KOPS-FSML.xml: Extracted full-text from online resource.

[…]
<file name=”1896748.pdf” suffix=”pdf” st_size=”533883”>

<folder name=”.1896748.pdf.deepfs”>
<folder name=”opacinfo”>

<fact name=”pagecount”>17</fact>
<fact name=”author”>Berthold, Michael</fact>
<fact name=”author”>Wiswedel, Bernd</fact>
<fact name=”author”>Patterson, David E.</fact>
<fact name=”title”>Interactive exploration of fuzzy clusters using Neighborgrams</fact>
<fact name=”town”>Konstanz</fact>
<fact name=”publisher”>Bibliothek der Universität Konstanz</fact>
<fact name=”year”>2005</fact>
<fact name=”format”>Online-Ressource</fact>
<fact name=”note”>Article</fact>
<fact name=”signature”>|004</fact>
<fact name=”language”>Englisch</fact>
<fact name=”category”>Informatik</fact>
<fact name=”url”>http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65525</fact>
<fact name=”creation-date”>November 17, 2004 21:34:22 (UTC)</fact>
<fact name=”modification-date”>October 13, 2008 14:42:40 (UTC +02:00)</fact>

</folder>

Listing : KOPS-FSML.xml: Bibliographic metadata about online resource.

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

At this point, an XML view of the initial data set and the corresponding original ĕles are
available in the DBMS. e original KOPS data can now be queried and processed, using
a standardized, declarative API written in XQuery. We can now proceed to conĕgure our
online retrieval application. Leveraging the BX W application framework developers
can use the database to analyze, search, and discover all kinds of information at various
granularities since all assets are homogeneously represented inside the database.

.. Setting up a Project

e starting point for XQuery application development with BX W is installing the
application skeleton as depicted in Section .. on page .

Aer this, we start by deĕning the user requests our system will respond to. Second we
deĕne the internal representation of retrieval results, such that we can transform them to
XHTML aerwards. In contrast to its relational counterpart—as XQuery is a fully capable
programming language—developers experience a much higher degree of expressiveness
while at the same the need for scripting language glue code has been eliminated.

An example query conducting a search for all works that match a given key,value pattern
is given in Listing . It returns a well-deĕned type, element(file)*, for further pro-
cessing. e function accepts two arguments, a key as xs:string and its desired value

as xs:string. Now that the search functionality is deĕned, as an XQuery function, we
are ready to add its deĕnition to a controller under the framework’s supervision, located in
controllers/opac.xq.

(: Search works matching a given key/value combination: :)
declare function opac:keyValue($key, $value){

//file[.//fact[./@name eq $key and . eq $value]]
};

Listing : opac.xq— A XQuery function returning all file elements matching a speciĕc
key,value combination.

To further extend the search functions—more elaborate examples will be given in Sec-
tion .—developers will have to do nothing but add more XQuery functions to the con-
troller. Each deĕned function can also be called from other contexts. In general the con-

. KOPS - An Online Public Access Catalog 

troller deĕnes only functionalities relevant to the search process, not the ĕnal result repre-
sentation.

We aerwards deĕne how the resulting sequence of ĕle elementsƭ will be presented to the
user in (X)HTML. To do so we provide the framework with a view. is view will not
only request and transform the retrieval results, it is as well a unique, machine-accessible
resource, which provides an interface to underlying data.

With respect to the deĕnition of opac:keyValuewe create a view, views/opac/simple-search.xq
that:

• receives the search input via HTTP Parameters,
• invokes opac:keyValue to extract the relevant data from the database,
• iterates over the result sequence and transforms the ĕle elements to browser-friendly

(X)HTML

By convention our view is nowaccessible at http://xmlopac/app/opac/simple-search.

e resulting view code is depicted in Listing . is generic approach allows us to uni-
formly handle any sequence of ĕle elements, as long as they share common characteristics,
no matter what their origin was.

for $media in opac:keyValue($field, $value)
return
<div>
<h2>{$media//fact[@name eq ”title”]/text()}</h2>

<p>
written by {$media//fact[@name eq ”author”]/text()}
on {$media//fact[@name eq ”creationdate”]/text()}
</p>

</div>

Listing : simple-search.xq — e result page view, invoking a controller function.

Figure . depicts how the components work together to form the basic infrastructure.

ƭi.e., element(file)*

http://xmlopac/app/opac/simple-search

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

Model kops-fsml.xml
@۔<
�ILOH QDPH ۍ��������SGIۍ VXIIL[ۍSGIۍ VWBVL]H ۍ������ۍ!

�IROGHU QDPH ۍ���������SGI�GHHSIVۍ!
�IROGHU QDPH ۍRSDFLQIRۍ!

�IDFW QDPH ۍSDJHFRXQWۍ!����IDFW!
�IDFW QDPH ۍDXWKRUۍ!%HUWKROG��0LFKDHO��IDFW!
�IDFW QDPH ۍDXWKRUۍ!:LVZHGHO��%HUQG��IDFW!
�IDFW QDPH ۍDXWKRU3!ۍDWWHUVRQ��'DYLG�(���IDFW!
�IDFW QDPH ۍWLWOHۍ!,QWHUDFWLYH�H[SORUDWLRQ�RI�IX]]\�FOXVWHUV�XVLQJ�1HLJKERUJUDPV��IDFW!
�IDFW QDPH ۍWRZQۍ!.RQVWDQ]��IDFW!
�IDFW QDPH ۍSXEOLVKHUۍ!%LEOLRWKHN�GHU�8QLYHUVLW¦W�.RQVWDQ]��IDFW!
�IDFW QDPH ۍ\HDUۍ!������IDFW!
�IDFW QDPH ۍIRUPDW2!ۍQOLQH�5HVVRXUFH��IDFW!
�IDFW QDPH ۍQRWHۍ!$UWLFOH��IDFW!
�IDFW QDPH ۍVLJQDWXUHۍ!_�����IDFW!
�IDFW QDPH ۍODQJXDJHۍ!(QJOLVFK��IDFW!
�IDFW QDPH ۍFDWHJRU\ۍ!,QIRUPDWLN��IDFW!
�IDFW QDPH ۍXUOۍ!KWWS���QEQ�UHVROYLQJ�GH�XUQ�QEQ�GH�EV]�����RSXV��������IDFW!
�IDFW QDPH ۍFUHDWLRQ�GDWH1!ۍRYHPEHU��������������������87&���IDFW!
�IDFW QDPH ۍPRGLILFDWLRQ�GDWH2!ۍFWREHU��������������������87&����������IDFW!

��IROGHU!
�IROGHU QDPH ۍIXOOWH[Wۍ!

�IROGHU QDPH ۍSDJHVۍ!
�IROGHU QDPH ۍSDJHۍ QXPEHU ۍ�ۍ!

�IDFW QDPH ۍWH[Wۍ!
,QWHUDFWLYH�H[SORUDWLRQ�RI�IX]]\�FOXVWHUV�XVLQJ�1HLJKERUJUDPV
0LFKDHO�5�%HUWKROGۅ��%HUQG�:LVZHGHOۅ��'DYLG�(�3DWWHUVRQ

'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH�8QLYHUVLW\�RI�.RQVWDQ]�%R[�0����������.RQVWDQ]�*HUPDQ\

'DWD�$QDO\VLV�5HVHDUFK/DE�7ULSRV�,QF��86$

$EVWUDFW
:H�GHVFULEH�DQ�LQWHUDFWLYH�PHWKRG�WR�JHQHUDWH�D�VHW�RI�IX]]\�FOXVWHUV�IRU�FODVVHV�RI�LQWHUHVW�RI�D
JLYHQ�ODEHOHG�GDWD�VHW�

7KH�SUHVHQWHG�PHWKRG�LV�WKHUHIRUH�EHVW�VXLWHG�IRU�DSSOLFDWLRQV�ZKHUH�WKH�IRFXV�RI�DQDO\VLV
OLHV�RQ�D�PRGHO�IRU�WKH�PLQRULW\�FODVV�RU�IRU�VPDOO WR�PHGLXP�VL]HG�GDWD�VHWV�

7KH�FOXVWHULQJ�DOJRULWKP�FUHDWHV�RQH�GLPHQVLRQDO�PRGHOV�RI�WKH�QHLJKERUKRRG�IRU�D�VHW�RI�SDWWHUQV
@۔<

��IDFW!
��IROGHU!
�IROGHU QDPH ۍSDJHۍ QXPEHU ۍ�ۍ!

�IDFW QDPH ۍWH[W۔<!ۍ@��IDFW!
��IROGHU!
@۔<

��IROGHU!
��IROGHU!

��IROGHU!
��ILOH!

Controller opac.xq

View simple-search.xq

Pass Results

Request Data

YLHZV�RSDF�VLPSOH�VHDUFK�[T

•
•
•

KWWS���ORFDOKRVW�DSS�

RSDF�VLPSOH�VHDUFK

RSDF�NH\9DOXH

ILOH

IRU �PHGLD LQ RSDF�NH\9DOXH��ILHOG� �YDOXH�
UHWXUQ
�GLY!
�K�!^�PHGLD��IDFW>#QDPH HT !��K��`��WH[W@ۍWLWOHۍ

�S!
ZULWWHQ�E\�^�PHGLD��IDFW>#QDPH HT `���WH[W@ۍDXWKRUۍ
RQ�^�PHGLD��IDFW>#QDPH HT `���WH[W@ۍFUHDWLRQGDWHۍ
��S!

��GLY!

VLPSOH�VHDUFK�[T

RSDF

NH\�YDOXH

�ILOH��!

NH\ YDOXH

FRQWUROOHUV�RSDF�[T

���6HDUFK�ZRUNV�PDWFKLQJ�D�JLYHQ�NH\�YDOXH
FRPELQDWLRQ����

GHFODUH IXQFWLRQ RSDF�NH\9DOXH��NH\�
�YDOXH�^

��ILOH>���IDFW> ��#QDPH HT �NH\ DQG
� HT �YDOXH@@

`�

RSDF�[T ILOH
NH\�YDOXH

http://localhost/app/opac/index?field=author&value=Berthold,%20Michael
;0/�²¬23$&�

KNIME: The Konstanz Information MinerKNIME: The
Konstanz Information Miner
written by Michael R. Berthold, Nicolas Cebron, Fabian Dill, Giuseppe Di Fatta, Thomas R. Gabriel,
Florian Georg, Thorsten Meinl, Peter Ohl, Christoph Sieb, Bernd Wiswedel on August 01, 2006
13:09:52 (UTC)

Towards Associative Information AccessTowards
Associative Information Access
written by Michael R. Berthold, Andreas Nürnberger on March 13, 2006 17:52:22 (UTC +01:00)

Constructing Fuzzy Graphs from ExamplesConstructing
Fuzzy Graphs from Examples
written by Michael R. Berthold, Klaus-Peter Huber on April 24, 1999 18:27:41 (UTC)

F .: e core components of the web architecture:
Model contains the complete data that has been extracted from KOPS.
View represents an URL and coordinates user requests to parametrized XQuery
function calls.
Controller holds the logic necessary to retrieve and return the search results.

e screenshot shows the computed result rendered inside a browser when opening
http://xmlopac/app/opac/simple-search?field=author&value=Berthold,
%20Michael

http://xmlopac/app/opac/simple-search?field=author&value=Berthold,%20Michael
http://xmlopac/app/opac/simple-search?field=author&value=Berthold,%20Michael

. Evaluation Setup 

. Evaluation Setup

e following evaluation has been conducted in the scope of [] and puts BX W to
the test. In the previous sectionwe have shown how to quickly setup a base infrastructure to
drive a search and retrieval system. We now want to put our system to the test and examine
if it’s equally fast when it comes to the evaluation of common search requests.

To conduct our real-world data study, we obtained a full dump of all data available online
in KOPS and transformed it into an XML representation. As already shown, the resulting
XML database instance contains all entries of the original data, the bibliographic metadata
and, whenever available, the full-texts of the actual PDF documents.

Some key characteristics for the input data and the resulting database are displayed in Ta-
ble ..

Input statistics Index statistics
Size of input data 17 GB Size of full-text index 614 MB
 ĕles 8,149  full-text index entries 1,984,734
 PDF pages 254,299  XML nodes 3,671,331
 authors 25,793  <fact/> elements 668,191

T .: Statistics on the original KOPS library resources and the thereof constructed database
kops-fsml.xml

All queries were benchmarked against BX Version . with the following settings: java
-server -Xmx4096m -Xms1024m. To make results more reliable, we restarted BX be-
fore each test, then every query was run  times to warm the caches. Next, the actual
measurements were performed by running the query again for  times and storing the av-
erage response times, which include all evaluation steps (parsing, compilation, evaluation
of the query, and serialization of the results).

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

. Queries and Performance Results

.. Keyword Search

Due to its simplicity, keyword search has turned out to be one of the most dominant ap-
proaches for expressing one’s information needs on the internet. Keywords are ĕlled in
by users into search ĕelds, then matched against inverted indexes for an underlying text
corpus, and all documents are returned that contain the keywords and potentially related
terms. Stemming the text corpus or enhancing the full-text with thesauri and language
speciĕc features can be used to derive related terms.

As a consequence, high performance in keyword search scenarios is crucial for a system’s
acceptance, and the full-text extension of XQuery [] provides a standardized way of for-
mulating such requests for XML. A keyword search in XQuery Full-Text that retrieves rel-
evant document ĕles can, for example, be expressed as shown in Listing .

Q: Keyword search using XQuery Full-Text

let $words := (”problem”, ”properties”)
return
//*[text() contains text {$words} all words] /ancestor::file

Listing : A keyword search function for the OPAC XQuery module (opac.xq).

So as to benchmark the keyword search performance, we randomly selected  keywords
of the text corpus and performed a keyword search for all possible combinations of those
 words. Each query was run  times against a document corpus containing , ,
, ,  and  source documents.

R. Table . on the facing page shows the runtime statistics for each of the six data-
base instances. e results can be read as follows: For the largest database containing 
documents all

(10
2

)
= 45 keyword search queries could be evaluated in a total time of

706.32ms. e fastest query took 8.92ms and the slowest 36.75ms. On average the evalu-
ation could be performed in 15.70ms. Adding up all matching documents this results in a

. Queries and Performance Results 

total number of 27, 169 hits (the single number of hits for each query can be derived from
Table .).

Corpus size      
Total time , , , , , ,
Min , , , , , ,
Max , , , , , ,
AVG , , , , , ,

Total  of Hits      

T .: Runtime statistics for the keyword search queries against six differently sized corpora.

Figure . is showing two graphs depicting these results again. For each of the six database
instances on the abscissa it shows

(a) how many documents have been evaluated as matches and
(b) how much time this evaluation took on average in ms.

��

�����

������

������

������

������

������

��
�
��
�

��
��

��
��

��
��

��
��

��

��

���

���

���

�
�
�
�
�
��
�
��
�
��
�

�
�
�
��
�
�
��
�
�
�
�
��
�
�
��
��

�
��
��
��

�
�

�������������������

��������������������������
������������������������

F .: Average runtime in ms (red line/right y-axis) to evaluate 45 keyword queries on each of
the six corpora (x-axis). Blue line/le y-axis shows the accumulated number of match-
ing documents.

Detailed performance results for the  source documents are shown in Table . on
the next page. It depicts all 45 possible combinations of the keywords in question, and
shows the absolute number of hits and the time needed for returning the results of particular
keyword combinations.

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

germany problem change science formation situation space properties material power

germany —  / .  / .  / .  / .  / .  / .  / .  / .  / .
problem — —  / .  / .  / .  / .  / .  / .  / .  / .
change — — —  /   / .  / .  /   / .  / .  / .
science — — — —  / .  / .  / .  / .  / .  / .

formation — — — — —  / .  / .  / .  / .  / .
situation — — — — — —  / .  / .  / .  / .
space — — — — — — —  / .  / .  / .

properties — — — — — — — —  / .  / .
material — — — — — — — — —  / .
power — — — — — — — — — —

T .: Number of results and time for generating the results for a keyword search against the
 ĕle database.

A: Due to the exploitation of the full-text indexes, all query runtimes scale linearly
for the tested database instances. Index lookup itself is neglectable and the most limiting
factor in terms of performance is the number of the results, as this determines the amount of
data to be serialized. Hence, very large corpora may be searched yielding very fast response
times. In our speciĕc case, the slowest query, searching for the keywords germany and
science, executes in 36.75ms on the largest corpora yielding . result documents.

.. Phrase Search

ere are numerous cases when plain keyword searches alone are too limiting. Phrase
search is a highly needed functionality for most current retrieval systems. It enables users
to search for, e.g., compound names, terms and sentences containing words in a ĕxed or-
der. Phrase searching removes noise, added by documents that contain the keywords but
not necessarily in the order a user wanted.

Table . lists phrases of lengths two to ĕve, which have been manually selected from the
corpus. e phrases themselves consist of keywords that were chosen in a way such that
their respective number of index entries covered a range from rare to frequent occurrence.
e runtime statistics show a much higher variance than in the previous test case: query
runtimes do not increase with the number of hits; an explanation will be given in the analy-
sis. An XQuery script, shown in Listing  on page , has been used to generate the results
in Table ..

. Queries and Performance Results 

Q: Phrase search usingXQuery Full-Text //*[text() contains text ’with respect
to’ phrase]

R. Table . shows the conducted phrase searches and their average execution time
for ten runs. For each phrase the number of matching nodes is given, and each phrase’s
keyword is listed with the number of occurrences in the Full-Text index.

T(ms)  matching node chosen phrase, with number of index entries per keyword

Q  0.45 0 minor: 2218; drawback: 450
Q  1.25 2 major: 8553; deĕciency: 368
Q  2.88 79 particularly: 4800; strong: 9900
Q  5.33 18 special: 5669; interest: 7380; group: 15147
Q  6.10 51 major: 8553; contribution: 4139
Q  11.10 593 Related: 17695; Work: 17362
Q  30.36 1107 Experimental: 12858; results: 36192
Q  42.57 2 Stabilisieren: 203; konnte: 18118; sich: 73862; dieses: 18674; System:

28553
Q  81.98 50 We: 53641; conclude: 2958; with: 102476
Q  167.86 48 I: 87473; would: 19880; like: 17708; to: 119519; express: 2142
Q  222.91 8571 with: 102476; respect: 10168; to: 119519
Q  248.23 5 major: 8553; advantage: 3319; of: 148306; our: 26799
Q  276.81 2949 As: 96236; shown: 23813; in: 228856
Q  367.56 5105 in: 228856; contrast: 12264; to: 119519

T .: Phrase searches: e average runtime per phrase query is shown. Queries – clearly
stand out in terms of time taken.

A. As shown in Table . more than half of the selected phrases evaluate in less
than ms due to exploitation of the full-text index.

While most phrases are evaluated in interactive time, we were interested in the limits of the
presented architecture, thus we considered the phrases (Q-Q) that took much longer
than the other queries, c.f. Figure ., for more thorough analysis.

As the results indicate, there is no direct relationship between the query times and the num-
ber of results. Instead, queries with large result setsmay be evaluated fast while other, slower
evaluated queries yield much smaller result sets.

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

 0
 50

 100
 150
 200
 250
 300
 350
 400

minor drawback

major deficiency

particularly strong

special interest group

major contribution

Related W
ork

Experimental results

Stabilisieren konnte sich dieses System

W
e conclude with

I would like to express

with respect to

major advantage of our

As shown in

in contrast to

Se
ar

ch
 ti

m
e

in
 m

s

Search phrases

phrase search time in ms

0 2 79 18 51 593 1107 2
50

48
8571 5

2949

5105

F .: Phrase search: Result graph showing the average runtime needed to search for each
phrase and the total number of matching nodes.

One general observation, which can be derived from the resulting times is that phrases con-
taining a frequent word (i.e., stopwords that happen to occur frequently in natural language
corpora or proper names) tend to be evaluated an order of amagnitude slower than phrases
made up only of rare words.

Increasing the total number of keywords will pose an additional penalty on the runtime; as
each keyword adds an intermediate result list to the workload.

is is mainly due to BX’ evaluation strategy:

• all index hits for each keyword are evaluated as intermediate result lists containing
node ids and

• subsequently merged in order to produce a complete result set.

us, in the worst case, lots of large intermediate result lists per keyword have to be sorted
and merged, to oen produce only very small ĕnal results.

. Queries and Performance Results 

Possible solutions to overcome the problems with large intermediate result sets could in-
volve the following suggestions:

• e pipelining concept could be pushed down to the index access operation: in-
stead ofmaterializing all resulting node references in one run, they could be returned
block-wise or one by one. is way, only those nodes will be requested that are actu-
ally required by a query, and retrieval can be skipped if it is clear that the remaining
references will not be part of the ĕnal result.

• e pipelined retrieval could also be utilized to skip node retrieval whenever a query
only requests parts of the result. As an example, a limitation to the ĕrst n results
means that retrieval can be skipped as soon as those results have been evaluated.

.. Boolean Search

Boolean search is another basic technique supported bymany retrieval systems, and consid-
ered in the context of this evaluation. It introduces the operators AND, OR plus NOT, which
allow users to exclude or include terms, or combine them in an arbitrary fashion. ese
operators are commonly used to cut down result sizes and ĕlter unwanted hits from result
listings.

Q. Boolean search using XQuery Full-Text
//*[text() contains text ”germany” ftand ftnot ”problem”]/ancestor::file

R Query results for the fully-sized OPAC corpus are depicted in Table .. on the
next page.

A. When compared to the keyword search shown before, we see a linear degra-
dation in performance. is again is explained by the fact that possibly large intermediate
results will have to be merged by BX in order to produce the result set. Once more the
queries perform fast enough regarding interactivity constraints. An upper bound in our ex-
ample is set by query change∧¬(problem) yielding , result nodes in 175.13ms.

  Application: Bootstrapping an Expert Retrieval System with BaseX Web

w1∧¬(w2) germany problem change science formation situation space properties material power

germany – 
. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms

problem 
. ms

– 
. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms

change 
. ms


. ms

– 
. ms


. ms


. ms


. ms


 ms


 ms


. ms

science 
. ms


. ms


. ms

– 
. ms


. ms


. ms


. ms


. ms


. ms

formation 
. ms


. ms


. ms


. ms

– 
. ms


. ms


. ms


. ms


. ms

situation 
. ms


. ms


. ms


. ms


. ms

– 
. ms


. ms


. ms


. ms

space 
. ms


. ms


. ms


. ms


. ms


. ms

– 
. ms


. ms


. ms

properties 
. ms


. ms


. ms


. ms


. ms


. ms


. ms

– 
. ms


. ms

material 
. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms

– 
. ms

power 
. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms


. ms

–

T .: Boolean search performance results and hits. Each combination of two keywords has
been executed against the database.

��

������

�������

�������

�������

�������

�������

��
�
��
�

��
��

��
��

��
��

��
��

��

���

���

���

���

����

����

����

����

����

�
�
�
�
�
��
�
��
�
��
�

�
�
�
��
�
�
��
�
�
�
�
��
�
�
��
��

�
��
��
��

�
�

�������������������

��������������������������
������������������������

F .: Average runtime for the boolean full-text queries, ran against six different sized corpora.

. Summary

e previous observations have shown that the X-technology stack is ready to cope with
state-of-the-art requirements and able to deliver retrieval infrastructure needed to build
even complex systems. XMLDBMSmaybe consideredmature enough to drive production-
ready retrieval system.

Yet XQuery with its various extensions is capable of delivering more than just state-of-the-
art: due to the hierarchical nature of XML and its ability to contain structured as well as

. Summary 

unstructured data, users are able to exploit these characteristics in order to improve the rele-
vance of their search results. e expressiveness of the language can be applied to numerous
problems. To give an idea of what kind of questions may be answered, consider a search
for documents, which contain the words “substrate” & “transformation” in a maximum
distance of at most  words, followed by another page containing the word “compound”.

(: Exploiting structural and textual proximity. :)
let $words:= (”substrate”, ”transformation”),

$following := ”compounds”
return
//*[text() contains text {$words} distance at most 4 words

and
following -sibling::*/text() contains text {$following}

]/ancestor::file

Listing : XQuery example exploiting structure and textual proximity.

Skilled experts can steer the system from within a single language. XQuery gives transpar-
ent access to underlying system components such as the full-text engine (hardly to achieve
in a traditional general-purpose system) and allows implementers to work directly on the
underlying data.

All of this can be done in a single domain speciĕc technology stack reducing the complexity
of both, system components involved and technologies to be mastered by developers. B-
X W sprung from the desire to develop graphical user interfaces and user applications
that do not depend on the internal APIs of a database, such as, e.g., the native visualizations
of BaseX.

 Conclusion & Future Work

Implementing and designing BX W was an interesting experience, ĕrst and foremost
for actually working with XML instead of only using it in parts of the application.

Conclusion

e examinations and implementation ultimately led to an infrastructure that allows devel-
opers to build, deploy and run data-driven applications in a pure XML-technology stack.
Development is conducted in a high-level, functional language, and provides fully capable
database support. Compared to the status-quo, complex modeling decisions will not nec-
essarily lead to a bloated system architecture, but instead still allow developers to concisely
express what kind of data they are interested in.

BXW became a powerful web application framework, ready to run expert search and
retrieval systems on a uniform technology stack and eliminates the need for a multitude of
different languages, paradigms and glue components. Besides, implementing web services,
providing data for other applications, becomes a breeze: it only involves creating new views,
which work with the very same XQuery controllers but serialize their results in XML or
JSON instead of (X)HTML as before.

Kaufmann and Kossmann concluded their work “Developing an Enterprise Web Applica-
tion in XQuery” with the words:

“Today, the biggest concern in adopting this approach [using the uniformWC
technology stack (author’s note)] is that there are no mature application servers
available, but we believe that the situation will change soon in this regard. […]
In the future, more experience with other applications [others, than the evalu-
ated demo application in the paper (author’s note)] is needed.”

Kaufmann and Kossmann in []

  Conclusion & Future Work

BX W is our contribution regarding these concerns. Even though the framework
still lacks a little polishing and some portions of convenience code, such as fully capable
scaffolding, extension libraries to handle authentication and email, we are conĕdent that
implementing such features inXQuerymoduleswill even broadenBXW’s application
scenarios. BX W—as a lightweight and highly extensible framework—has already
proven its capabilities, in production and teaching.

Future Work

BX W is also available as a public open source project on GitHub and contributors
are welcome to join.

e further development will have to take place mainly in two areas: our primary goal is
establishing more libraries to make day-to-day developer tasks easier. Sure enough setting
up an application inside BX W is easy, yet it requires profound knowledge of XQuery
and XML technologies in order to get started right away. All of these libraries are to be
developed as EXPath modules, and as such their use is not limited to BX W. Such
extensions will as well be beneĕcial for the overall feature richness of BX. e lack of
extensions modules, for a rather young language like XQuery, is also very present in the
community and actively addressed with efforts such as EXPath or EXQuery. As such open
source implementers and commercial XQuery processors are highly interested in deĕning
standard toolkits, ready to use even in different applications. For now, we are conĕdent that
eventually this problem will be solved.

e second area we are going to concentrate on, is a tighter integration of BX W
with BX’ core APIs. Although momentarily the clear distinction of BX W being
only yet another database client has its conceptual merits, we do believe that an additional,
more tight integration will be beneĕcial regarding performance. is might as well fos-
ter more synergies with BX’ new RESTful XQuery API, proposed by Retter in [], in
order to build service-oriented applications. Joining this path of development one might
even consider making our view completely passive and only inject data for a given view via
annotations. Another area of interest is caching: as depicted in Section  on page  even in
very dynamic scenarios we oen face parts of a page that do not change. With this observa-



tions in mind we already ran ĕrst experiments, using memcachedƬ and Project Voldemortƭ
to provide server side caching. e results have already been promising and showed big
performance gains for the scenarios benchmarked.

Ƭhttp://memcached.org/
ƭa pure Java distributed key-value store http://project-voldemort.com/

http://memcached.org/
http://project-voldemort.com/

 Attachments

<documents>
<document>

<title>Hello World</title>
<paragraph>This is the first paragraph</paragraph>
<paragraph>This is the second paragraph</paragraph>

</document>
<document>

<title>Hello Universe</title>
<paragraph>This is the first paragraph</paragraph>
<paragraph>This is the second paragraph</paragraph>

</document>
</documents>/child::document[child::title = ”Hello World”]

Listing : XPath example, showing the hierarchical navigation capabalities. No shorthand
notation has been used to more closely resemble the explanations given in Section .. on
page . /child::document[child::title = ”Hello World”]

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”>
<xs:element name=”person”>

<xs:complexType>
<xs:sequence>

<xs:element name=”name” type=”xs:string”/>
<xs:element name=”dob” type=”xs:date”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Listing : XML Schema deĕning a simple model for a complex type person consisting of
a name and a date of birth. Person is a complex type that aggregates the simple types dob
and name.

  Attachments

module namespace web=”http://basex.org/lib/web”;
(:~
: Sets the content type
: @param $type the content type

:)
declare function web:content-type($type as xs:string){};
(:~
: Disable caching for the current request.

:)
declare function web:no-cache(){};
(:~
: Redirects the user to a given location,
: saves a message that is retrievable via web:flash()
: @param $location URI to redirect to
: @param $message system flash message

:)
declare function web:redirect($location as xs:string,(:…:)){};
(:~
: Retrieves the message saved in the current
: session flash cookie ($COOKIE(’flash’)) and deletes this cookie afterwards.

:)
declare function web:flash() { (:…:)};
(:~
: Sets a cookie with the specified parameters.
: @param $name the cookie name
: @param $value the cookie value
: @param $expires expires in seconds
: @param $path the cookie path

:)
declare function web:set-cookie($name (:…:)) {};
(:~
: Returns the cookie with name $name.
: Wrapper for: $COOKIE($name)
: @param $name name of the cookie

:)
declare function web:get-cookie($name) { (:…:)};

Listing : e XQuery web module



[…]
<file name=”1896748.pdf” suffix=”pdf” st_size=”533883”>

<folder name=”.1896748.pdf.deepfs”>
<folder name=”opacinfo”>

<fact name=”pagecount”>17</fact>
<fact name=”author”>Berthold, Michael</fact>
<fact name=”author”>Wiswedel, Bernd</fact>
<fact name=”author”>Patterson, David E.</fact>
<fact name=”title”>Interactive exploration of fuzzy clusters using Neighborgrams</fact>
<fact name=”town”>Konstanz</fact>
<fact name=”publisher”>Bibliothek der Universität Konstanz</fact>
<fact name=”year”>2005</fact>
<fact name=”format”>Online-Ressource</fact>
<fact name=”note”>Article</fact>
<fact name=”signature”>|004</fact>
<fact name=”language”>Englisch</fact>
<fact name=”category”>Informatik</fact>
<fact name=”url”>http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65525</fact>
<fact name=”creation-date”>November 17, 2004 21:34:22 (UTC)</fact>
<fact name=”modification-date”>October 13, 2008 14:42:40 (UTC +02:00)</fact>

</folder>
<folder name=”fulltext”>

<folder name=”pages”>
<folder name=”page” number=”1”>

<fact name=”text”>
Interactive exploration of fuzzy clusters using Neighborgrams
Michael R.Berthold — Bernd Wiswedel — David E.Patterson

Department of Computer and Information Science,University of Konstanz,Box M712,78457 Konstanz,Germany

Data Analysis ResearchLab,Tripos Inc.,USA

Abstract
We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a
given,labeled data set.

The presented method is therefore best suited for applications where the focus of analysis
lies on a model for the minority class or for small to medium-sized data sets.

The clustering algorithm creates one dimensional models of the neighborhood for a set of patterns
[…]

</fact>
</folder>
<folder name=”page” number=”2”>

<fact name=”text”>[…]</fact>
</folder>
[…]

</folder>
</folder>

</folder>
</file>

Listing : A single document inside the KOPS database.

  Attachments

<phrase>
<search>minor drawback</search>
<ms>0.45</ms>
<hits>0</hits>
<index>

<ftcount name=”minor”>2218</ftcount>
<ftcount name=”drawback”>450</ftcount>

</index>
</phrase>
<phrase>

<search>major deficiency</search>
<ms>1.25</ms>
<hits>2</hits>
<index>

<ftcount name=”major”>8553</ftcount>
<ftcount name=”deficiency”>368</ftcount>

</index>
</phrase>
<phrase>

<search>Stabilisieren konnte sich dieses System</search>
<ms>42.57</ms>
<hits>2</hits>
<index>

<ftcount name=”Stabilisieren”>203</ftcount>
<ftcount name=”konnte”>18118</ftcount>
<ftcount name=”sich”>73862</ftcount>
<ftcount name=”dieses”>18674</ftcount>
<ftcount name=”System”>28553</ftcount>

</index>
</phrase>
<phrase>

<search>major advantage of our</search>
<ms>248.23</ms>
<hits>5</hits>
<index>

<ftcount name=”major”>8553</ftcount>
<ftcount name=”advantage”>3319</ftcount>
<ftcount name=”of”>148306</ftcount>
<ftcount name=”our”>26799</ftcount>

Listing : XML fragment depicting the results of the benchmarks in Section .. on
page .



declare function local:find($p as xs:string){
//*[text() contains text {$p} phrase]

}
let $phrases:= (”minor drawback”,

”major deficiency”,
”major contribution”,
”particularly strong”,
”special interest group”,
”Related Work”,
”Experimental results”,
”Stabilisieren konnte sich dieses System”,
”We conclude with”,
”I would like to express”,
”major advantage of our”,
”with respect to”,
”As shown in”,
”in contrast to”

)

for $phrase in $phrases
let

$hits := count(local:find($phrase)),
$ms := util:ms(local:find($phrase))

order by $hits
return <phrase>{

<search>{$phrase}</search>,
<ms>{$ms}</ms>,
<hits>{$hits}</hits>,
<index>{

for $w in tokenize($phrase,” ”)
return

<ftcount name=”{$w}”>{
count(db:fulltext(., $w))

}</ftcount>
}</index>

}</phrase>

Listing : Functions to benchmark the Phrase Search performance.

List of listings

 Ruby on Rails Model example. 
 GWT/Java Model example. 
 GWT/JavaScript Model example, the source code is highly optimized and

rather not intended for humans to read . 
 SproutCore Javascript Model example . 
 SQL: Retrieving a list of documents . 
 SQL:Retrieving a list ofwholedocuments by implicitly joining theDOCUMENT

and PAGE relations . 
 An XQuery example showing some of the unique concepts XQuery and

the XDM provide: We deĕne a function, even-squares that accepts a se-
quence of integers as its input, and returns an XML fragment. e
FLWOR expression inside the function body iterates through each integer,
skipping the odd ones, and constructs a new element containing the
current integer’s square. is sequence of s is then wrapped inside
an and returned. On this result sequence we apply the XPath expres-
sion /li, to select each of the constructed li elements and compute their
sum. 

 XML Fragment notifying the servlet to add a cookie to the response. An
excerpt of the implemented functions may be found in Listing  in the
Appendix . 

 BXW view, serializing its output to JSON.e result will be serialized
as [”person”, [”name”, ”John XML”], [”dob”, ”1998-02-10”]] . 

 P-R-G pattern. A controller implementing the PRG pattern.
If all validation criteria are met, the model’s insert function is called and
a redirect header is sent. In case the check fails, the user is redirected to
the referring page.As the input parameters have been stored in $GET, a pre-
populated form may be displayed to the user again, so he can ĕx the errors. 

 KOPS-FSML.xml: Extracted full-text from online resource. 
 KOPS-FSML.xml: Bibliographic metadata about online resource. 
 opac.xq — A XQuery function returning all file elements matching a

speciĕc key,value combination. 
 simple-search.xq — e result page view, invoking a controller function. 
 A keyword search function for the OPAC XQuery module (opac.xq). . . . 
 XQuery example exploiting structure and textual proximity. 

 XPath example, showing the hierarchical navigation capabalities. No short-
hand notation has been used to more closely resemble the explanations
given in Section .. on page . /child::document[child::title =
”Hello World”] . 

 XML Schema deĕning a simplemodel for a complex type person consisting
of a name and a date of birth. Person is a complex type that aggregates the
simple types dob and name. 

 e XQuery web module . 
 A single document inside the KOPS database. 
 XML fragment depicting the results of the benchmarks in Section .. on

page . 
 Functions to benchmark the Phrase Search performance. 

List of Figures

. Model-View-Controller Overview . 
. GWT example: a mail client running inside the browser. 
. SproutCore in action on iWork.com, showing an Office document. 

. Sausalito’s integrated application stack. 
. System overview: BX W’s mode of operation 
. System overview: BX W building blocks 
. Sketch of the architectural model of traditional web applications compared

to BX W. e BX W application server provides a complete
runtime to host XQuery built web applications, while only talking the na-
tive languages of the web . 

. Full request-response cycle: accessing an URL triggers the construction
step to assemble the complete XQuery for submission. is query is then
executed, i.e., database elements are fetched and processing is done, and
returns its result sequence. is sequence is then embedded into an layout
and streamed to the client. 

. e scaffolding process chain: given an arbitraryXML fragment, the generic
form generator tries to ĕnd a schema ĕle containing possible type infor-
mation. e fragment is recursively processed in a depth-ĕrst traversal.
For each element and its attributes, the generator returns HTML form ele-
ments, populated with the given values, labels and possibly type information. 

. e core components of the web architecture:
Model contains the complete data that has been extracted from KOPS.
View represents an URL and coordinates user requests to parametrized
XQuery function calls.
Controller holds the logic necessary to retrieve and return the search re-
sults.

e screenshot shows the computed result rendered inside a browser when
opening http://xmlopac/app/opac/simple-search?field=author&value=
Berthold,%20Michael . 

. Average runtime inms (red line/right y-axis) to evaluate 45 keyword queries
on each of the six corpora (x-axis). Blue line/le y-axis shows the accumu-
lated number of matching documents. 

. Phrase search: Result graph showing the average runtime needed to search
for each phrase and the total number of matching nodes. 

. Average runtime for the boolean full-text queries, ran against six different
sized corpora. 

Bibliography

[] msec, Sausalito: XQuery in the Cloud, . [Online]. Available: http://www.
28msec.com/documentation/overview (visited on //).

[] R. Babu and A. O’Brien, “Web OPAC interfaces: an overview,” in e Electronic Li-
brary, vol. , , pp. –. : 10.1108/02640470010354572.

[] A.Berglund, S. Boag,D.Chamberlin,M. Fernández,M.Kay, J. Robie, and J. Siméon,
XML Path Language (XPath) ., . (visited on //).

[] A.Berglund,M. Fernández, A.Malhotra, J.Marsh,M.Nagy, andN.Walsh,XQuery
. andXPath .DataModel (XDM) (SecondEdition), . (visited on //).

[] T. Berners-Lee and R. Cailliau, “Worldwideweb: proposal for a hypertext project,”
European Particle Physics Laboratory (CERN), . [Online]. Available: http://
www.w3.org/Proposal.html.

[] T. Berners-Lee andN.Mendelsohn, “e rule of least power,”WorldWideWeb Con-
sortium, TAG Finding, . [Online]. Available: http://www.w3.org/2001/tag/
doc/leastPower-2006-02-23.

[] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska, “Building a
database on S,” in SIGMOD Conference, J. T.-L. Wang, Ed., ACM, , pp. –
, : ----.

[] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Extensible
markup language (XML) ., . [Online]. Available: http://www.w3.org/TR/
REC-xml/ (visited on //).

[] S. Burbeck, “Applications programming in smalltalk- (tm): How to use model-
view-controller (mvc), ,” . [Online]. Available: http://st-www.cs.uiuc.
edu/users/smarch/st-docs/mvc.html.

[] P. Case, M. Dyck, M. Holstege, S. Amer-Yahia, C. Botev, S. Buxton, J. Doerre, J.
Melton, M. Rys, and J. Shanmugasundaram, XQuery and XPath Full Text ., .
[Online]. Available: http://www.w3.org/TR/xpath-full-text-10/ (visited on
//).

http://www.28msec.com/documentation/overview
http://www.28msec.com/documentation/overview
http://dx.doi.org/10.1108/02640470010354572
http://www.w3.org/Proposal.html
http://www.w3.org/Proposal.html
http://www.w3.org/2001/tag/doc/leastPower-2006-02-23
http://www.w3.org/2001/tag/doc/leastPower-2006-02-23
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.w3.org/TR/xpath-full-text-10/

[] D. C. Fallside and P. W. S. Edition), XML Schema Part : Primer Second Edition,
. [Online]. Available: http://www.w3.org/TR/xmlschema-0/ (visited on
//).

[] D. C. Fallside and P. Walmsley, XML Schema Part : Primer Second Edition, .
[Online]. Available:http://www.w3.org/TR/xmlschema-0/ (visited on //).

[] M.Fowler,Patterns of EnterpriseApplicationArchitecture. Boston,MA,USA:Addison-
Wesley Longman Publishing Co., Inc., , : .

[] Garrett, J.J. and others, Ajax: A New Approach to Web Applications, . [Online].
Available: http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications (visited on ).

[] F. Georges, EXPath - Standards for Portable XPath Extensions, . [Online]. Avail-
able: http://expath.org (visited on //).

[] C.Grün, “Storing andQuerying Large XML Instances,” PhD thesis, Universität Kon-
stanz, .

[] A. Holupirek, “Declarative access to ĕlesystem data, New application domains for
XML database management systems,” Ph.D. esis, University of Konstanz, Ger-
many, .

[] C. Ireland,D.Bowers,M.Newton, andK.Waugh, “A classiĕcation of object-relational
impedance mismatch,” in Proceedings of the  First International Conference on
Advances in Databases, Knowledge, and Data Applications, Washington, DC, USA:
IEEE Computer Society, , pp. –, : ----. : 10.1109/
DBKDA.2009.11. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1545012.1545492.

[] M. Jazayeri, “Some trends in web application development,”  Future of Soware
Engineering, . [Online]. Available: http://portal.acm.org/citation.cfm?
id=1254719.

[] M. D. J. S. Jonathan Robie Don Chamberlin, Xquery .: an xml query language,
. [Online]. Available: http://www.w3.org/TR/2011/WD- xquery- 30-
20111213/ (visited on //).

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://expath.org
http://dx.doi.org/10.1109/DBKDA.2009.11
http://dx.doi.org/10.1109/DBKDA.2009.11
http://dl.acm.org/citation.cfm?id=1545012.1545492
http://dl.acm.org/citation.cfm?id=1545012.1545492
http://portal.acm.org/citation.cfm?id=1254719
http://portal.acm.org/citation.cfm?id=1254719
http://www.w3.org/TR/2011/WD-xquery-30-20111213/
http://www.w3.org/TR/2011/WD-xquery-30-20111213/

[] M. Kaufmann and D. Kossmann, “Developing an Enterprise Web Application in
XQuery,” in ICWE, M. Gaedke, M. Grossniklaus, and O. Díaz, Eds., ser. Lecture
Notes in Computer Science, vol. , Springer, , pp. –, : ---
-.

[] M.Keith,M. Schnicariol, M. Keith, andM. Schnicariol, “Chapter: introduction,” in
Pro JPA , Apress, , pp. –, : ----. : 10.1007/978-1-
4302-1957-6_1.

[] PKilpeläinen, “UsingXQuery for problem solving,” SOFTWARE—PRACTICEAND
EXPERIENCE, vol. Manuscript to appear in Soware - Practice and Experience,
Apr. . [Online]. Available: http://www.cs.uku.fi/~kilpelai/RDK11/
exercises/Ex8Files/xqueryProblems.pdf.

[] M. Laverdet, XHP: A New Way to Write PHP, . [Online]. Available: https:
//www.facebook.com/notes/facebook-engineering/xhp-a-new-way-to-

write-php/294003943919 (visited on //).

[] A.Leffand J. T.Rayĕeld,Web-ApplicationDevelopmentUsing theModel/View/Controller
Design Pattern. IEEE Computer Society, Sep. , : ---X. [Online].
Available: http://dl.acm.org/citation.cfm?id=645344.650161.

[] N. Lossau, “Der Begriff »Open Access«,”Open Access. Chancen undHerausforderun-
gen—ein Handbuch—, Bonn, pp. –, . [Online]. Available: http://www.
unesco.de/fileadmin/medien/Dokumente/Kommunikation/Handbuch_Open_

Access.pdf (visited on //).

[] J. McCarthy and S. Krishnamurthi, “Interaction-safe state for the web,” Scheme and
Functional Programming, .

[] W.Meier, “eXist: AnOpen Source Native XMLDatabase,” inWeb,Web-Services, and
Database Systems,A. Chaudhri, M. Jeckle, E. Rahm, and R. Unland, Eds., vol. ,
ser. LectureNotes in Computer Science, ./---_, Springer Berlin
/Heidelberg, , pp. –, : ----. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-36560-5_13.

[] T. Reenskaug, “Models - views - controllers,” Xerox PARC, Tech. Rep., . (visited
on //).

http://dx.doi.org/10.1007/978-1-4302-1957-6_1
http://dx.doi.org/10.1007/978-1-4302-1957-6_1
http://www.cs.uku.fi/~kilpelai/RDK11/exercises/Ex8Files/xqueryProblems.pdf
http://www.cs.uku.fi/~kilpelai/RDK11/exercises/Ex8Files/xqueryProblems.pdf
https://www.facebook.com/notes/facebook-engineering/xhp-a-new-way-to-write-php/294003943919
https://www.facebook.com/notes/facebook-engineering/xhp-a-new-way-to-write-php/294003943919
https://www.facebook.com/notes/facebook-engineering/xhp-a-new-way-to-write-php/294003943919
http://dl.acm.org/citation.cfm?id=645344.650161
http://www.unesco.de/fileadmin/medien/Dokumente/Kommunikation/Handbuch_Open_Access.pdf
http://www.unesco.de/fileadmin/medien/Dokumente/Kommunikation/Handbuch_Open_Access.pdf
http://www.unesco.de/fileadmin/medien/Dokumente/Kommunikation/Handbuch_Open_Access.pdf
http://dx.doi.org/10.1007/3-540-36560-5_13
http://dx.doi.org/10.1007/3-540-36560-5_13

[] A. Retter, “RESTful XQuery,” XML Prague , p. , . [Online]. Available:
http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.

pdf.

[] T. C. Shan andW.W.Hua, “Taxonomy of JavaWeb Application Frameworks,” vol. ,
Los Alamitos, CA, USA: IEEE Computer Society, , pp. –, : --
-. : http://doi.ieeecomputersociety.org/10.1109/ICEBE.2006.
98.

[] R. Singh and H. Sarjoughian, “Soware Architecture for Object-Oriented Simula-
tion Modeling and Simulation Environments: Case Study and Approach,” TR-,
Computer Science & Engineering Dept., Arizona State University, Tempe, AZ, Tech.
Rep., .

[] Strobe Inc., Sproutcore - about, . [Online]. Available: http://sproutcore.
com/about/ (visited on //).

http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICEBE.2006.98
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICEBE.2006.98
http://sproutcore.com/about/
http://sproutcore.com/about/

	1 Introduction
	2 Concepts: Web Application Frameworks
	2.1 Model-View-Controller
	2.1.1 The Model
	2.1.2 The View
	2.1.3 The Controller

	2.2 State-of-the-Art Implementations
	2.3 Challenges
	2.3.1 Real World Data
	2.3.2 Modeling in XML
	2.3.3 Programming XML: XQuery & XPath

	3 BaseX Web: XQuery-driven Web Application Framework
	3.1 Background
	3.1.1 Maturity of Web Applications & Frameworks
	3.1.2 Impedance Mismatch
	3.1.3 Frameworks: Pros and Cons

	3.2 Related Work
	3.2.1 eXist — The XQuery Servlet
	3.2.2 Sausalito — XQuery in the cloud

	3.3 System Overview
	3.3.1 Application Layout
	3.3.2 The Servlet Implementation: Request-Response-Loop
	3.3.3 XQuery Processing & XML Persistence: Database Server
	3.3.4 Application Framework

	3.4 Evaluation: Performance & Costs of the Glue Code
	3.4.1 Benchmark Scenario
	3.4.2 Result interpretation

	4 Application: Bootstrapping an Expert Retrieval System with BaseX Web
	4.1 KOPS - An Online Public Access Catalog
	4.1.1 Bootstrap an XML-OPAC system
	4.1.2 Basic System Setup
	4.1.3 Setting up a Project

	4.2 Evaluation Setup
	4.3 Queries and Performance Results
	4.3.1 Keyword Search
	4.3.2 Phrase Search
	4.3.3 Boolean Search

	4.4 Summary

	5 Conclusion & Future Work
	6 Attachments

