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SUMMARY

XQuery is a recommendation by the World-Wide Web Consortium as a standard XML
query language. In addition to being a special-purpose query language, XQuery has also
features which support unexpected applications like problem solving. We demonstrate
and discuss these features by presenting several XQuery programs for solving recreational
problems and puzzles.

1. Introduction

Computer applications have intriguing potential for enhancing human problem-solving
capabilities. They allow us to play with ideas in their nascent stage and to experiment with
possible solutions. Spreadsheet calculators and scripting languages are often used as ad-hoc
tools to replace tedious pen-and-pencil work in such circumstances. The author of this article
has previously used script languages like AWK [1] and Python [51], or the logic programming
language Prolog [13, 49] for experimenting with combinatorial ideas, and for rapid prototyping
of designs, say, of virtual machine architectures, before implementing them in a procedural
language like C, Ada, or Java. Recently, XQuery has in several occasions been chosen as a tool
for such experiments by the author.

We demonstrate the potential of XQuery for experimental problem solving by considering
XQuery solutions to several recreational problems and puzzles. We share Donald Knuth’s
attitude towards puzzles [33, pp. 7–9]. That is, the puzzles are not the most important thing,
but they are ideal for introducing representative problems—and of course, they are fun. The
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2 P. KILPELÄINEN

purpose of presenting computerized solutions to recreational puzzles is not to spoil their
charm through replacing entertainment of rational challenges by application of computing
power. Simple puzzles often have generalizations which go beyond human ability. Developing
instructive methods which could be applicable for attacking generic problems with the help
of a computer is our main motivation. Problem solving methods being considered here are
XQuery programming techniques, which we believe to be novel for many programmers.

As a functional query language designed for XML manipulation, XQuery may be a
strange tool for those programmers who are familiar with procedural general-purpose
programming languages. Indeed, XQuery has some peculiarities which cause problems for
novice programmers (including the author!). For example, XQuery has a rather flexible syntax.
This is because XQuery is built around XPath expressions, which are used for addressing
components of XML documents. XML documents—by the very design of the Extensible
Markup Language [9]—may use arbitrary tag-names, including XQuery keywords, which thus
appear as subexpressions of XPath location path expressions. For such reasons, a simple syntax
error often causes an XQuery compiler to give error messages whose actual cause may be
difficult to locate. Therefore some of XQuery’s syntactic and semantic pitfalls will be pointed
out along the discussion.

The central ideas and essential features of XQuery are reviewed in Section 2. The main body
of the article consists of XQuery solutions to a number of problems and puzzles. Section 3
deals with arithmetical problems whose solutions are integers which satisfy the constraints
of the problem. Specific problems considered include the generation of small prime numbers,
“cryptarithmetic puzzles”, and a problem of selecting optimal face values for stamps. Section 4
considers examples of combinatorial arrangement puzzles, including the non-attacking n queens
problem and popular puzzles known by the names “Instant Insanity”, “Tricky Triangles”, and
“Sudoku”. The applicability of XQuery as a problem-solving language is discussed in Section 5.
Section 6 reviews related work, and Section 7 is a conclusion.

The XQuery programs presented in this paper have been tested with the Saxon-HE processor
(v. 9.3.0.2J)†. Saxon is an in-memory implementation of XQuery (and XSLT) written in
Java. It appears to be a faithful and robust implementation of the W3C specifications. Some
measurements of Saxon executions are presented. Results of such measurements are of course
specific to the implementation and the execution environment, but they can nevertheless be
indicative of realistic usability of XQuery, and of the effects of some presented solution variants
on their efficiency. The experiments were carried out on a single-user Intel Core 2 Duo E7500
workstation (clock speed 2.93 GHz, FSB speed 1066 MHz, 3 MB L23 cache) with a 4096 MB
and 1333 MHz DDR3 Dual Channel RAM. Saxon was executed under the 64 bit Centos
Linux 5 operating system using OpenJDK version 1.6.0 17. The time and memory usage of
Java executions was measured using a Java agent application, which was written using the
java.lang.management package as a small modification of an example given in [21, pp. 296–
298]. The execution time was measured using System.nanoTime(), and memory usage as the
total of the peak usage of different memory pools.

† http://www.saxonica.com
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XQUERY FOR PROBLEM SOLVING 3

2. Essentials of XQuery

This section reviews the essentials of XQuery, restricting to central features which are used
in our treatment. The W3C recommendation [7] is recommended as a comprehensive XQuery
reference. (A potential reader of the Recommendation is warned that the typing rules of
XQuery are rather complicated. On the other hand, its operational semantics, which we are
relying on, is relatively simple.) As a readable XQuery tutorial, see, e.g., [52]. In addition
to the basics discussed in this section, some additional XQuery features, like specific built-in
functions are introduced in later sections while applying them to specific problems. Readers
who are familiar with XQuery may likely skip to Section 2.7 without a risk of missing much
information.

XQuery is a language designed for querying and manipulating XML documents, and other
data sources which can be viewed as XML structures. The closest predecessor and the strongest
influence for XQuery was an academic XML query language called Quilt [12]. XQuery uses
XPath location path expressions for selecting parts of XML documents. XQuery is a proper
extension of XPath 2.0 [3], which is also a part of the XSLT 2.0 transformation language [30].
In addition to the selection capabilities of XPath, XQuery also supports traditional database
operations like joins and grouping, and XML transformations similar to XSLT.

The design of XQuery was guided by its anticipated applications gathered from the database
and document communities. These XML query use cases collected in a W3C note [11] provide
useful examples of the anticipated use of XQuery. In comparison, the present article provides
examples of somewhat unanticipated applications of XQuery.

2.1. Data model

XQuery is a functional expression language. This means that its execution is based on side-
effect-free evaluation of expressions. XQuery expressions may be combined basically without
any limitation; of course some combinations, like trying to apply arithmetics to non-numeric
operands, cause typing errors. Such an orthogonal design is grounded by a simple and
streamlined type system: All XQuery expressions operate on sequences, and evaluate to
sequences. Sequences are ordered lists of items. Items can be either nodes, which represent
components of XML documents, or atomic values, which are instances of XML Schema base
types [5] like xs:integer or xs:string. Sequences can also be empty, or consist of a single
item only. No distinction is made between a single item and a singleton sequence.

XQuery and XPath 2.0 share a common data model [4], and a common set of over 100
functions and operators [38]. XQuery/XPath sequences differ from lists in languages like Lisp
and Prolog by excluding nested sequences. Designers of XQuery may have considered nested
sequences unnecessary for the manipulation of document contents. Nesting, or hierarchy of
document structures is instead represented by nodes and their child-parent relationships; these
are discussed in more detail below.

For example, the below expression evaluates to a flat sequence of six items, which are an
integer 1, a string “cat”, integers 1, 2, and 3, and a decimal number 3.14.

((), 1, ("cat", 1 to 3), 3.14)
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4 P. KILPELÄINEN

XQuery uses the comma ‘,’ as the sequence concatenation operator. The parentheses ‘(’ and
‘)’ are used for grouping of expressions. In practise they are useful as delimiters of sequence
expressions, because the comma operator has a low precedence, which often confuses the scope
of the concatenation without the use of surrounding parentheses. An empty pair of parentheses
‘()’ is a simple way to express an empty sequence. The expression “1 to 3” above is a range
expression, which is useful for creating sequences of consecutive integers.

Components of XML documents are represented by nodes. There are six types of nodes,
out of which the most important ones are document, element, attribute and text nodes. Nodes
comprise a hierarchical structure that corresponds to the nesting of the components of an XML
document. A document node is the root of a complete XML document tree, which contains all
the contents of the document represented by its descendant nodes. Element nodes represent
elements of an XML document. They can have other element nodes or text nodes as their
children, representing the immediate contents of the element. XML elements may also carry
attributes, which are uniquely named fields with a string value. The attributes of an element
are represented by attribute nodes related to the corresponding element node.

As an example, consider the small XML document shown below:

<D><E a="1"><C />foo</E><E a="2" b="3">bar</E></D>

The corresponding XQuery/XPath tree consists of 10 nodes, which are shown as a diagram in
Fig. 1. Element nodes are drawn as circles, and text nodes as boxes. Child-parent relationships
are drawn as solid lines, while attribute nodes are connected with their containing element
node using dashed lines. The nodes are numbered in the diagram by their position in the
document order, which is roughly the same as the pre-order traversal of the tree. Attribute
nodes come in the document order immediately after their corresponding element node. The
relative order of attribute nodes of an element is immaterial and thus left implementation-
dependent. For example, instead of the order shown in Fig. 1, the attribute a="2" could also
appear at position 9 in the document order, with attribute b="3" at position 8. A complete
XML document tree is always rooted by a document node, which has the element node of the
document root element as its child (node 2 in Fig. 1). In XPath, each element and even the
entire document has a text value, which is the catenation of its content strings. The value of
our example document is "foobar", which is the same as the value of its root element D.

2.2. Location path expressions

Nodes of document trees are selected using XPath location path expressions. A location path
is evaluated with respect to a context node, which is often the root of a document. For this,
let us assume that example.xml is the URI of the above XML document. Then the XPath
function doc("example.xml") evaluates to the node 1 of Fig. 1. A location path consists of
steps separated with slashes ‘/’, which are evaluated to further nodes which are accessible from
the context node. For example, the expression

doc("example.xml")/D/E

evaluates to the sequence that consists of nodes 3 and 7, in this (document) order. Location
path expressions are evaluated from left to right, each step with respect to the nodes produced
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Figure 1. Example of an XPath tree

by the previous steps. (Note that this is a sketch of the conceptual semantics of location
path expressions. Implementations may apply alternative evaluation strategies which produce
equivalent results.) Each of the previously produced nodes is used, one at a time, as the context
node for the next step. Node sequences produced by location paths are in the document order
and do not contain contain duplicate nodes.

XPath specifies 12 different tree-relationships called axes, which can be used for expressing
location path steps. The child axis does not have to be explicitly mentioned, and it is thus
effectively the default axis of location path steps. Other axes allow, for example, the parent
node, or the preceding or following sibling nodes of the context node to be accessed; we’ll
return to them in the examples when they are needed. In addition to an axis, a step always
contains a node test, which is often simply the name of the node, like D and E above. A wild-
card ‘*’ matches any name. A neutral test “node()” accepts any node (including unnamed
ones like text nodes). Text nodes can be selected by using “text()” as a node test. It is often
useful to be able to select sub-ordinate nodes without knowing their exact level. For this the
shorthand notation “//” which corresponds to zero or more child steps is very useful. The
attribute axis allows the attribute nodes of an element to be accessed. The shorthand notation
for an attribute step is ‘@’ followed either by an attribute name or by the wild-card ‘*’.

Let us consider some examples of the above location-path constructs on the above document.
The expression

doc("example.xml")//E

selects all E elements, which is in this case equivalent with the previous expression. The more
general expression

doc("example.xml")//*

selects all elements of the document, and evaluates to the sequence of nodes (2, 3, 5, 7). All
child nodes of E elements can be obtained with

doc("example.xml")//E/node()
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6 P. KILPELÄINEN

which evaluates to the sequence of nodes (5, 6, 10). If we want to get only element children of
the E elements, we can use

doc("example.xml")//E/*

The above expression evaluates to node 5 only. The evaluation of the last child step ‘*’ with
respect to node 7 produced an empty result. The flexibility of location paths causes sometimes
problems: an erroneously written location path often simply evaluates to an empty result, which
is not considered as an error, and is thus not reported in any special way by the implementation.
(Built-in functions exactly-one(), one-or-more(), and zero-or-one() support the manual
inclusion of explicit checks on the cardinality of expression values in XQuery programs.)

All attributes of E elements can be obtained by applying the node-name wild-card to their
attribute axis as follows:

doc("example.xml")//E/@*

The above expression evaluates to the sequence of nodes (4, 8, 9). Similarly, attributes with
name b within any element of the document can be obtained as follows:

doc("example.xml")//*/@b

This query selects the single attribute node 9 in Fig. 1.

2.2.1. Filter expressions

Results of location path steps can be filtered using any number of predicates. Predicates are
Boolean conditions written in brackets ‘[’ and ‘]’ immediately after the step. The conditions
use the candidate node, which is being tested for inclusion in the result, as their context node.
Predicates can be used to filter sequences of other items than nodes, too. The item to be tested
for the inclusion in the result can be expressed in both cases as a period ‘.’. For example, the
integers between 1 and 100 which are divisible by 13 can be produced with a filter predicate,
using the XPath remainder operator mod, as follows:

(1 to 100)[. mod 13 = 0]

The above expression evaluates to the sequence (13, 26, 39, 52, 65, 78, 91). Further examples
of similar filter expressions are given in Sec. 3.1 below.

Predicates may use functions, which are evaluated with respect to the candidate item and
the sequence in which it belongs. Such functions, like position(), are often useful, for example
to select items by their position in the sequence. A short-hand notation similar to ordinary
array indexing has been included in XPath: if the value i of a filter predicate is numeric, then
the condition is treated as “position() = i”, effectively selecting the ith item of the sequence.
Sequence-valued expressions can be used as predicate conditions, too, with the interpretation
that an empty sequence corresponds to the Boolean value false() while non-empty sequences
correspond to true(). (XQuery does not contain names for the Boolean constants, but they
can be expressed with built-in functions true() and false().) This is often useful for selecting
nodes of a document, say, based on their sub-structures.
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XQUERY FOR PROBLEM SOLVING 7

Let us consider some examples of the above mentioned features. The first element child of
any node in the document tree can be obtained with the below query:

doc("example.xml")//*[1]

The above expressions evaluates to the sequence of nodes (2, 3, 5). Correspondingly, the last
child—of any type—below any node in the document can be obtained using the last() access
function as follows:

doc("example.xml")//node()[last()]

Since last() is of a numeric type, it is treated here as the condition “position() = last()”.
The above expression evaluates to the sequence of nodes (2, 6, 7, 10).

If we instead want to get the last node in the entire document, we need to use parentheses to
expand the scope of the predicate from the previous step to the entire expression, as follows:

(doc("example.xml")//node())[last()]

The latter query selects the node with number 10 only.
A step can contain multiple predicates, for example to locate the first of the E elements

whose content equals “bar”, as follows:

doc("example.xml")//E[. = "bar"][1]

The above evaluates to the node 7 of Fig. 1. Since the predicates are evaluated one at a
time, the above is not equivalent with doc("example.xml")//E[1][. = "bar"]. The latter
expression produces an empty result, since the value of the first E element is “foo” instead of
“bar”. We can locate those elements which have a child element E with value “foo” as follows:

doc("example.xml")//*[E = "foo"]

The above query evaluates to the document element D. Consider how the predicate [E =
"foo"] is evaluated with respect to this element. The location path E produces a sequence
consisting of the nodes 3 and 7. This is a typical case, which arises for example when locating
article elements by the condition that the name of some of their authors has a given value.
Comparison with sequences works because of the special semantics of XPath comparison
operators, which are discussed below.

2.3. Comparison operators

The comparison between a sequence and a string value works in XPath because of the semantics
of general comparisons. Ordinary comparison operators =, !=, <, <=, >, and >= are used
to express general comparisons, which have an existential semantics. This means that the
comparison succeeds if and only if a pair of items, one from each operand sequence, can be
found such that they satisfy the requested relationship between their values. For example, the
below expression evaluates to true():

3 < (1, 4) and (1, 4) < (2, 3)
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8 P. KILPELÄINEN

The first comparison is satisfied by the pair of items (3, 4), and the second one by the pair
(1, 2) or (1, 3). The existential semantics of general comparisons is often useful, but it has
also unexpected implications. For one thing, it destroys the transitivity of comparisons. For
example, despite that the above comparisons are successful, the comparison 3 < (2, 3) fails,
since its second operand has no item that would be greater than 3.

General comparisons allow set operations on sequences be expressed easily. XPath includes
explicit set operations union, intersect, and except, but they apply to node sequences only.
Let us consider expressing set operations on sequences $A and $B of atomic items. (XQuery
variable names are prefixed with a dollar sign. We follow this convention in examples which
refer to arbitrary operands.) The membership of an atomic item $a in sequence $A can be
expressed using general comparison, by testing whether any item of $A equals $a:

$a = $A

The above assumes that the types of $a and of the items in $A are compatible. For example,
if $a is an integer but $A contains strings, this comparison may raise a typing error. This can
be circumvented using a built-in function called index-of(). The index-of() function takes
a sequence and an item, and returns the sequence of those positions (if any), where the item
occurs within the sequence. Incompatible types are treated simply as mismatches. So, testing
whether item $a appears in sequence $A can be expressed with

not(empty(index-of($A, $a)))

The meaning of the built-in functions empty() and not() should be obvious: the first one tests
whether its argument is empty, and the second one returns the Boolean complement of its
operand. Similarly, the difference of sequences $A and $B could be expressed with

$A[not(. = $B)]

(that is, leave those items of $A which are not equal with any item of $B), or more type-safely
using the index-of() function as follows:

$A[empty(index-of($B, .))]

The intersection of $A and $B can be expressed similarly, either with

$A[. = $B]

or in a manner which applies also to sequences which contain values of incompatible types:

$A[not(empty(index-of($B, .)))]

Finally, the union of two sequences $A and $B of atomic items can be conveniently expressed
using a built-in function distinct-values(), which eliminates duplicates from its argument,
as follows:

distinct-values(($A, $B))
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XQUERY FOR PROBLEM SOLVING 9

If there is no need to eliminate duplicates, then simple sequence catenation with ($A, $B) is
sufficient for uniting the sequences.

In addition to the general comparisons, XPath also provides corresponding value
comparisons, which are expressed using operator keywords eq, ne, lt, le, gt, and ge. Value
comparisons apply to atomic values only: they raise a type error if they are applied to sequences
of more than one item. Value comparisons also require their operands to be of compatible types.
So, the use of value comparisons instead of general comparisons can increase type-safetyness of
programs: They allow us to catch situations, where we would be dealing with values of different
cardinality or of different type than what we expect. On the other hand, general comparisons
are sometimes convenient. Element and attribute values are of type xs:untypedAtomic unless
they have been assigned a more specific type by validating them against a schema. General
comparison of such untyped values against a typed operand casts the untyped value into the
known type, and this makes general comparisons convenient when dealing with values drawn
from non-validated XML structures.

XQuery and XPath 2.0 include typical Boolean expressions with operators and and or. In
addition, quantified expressions are also included, which allow to test whether some (or every)
item of a given sequence satisfies a given condition. An interesting application of quantified
expressions is shown in Section 3.3.

The relationship between general comparisons and value comparison can be explained using
quantified expressions. For example, the general comparison $A != $B is equivalent with the
below quantified expression:

some $a in $A satisfies
some $b in $B satisfies $a ne $b

That is, can we select some item $a from sequence $A and some item $b from sequence $B so
that their values are different?

2.4. Element constructors

XQuery supports the creation and modification of XML structures by element constructors,
which are somewhat similar to XSLT templates. A direct element constructor consists of an
XML element, whose markup and contents are transformed to the corresponding nodes of
an XPath tree (see Fig. 1). (There are also computed constructors which allow the element
name to be computed by an expression.) Element constructors may contain subexpressions
surrounded with braces ‘{’ and ‘}’. These subexpressions are evaluated before inserting their
value in the document subtree created by the element constructor. For example, assume that
$x is a variable bound by some outer expression (like FLWOR; see below). Then the expression

<R attr="{$x}">Value of $x = {$x}</R>

creates an element R where the value of $x appears both as the value of the attribute attr
and in the contents of the element, after the phrase “Value of $x = ”.
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2.5. FLWOR expressions

Element constructors are often used in so called FLWOR expressions. The FLWOR expression
(pronounced “flower”) is the XQuery counterpart of the SQL SELECT-FROM-WHERE
construct. FLWOR is the most central XQuery expression for expressing document queries.
A FLWOR expression allows to select, re-arrange and create document contents (modeled by
node sequences), but it can also create sequences of other kinds of items.

The letters of the acronym FLWOR stand for the parts of the expression, called clauses,
which are for, let, where, order by, and return. A FLWOR expression begins by one or
more for or let clauses, which introduce variable bindings to be used in the rest of the
expression. Their difference is that a for clause introduces variables which iterate over the
items of a given sequence, while a let clause binds its variables to an entire sequence. As an
example, consider the below expression:

for $i in (1 to 3),
$j in ($i + 1 to 3)

let $s := ($i to $j)
return $s

The above query introduces three variables. Variable $i iterates over the integers 1, 2, and
3, and for each of its values, variable $j iterates over the integers $i+1, . . . , 3. Variable $s is
bound to the integer sequence ($i, . . . , $j) and used as the return value of the expression. So
the result of the above consist of the sequences (1, 2), (1, 2, 3), and (2, 3). When catenated
together, the result of the above expression becomes the sequence (1, 2, 1, 2, 3, 2, 3) of seven
items.

A FLWOR expression creates its result sequence by evaluating its return clause once for each
combination of variable bindings created by the for and let clauses. The variable bindings
may be pruned by an optional where clause, and ordered by an optional order by clause.
Consider the above expression extended by a where clause and an order by clause as follows:

for $i in (1 to 3),
$j in ($i + 1 to 3)

let $s := ($i to $j)
where sum($s) gt 4
order by count($s)
return $s

The built-in function sum() returns the sum of the atomic values of its input sequence, which
must be numbers. The above where clause restricts the bindings to those for which the sum of
the numbers in sequence $s exceeds four. The order by clause orders the binding combinations
in increasing order with respect to the length of sequence $s. The result consists of sequences
(2, 3) and (1, 2, 3), which catenated together form the final result (2, 3, 1, 2, 3).
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XQUERY FOR PROBLEM SOLVING 11

2.6. User-defined functions

XQuery is a Turing-complete programming language. This results from allowing users to define
functions, which may be recursive. Recursion is the only control structure in XQuery which
supports unbounded repetition. The for clause provides a means of bounded repetition over
explicitly created sequences.

User-defined functions belong to a namespace, which must be explicitly prefixed either with
a user-declared namespace prefix or with the default prefix “local:”. Consider a recursive
XQuery function for computing the factorial n! = 1 · 2 · · · (n − 1) · n of a given integer n. A
function namespace can be declared as follows:

declare namespace f = "http://www.uef.fi/cs/XQueryTesting/Fact";

The function declaration can then be given as follows:

declare function f:fact($n as xs:integer) as xs:integer
{ if ($n le 1) then 1 (: by convention, 0! = 1 :)
else $n * f:fact($n - 1) };

This declaration says that the function f:fact() takes an integer parameter, and returns an
integer value. The body of this function consists of a conditional expression (if-then-else),
which is used to specify its value in the base case and in the recursive case. One syntactic
peculiarity of XQuery (and XPath) is that the else branch of a conditional expression is
mandatory. Phrases enclosed in the “smiley faces” “(:” and “:)” are XQuery comments.
User-defined functions can be used as sub-expressions of queries, for example as follows:

for $n in 0 to 10
return concat($n, "! = ", f:fact($n), ";")

The above expression uses the built-in function concat() to concatenate together the value
of $n, the constant string “! = ”, the factorial of $n, and a semicolon, for each $n from 0 to
10. The result of the above expression is a sequence of 11 strings from “0! = 1;” to “10! =
3628800;”.

2.7. Generating permutations

We conclude this section by a nontrivial example, which demonstrates some peculiarities
of XQuery, and how they can be circumvented. Solutions of several combinatorial problems
involve generating permutations, that is, different orderings, and selecting out of them those
that satisfy the constraints of the problem.

We first present two fallacious solutions to the task of generating permutations, which
hopefully illuminate relevant features of XQuery. The high-level principle of the solution is
the following: Let S be the sequence to be permuted. If it is empty or if it contains only a
single item, then S comprises its own permutations. Otherwise, the permutations of S consist
of sequences that result by (1) removing, one at a time, each item s of S, (2) generating the
permutations of the remaining items recursively, and (3) placing the removed element s in
front of each of the computed permutations. Below is our first—erroneous—implementation
of this idea as a recursive XQuery function perm0():
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declare function local:perm0($items as item()*) as item()* {
if (count($items) le 1) then ($items)
else for $i in 1 to count($items),

$perm in local:perm0(remove($items, $i))
return insert-before($perm, 1, $items[$i]) };

The above declaration specifies that the function both takes and returns a sequence of zero or
more items. Built-in functions remove() and insert-before() are used for removing an item
from a sequence by its position, and for inserting an item at a specified position. The intent
is that the variable $perm iterates over the permutations generated from the input sequence
with its $ith item removed, and that insert-before($perm, 1, $items[$i]) inserts the
$ith item of the input sequence as the first item in a permuted sequence $perm. Unfortunately
this attempt does not work. When applied to the sequence ("a", "b", "c") we would expect
to get six permuted sequences as the result, but the function produces instead a sequence
("a", "b", "a", "c", . . . , "c", "a") of 24 strings. What goes wrong is the lack of nested
sequences. Especially, the above variable $perm does not iterate over permuted sequences, as
intended, but over items instead.

Nesting can be represented with element nodes. XPath trees made of element nodes are
indeed designed for representing hierarchical data. So our next try is to wrap permutations
inside perm elements, using the below function perm1():

1 declare function local:perm1($items as item()*) as element(perm)+ {
2 if (count($items) le 1) then <perm>{$items}</perm>
3 else for $i in 1 to count($items),
4 $perm in local:perm1(remove($items, $i))
5 return <perm>{insert-before($perm/node(), 1, $items[$i])}</perm> };

Notice that the function signature has been changed to indicate that the perm1() function
returns a non-empty sequence of perm elements, instead of arbitrary sequences of items. New
wrapper elements are generated for the permutations on lines 2 and 5. When the variable $perm
is bound to such an element, line 5 creates a new perm element, whose children consist of the
item $items[$i] followed by the children of the $perm element. For example, the invocation

local:perm1(("a", "b", "c"))

produces the below sequence of six elements:

(<perm>abc</perm>, <perm>acb</perm>, <perm>bac</perm>,
<perm>bca</perm>, <perm>cab</perm>, <perm>cba</perm>)

There is still one problem, which is not quite obvious in the above result. Even though the
items are permuted correctly, their identity is lost. The contents of each of the above elements
consists of a single text node only. Had the original items been strings of different length,
there would be no way to extract them from the contents of the perm elements. XPath models
contiguous fragments of textual content by a single text node. For that reason XQuery merges
adjacent text nodes into a single text node by concatenating their contents, even if the nodes
are inserted one by one, as above.

The last correction to our permutation generation is to preserve the identity of the items by
enclosing also the items in elements, as shown below:
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1 declare function local:permutations($items as item()*) as element(perm)+ {
2 let $itemElems := ( for $i in $items return <item>{$i}</item> )
3 return local:perm1($itemElems) };

The above acts as wrapper function, which simply encloses each item $i of its input sequence
in an item element (on line 2), before invoking the actual permutation with the perm1()
function declared above.

3. Arithmetic problems

In this section we present XQuery programs for solving arithmetic problems on integers.
Some problems have simple solutions based on XQuery’s capabilities to introduce and to filter
integer sequences; these are considered in Section 3.1. The generation of prime numbers is a
relevant application of these methods. A straight-forward XQuery approximation of the “sieve
of Eratosthenes” is presented as a solution to the task. Section 3.2 considers “cryptarithmetic
puzzles”, which are equations made of words whose letters stand for individual digits.
Section 3.3 considers solving a stamp-value selection problem, where the requirement is to
be able to pay each requested postage using at most three stamps.

3.1. Filtering integer sequences

Some arithmetic problems have easy XQuery solutions based on filtering integer sequences. As
a simple example, consider first the below Problem 1 from Project Euler‡:

Add all the natural numbers below one thousand that are multiples of 3 or 5.

Combining a range expressions, a filter expression, and the sum() aggregate function yields
the below “one-liner” as an XQuery solution to this problem:

sum( (1 to 999)[. mod 3 eq 0 or . mod 5 eq 0] )

Generation of prime numbers is a more relevant task which is also easily solved by filtering
integer sequences. We consider generating all primes which do not exceed the value of an
external parameter $N, which can be introduced as follows:

declare variable $N external;

Our first solution is a direct realization of the definition of primes, that is, they are integers
bigger than one which are not divisible by any other prime except them self:

let $candidates := 2 to $N
for $cand in $candidates
where count($candidates[$cand mod . eq 0]) eq 1
return $cand

‡http://projecteuler.net
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The above solution uses a FLWOR expression for introducing the variable $cand to examine
each candidate number in turn. Using this variable we can apply the filter expression
$candidates[$cand mod . eq 0] to find the divisors of $cand in the $candidates sequence,
and consequently include only those candidates that do not have other divisors.

The above expression has an obvious inefficiency: a number can be a multiple of smaller
numbers only, and thus it is unnecessary to test any items that come after $cand in the
$candidates sequence as potential divisors of $cand. The for clause of a FLWOR expression
allows one to declare also positional variables, which provide a means for realizing this
optimization. A positional variable iterates over the positions of the sequence, synchronized
with the variable which iterates over the items of the sequence. Below we declare a positional
variable $pos (on line 2) to accept only those candidate numbers $cand which are not preceded
by any of their divisors in the $candidates sequence:

1 let $candidates := 2 to $N
2 for $cand at $pos in $candidates
3 where empty($candidates[position() lt $pos][$cand mod . eq 0])
4 return $cand

The optimized version is clearly more efficient with respect to both time and space. The run
time and the amount of main memory used by the above programs, identified as primes.xq
and primes-opt.xq, are displayed for different values of $N = 10 000, 12 000, . . . , 30 000 in
Figure 2 and Figure 3. Each test was repeated five times. The results of each set of repetitions
are plotted as an error bar between the minimum and maximum value, and consecutive medians
are connected with lines. (The unit MB stands for 106 bytes in this article.)

A resource lower-bound estimate for an XQuery evaluation can be obtained from a program
which consists of a single string expression like "Hello world!". A Saxon evaluation of this
program requires about 540 ms of time and about 28 MB of RAM in our test environment.

Prime numbers can be generated more efficiently with methods based on the well-known
“sieve of Eratosthenes”. Eratosthenes’ method is simple: To generate all primes up to n, first
initialize a list of integers 2, 3, . . . , n. Composite numbers are then crossed out from the list
until only primes remain. More precisely, repeat the following steps

1. Declare the next uncrossed number p to be a prime, and
2. Cross out the multiples of p from the remaining list

until all numbers have either been crossed out or declared to be prime. It suffices to cross
out multiples of p starting from p2, because smaller multiples have already been crossed
out at earlier iterations. Observe that each number is crossed out at most once for each
of its distinct prime factors. The number of distinct prime factors of an integer n is known
to be O(log log n) [28, § 22.11]. This yields that the complexity of Eratosthenes’ algorithm
is O(n log log n), which is almost linear. This complexity requires that each number can be
crossed out from the list in constant time. XQuery does not support arrays or destructive
assignments, which makes the algorithm difficult to realize. The below function is thus rather
an approximation of the sieve of Eratosthenes known as “trial division” [43].

1 declare function pr:sieve($cands as xs:integer*) as xs:integer* {
2 (: Pre: $cands are in increasing order and
3 contain no multiples of any prime smaller than $cands[1] :)
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Figure 2. Execution times and . . .
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Figure 3. memory usage of primes.xq and primes-opt.xq

4 if ($cands[1] * $cands[1] gt $cands[last()]) then
5 $cands (: all of $cands are primes :)
6 else ( $cands[1], pr:sieve($cands[. mod $cands[1] ne 0]) ) };

The function is invoked with the call pr:sieve(2 to $N) to compute all primes up to $N. The
key idea of this tail-recursive function is to pass the sequence $cands of remaining candidate
numbers forward (on line 6) without multiples of the prime which is found as its first item
$cands[1]. Because the function scans the contents of the $cands parameter once for each
prime number at most

√
n, instead of once for each candidate number, it is an order of

magnitude faster than the above FLWOR expressions. For example, the function pr:sieve()
computes the 9,592 prime numbers which are smaller than 100,000 in about 1.2 s, while it
takes about 23 s for the optimized FLWOR expression to compute them. The execution time
and the amount of RAM needed by function pr:sieve() are displayed in Figure 4 and in
Figure 5, respectively, for different values of $N= 100 000, 200 000, . . . , 2 000 000.

O’Neill has shown that the time complexity of “trial division” is Θ(n1.5/(log n)2) for
generating the prime numbers up to n [43]; a similar analysis applies also to the above
sieve() function. She has also discussed the efficient implementation of the genuine sieve
of Eratosthenes in a lazy functional language (Haskell). Generating of primes is a fascinating
subject, but its further elaboration is beyond the scope of this article.
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Figure 5. memory usage of the pr:sieve() function

3.2. Cryptarithmetic puzzles

Cryptarithmetic, or verbal arithmetic puzzles are equations made of words. The task is to find
distinct digits which can be substituted for the letters so that the equation becomes true. The
classic example of a cryptarithmetic puzzle, based on the addition of two 4-digit numbers, was
originally published by Henry Dudeney in 1924 [33, p. 324]:

S E N D
+ M O R E

———————
= M O N E Y

Let us first consider a similar but simpler problem by Polya [45, p. 234] as a preliminary for
cryptarithmetic puzzles. The task of this problem is to deduce the digits represented by two
blanks. Polya’s problem can be stated as follows:

An old bill indicates that 72 items were bought for the total price of $ 67.9 . The
first and the last digit of the sum have faded and are thus illegible. How much was
the total, and what was the price of a single item? Assume that each item cost the
same (integral) number of cents.

The problem can easily be solved as an application of a FLWOR expression, for example by
iterating over possible initial and final digits $a and $b of the sum and testing which of them
give a total which is divisible by 72:

for $a in 1 to 9, $b in 0 to 9
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let $sum := 10000*$a + 6790 + $b
where $sum mod 72 eq 0
return ("total: ", $sum, "unit: ", $sum div 72)

An alternative solution is based on iterating over total prices between 16,790 and 96,799 cents,
and restricting to those (1) which have the known “679” as their three middle digits and
(2) which are divisible by 72:

for $sum in (16790 to 96799)[
6790 <= (. mod 10000) and (. mod 10000) <= 6799 (: condition 1 :)
and . mod 72 eq 0 ] (: condition 2 :)

return ("total: ", $sum, "unit: ", $sum div 72)

Sometimes, like above, the selection condition can be expressed within a filter expression,
instead of using a where clause.

Let us next consider an XQuery solution to the SEND+MORE=MONEY puzzle. Blind
search among possible values of letters may lead to a rather inefficient solution. For example,
a straight-forward translation of a constraint logic programming based solution given in [55]
lead to an XQuery program, whose evaluation took about 17 s in our test environment. A
more optimized program is presented in Fig. 6. It takes about 1.3 s to produce the solution

9567
+1085
------
10652

XQuery uses XML character entities for including characters by their Unicode position in
strings. Line 1 in Fig. 6 declares a global variable $LF, which is used as a constant string that
consists of the linefeed character only, to format the result on lines 17–20. The rest of the
program consists of a single FLWOR expression, which introduces eight variables $S, $E, $N,
$D, $M, $O, $R, and $Y for the distinct digits that we are looking for. The carries which may
arise in the column-wise additions are modeled by the variables $c1, $c2 and $c3 (lines 5–6).
The leading digit $M of the bottom line is the carry for the addition of the left-most column.
The most essential part are the conditions on lines 11–16, which express the requirement for
disjoint digits and the equations that arise by the column-wise additions.

The following slightly more complex puzzles are from [46, Sec. 2.4]:
C R O S S

+ R O A D S
———————
= D A N G E R

and

D O N A L D
+ G E R A L D
———————
= R O B E R T

Solving the first of them (with 9 letters) in a manner similar with the above puzzle took
about the same time, while DONALD+GERALD=ROBERT (with 10 letters) took clearly
longer, about 3 s. The complexity of cryptarithmetic puzzles generally increases exponentially
with respect to the number of their letters. This seems inevitable: David Eppstein has shown
that testing whether a cryptarithmetic puzzle has a solution is an NP-complete problem [20].
The NP-completeness requires that the puzzles use arbitrarily many letters and arbitrarily
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1 declare variable $LF := "&#10;"; (: linefeed :)
2
3 let $M := 1, (: disallowing leading zeros, $M cannot be else :)
4 $otherDigits := (0 to 9)[. ne $M], (: digits except $M :)
5 $carries := (0, 1)
6 for $c1 in $carries, $c2 in $carries, $c3 in $carries,
7 $S in $otherDigits[. gt 0], (: again, disallow leading zeros :)
8 $E in $otherDigits, $N in $otherDigits, $D in $otherDigits,
9 $O in $otherDigits, $R in $otherDigits, $Y in $otherDigits

10 where (: require distinct digits: :)
11 count(distinct-values( ($S, $E, $N, $D, $M, $O, $R, $Y) ) ) eq 8
12 and (: satisfy the column-wise additions: :)
13 $D + $E = $Y + 10*$c1 and
14 $c1 + $N + $R = $E + 10*$c2 and
15 $c2 + $E + $O = $N + 10*$c3 and
16 $c3 + $S + $M = $O + 10*$M
17 return ( $LF, concat(" ", $S, $E, $N, $D, $LF),
18 concat("+", $M, $O, $R, $E, $LF),
19 concat("------", $LF),
20 concat($M, $O, $N, $E, $Y, $LF) )

Figure 6. An XQuery solution to the SEND+MORE=MONEY puzzle

large digits. Ordinary puzzles with decimal numbers allow at most 10! different assignments
of digits to letters, and thus lead to instances which are solvable in linear time, even though
with a large constant factor.

3.3. A postage stamp problem

Consider the following puzzle [26, Problem 10]: Find a series of seven denominations for postage
stamps such that each postage 1, 2, . . . , 70 can be paid using at most three stamps. (Say, the
envelopes have room for three stamps only.) This is a difficult search problem. Its solution
consists of the unique series of stamp values (1, 4, 5, 15, 18, 27, 34), which can be found in
about 14 min by running the program shown in Fig. 7.

The solution is based on a FLWOR expression with a quantified expression in its where
clause. The code is hand-optimized by trying to restrict the huge number of different variable
bindings by a number of observations. The candidate denominations are assigned to the
variables $stamp1, . . . $stamp7 in strictly increasing order. First, the smallest denomination
$stamp1 (line 2) must be 1 to be able to express the smallest postage. The next bigger
denomination $stamp2 (line 3) must not be greater than 4, since otherwise the postage 4
cannot be formed using at most three stamps. The upper limits of the ranges for the values
of the remaining variables $stamp3, . . . , $stamp7 (lines 4–8) are figured out as follows: The
maximum value that is needed for the highest denomination $stamp7 is $maxSum−2 = 68,
since the maximum postage 70 can be formed using three stamps as 68 + 1 + 1. Next, the
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1 let $maxSum := 70
2 let $stamp1 := 1
3 for $stamp2 in (2, 3, 4),
4 $stamp3 in ($stamp2 + 1 to $maxSum - 6),
5 $stamp4 in ($stamp3 + 1 to $maxSum - 5),
6 $stamp5 in ($stamp4 + 1 to $maxSum - 4),
7 $stamp6 in ($stamp5 + 1 to $maxSum - 3),
8 $stamp7 in ($stamp6 + 1 to $maxSum - 2)
9 let $options := (0, $stamp1, $stamp2, $stamp3,

10 $stamp4, $stamp5, $stamp6, $stamp7)
11 where every $sum in (7 to $maxSum) satisfies
12 some $a in $options[. le $sum],
13 $b in $options[(. ge $a) and (. le $sum - $a)],
14 $c in $options[. eq $sum - $a - $b ]
15 satisfies true()
16 return $options[. gt 0] (: = $stamp1, $stamp2, ..., $stamp7 :)

Figure 7. An XQuery solution to the postage stamp problem

value of the second largest denomination $stamp6 does not need to exceed $maxSum−3 = 67:
if it equals 67, then the highest denomination is 68, and each postage 67,. . . , 70 can be formed
using at most three stamps. A similar reasoning is applied to the upper-bounds of the ranges
for the variables $stamp5, $stamp4, and $stamp3 on lines 4–6.

Line 9 introduces the sequence $options of the values that can be chosen for the stamps.
Value zero models the possibility of using fewer than three stamps to pay a postage. The
condition that each postage must be payable using at most three stamps $a, $b and $c is
expressed on lines 11–15. The range of required sums (line 11) starts from 7. When the second
smallest denomination $stamp2 is between 2 and 4 (by line 3), we know without testing that
each postage up to 6 can be formed using at most three stamps with values $stamp1 or
$stamp2. Lines 12–14 generate values for three stamps in a non-decreasing order, such that
their value totals to the value of $sum. Finally, the combinations of stamp denominations—in
this case a single one only—which satisfy all the constraints are returned on line 16.

The above program examines almost 29×106 different combinations of denominations. Some
further optimizations to reduce this number could be found. For example, it seems reasonable
to start the search for the values of the largest denomination ($stamp7) only at 24, since the
maximum postage 70 cannot be paid with three stamps whose values are smaller. Anyhow, this
optimization reduced the number of considered value combinations by less than 0.2%, and did
not have any clear positive effect. A heuristic which was tried was to test the target sums of
the range ($7 to $maxSum) in a reverse and thus descending order, with the intuition that a
larger postage is harder to form and would therefore allow unsuccessful bindings to be rejected
earlier. This heuristic did not turn out to be effective; it actually doubled the execution time
instead of making it faster.
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Figure 8. A solution to the eight queens problem (drawn with www.chessup.net)

The postage stamp problem is a challenging problem, where the complexity appears to
increase exponentially with respect to the number of available denominations. Shallit [48] has
shown that the related problem of finding the smallest postage which cannot be paid using
at most h stamps with values drawn from a given set of denominations {a1, a2, . . . , ak} is
NP-hard, but can be solved in polynomial time if the number of denominations k is fixed.

4. Arrangement puzzles

In this section we present XQuery solutions to various arrangement puzzles, which are the n
queens problem (Sec. 4.1), “Instant Insanity” (Sec. 4.2), “Tricky Triangles” (Sec. 4.3), and
Sudokus (Sec. 4.4).

4.1. The n queens problem

Solutions to many combinatorial search problems are natural to express as nondeterministic
algorithms. Robert Floyd presented in his seminal paper [22] a systematic way to convert
nondeterministic search algorithms into backtracking programs. Floyd used the eight queens
problem as an example of his approach. The eight queens problem is concerned with placing
eight chess queens on a standard 8 × 8 board so that none of them is attacked by any other.
An example of an arrangement which is a solution to this problem is shown in Fig. 8.

We present an XQuery solution to the n queens problem, which is a generalization of the
eight queens problem to place n queens in a non-attacking arrangement on an n × n chess
board. For n = 1 the problem has a trivial solution, while for n = 2 and n = 3 there are none.
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Figure 10. Counter-diagonals of a chess board

For n = 4 our program displays the two solutions below (which are mirror images of each
other):

---------
| |Q| | |
---------
| | | |Q|
---------
|Q| | | |
---------
| | |Q| |
---------

and

---------
| | |Q| |
---------
|Q| | | |
---------
| | | |Q|
---------
| |Q| | |
---------

(1)

The case n = 8 is the ordinary eight queens problem, which has 92 solutions (out of which
12 are unique modulo symmetry). The arrangement shown in Fig. 8 is the first of the solutions
in the order generated by our program.

We present a straight-forward implementation of Floyd’s algorithm [22] extended for
arbitrary n. (As a cosmetic difference, Floyd places the queens on suitable rows in a column-
wise order, while we place them on suitable columns in a row-wise order.) How to enforce
the constraint that two queens do not attack each other is a key decision in the design of the
algorithm. Placing the queens initially on different rows is a good start. (This is an instance of
a general technique called preclusion in [6]. The point is to exclude impossible solutions as soon
as possible.) In addition we need to control that the queens are not placed on the same column
and that they do not attack each other diagonally. For the latter condition, we number the
diagonals and the counter-diagonals of a board. A diagonal is formed of those squares which
have the same difference between their row and column index. A counter-diagonal consists of
those squares for which the sum of their row and column indices is the same. A standard chess
board has 15 diagonals, which can be identified by differences of column and row indices using
numbers −7,−6, . . . , 6, 7; see Fig. 9. Similarly there are 15 counter-diagonals, which can be
identified by sums of the column and row indices using numbers 2, 3, . . . , 16; see Fig. 10.
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1 declare function Q:solve($usedCols as xs:integer+,
2 $usedDiags as xs:integer+,
3 $usedCntrDiags as xs:integer+) as xs:string* {
4 if (count($usedCols) = $N) then (: all queens have been placed :)
5 Q:displayBoard($usedCols)
6 else ( (: place a queen on the next row :)
7 let $row := count($usedCols) + 1
8 for $col in (1 to $N)
9 where not ($col = $usedCols) and

10 not ($col - $row = $usedDiags) and
11 not ($col + $row = $usedCntrDiags)
12 return Q:solve( ($usedCols, $col),
13 ($usedDiags, $col - $row),
14 ($usedCntrDiags, $col + $row) ) ) };

Figure 11. An XQuery function to solve the n queens problem

Floyd used a multiple-valued function choice(x), whose values are positive integers less than
or equal to x, as a main tool for designing nondeterministic algorithms. The use of choice(x),
and iteration, can be simulated in XQuery by a for clause, and recursion.

Our solution is based on the recursive function Q:solve() shown in Fig. 11. The function
receives three sequences of integers, which contain indices of the (i) columns, (ii) diagonals,
and (iii) counter-diagonals on which queens have already be placed. The function is invoked by
a FLWOR expression, which tries different placements of a queen on the first row of a board:

for $q in (1 to $N) (: try each column of the first row :)
return Q:solve($q, $q - 1, $q + 1)

When all $N queens have been successfully placed, the function displays the solution determined
by their column positions (lines 4–5). Otherwise the function tries to position a queen on the
next row (line 7) at any position such that the column, the diagonal and the counter-diagonal
of the queen have not been used previously. These conditions are conveniently expressed with
general comparisons on lines 9–11. For any successful placement, the function recurses to find
positions of queens on the remaining rows (lines 12–14). For this, the column, the diagonal
and the counter-diagonal of the newly positioned queen are appended to the corresponding
parameters $usedCols, $usedDiags and $usedCntrDiags.

Each satisfying arrangement is displayed using the function Q:displayBoard() as a single
string similar to those in (1) above. The function receives the column indices of queens on rows
1, . . . , $N of the board. The display routine is a straight-forward application of useful XQuery
programming techniques. For this reason—and for completeness—the remaining declarations
of our n queens program are shown in Fig. 12. The built-in function string-join() is useful
for concatenating the strings of a given sequence into a single string. The second parameter
of string-join() specifies a string which is used as a separator between the concatenated
strings. We use the empty string for this purpose (on lines 14 and 20 of Fig. 12).
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1 declare namespace Q = "http://www.uef.fi/cs/XQueryTesting/queens";
2 declare option saxon:output "omit-xml-declaration=yes";
3
4 declare variable $N external;
5
6 (: Constants for formatting the display: :)
7 declare variable $LF := "&#10;"; (: linefeed :)
8 declare variable $rowStart := concat($LF, " "); (: LF + indent :)
9

10 (: Display the queens at $columns of rows 1, 2, ..., $N :)
11 declare function Q:displayBoard($columns as xs:integer+) as xs:string
12 { string-join(( $rowStart, Q:rule($N),
13 for $col in $columns
14 return Q:displayRow($col), $LF ), "") };
15
16 declare function Q:displayRow($col as xs:integer) as xs:string {
17 string-join( ($rowStart,
18 for $i in (1 to $N)
19 return if ($i eq $col) then "|Q" else "| ",
20 "|", $rowStart, Q:rule($N) ), "") };
21
22 (: Create an $n columns wide horizontal rule :)
23 declare function Q:rule($n as xs:integer) as xs:string {
24 if ($n eq 1) then "---"
25 else concat("--", Q:rule($n - 1)) };

Figure 12. Auxiliary declarations for displaying positions of queens

The number of solutions to the n queens problem, denoted by a(n), grows quickly as a
function of n. For n = 13 and n = 14 it is respectively 73,712 and 365,596, and a(20) exceeds
39× 109. No exact formula is known for a(n), but it surely grows super-polynomially; a(n) is
conjectured to be asymptotic to n!/cn with c around 2.54 [41].

Run times and the memory usage of our n queens program are plotted for values n =
1, 2, . . . , 13 in Fig. 13 and in Fig. 14. Notice the use of logarithmic scale on the y-axis. The time
usage ranges from less than a second to about one minute. Generating the 365,596 solutions
to the 14 queens problem (not shown in Fig. 13) took about 6 min. The memory usage of the
executions shown in Fig. 14 ranges from roughly 30× 106 B to roughly 343× 106 B.

4.2. Instant Insanity

The puzzle known as Instant Insanity (trademark of Parker Brothers) consists of four cubes,
the sides of which are colored by four different colors; see Fig. 15. The task is to build a tower
such that each color occurs exactly once on each of its four sides. The ordering of the cubes
in the tower does not matter. The only constraint is that the visible faces of the cubes do not
show any color twice on any side of the tower.
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n-queens.xq RUN TIME

Figure 13. Execution time and . . .

500 MB

100 MB

50 MB

 2  4  6  8  10  12

n-queens.xq MEMORY USAGE

Figure 14. memory usage of the n queens program

Figure 15. The “Instant Insanity” puzzle (source: Wikimedia Commons).
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There are 41,472 different ways of stacking four cubes as a tower, modulo turning the tower
around or upside down. The bottom cube can be placed in three different ways, by choosing
which pair of opposing faces becomes hidden, one face at the top and the other at the bottom.
Each of the remaining cubes have 24 different rotations, which gives gives 3× 243 = 41, 472 as
total. This is a big number of combinations to be tested for a human, but not for a computer,
which makes “Instant Insanity” an optimal target for a brute-force search.

We describe an ad-hoc XQuery solution for a specific instance of Instant Insanity. The
solution required a fair amount of manual coding to describre the blocks and their possible
rotations. The full length of the program is about 140 lines. For this reason we do not present
its full code, but explain the main ideas of its various parts instead.

The program consists of a FLWOR expression, which first introduces variables for the
blocks, then iterates over their rotations, and finally returns as solutions those combinations
of rotations which do not use the same color on any side of the tower twice. Empty block
elements with six attributes back, right, front, left, bottom, and top were chosen as a
representation of blocks and the colors of their faces. The below let clause declares variables
for the blocks, which are used in the rest of the FLWOR expression:

let $block1 := <block back="white" right="green" front="yellow"
left="green" bottom="yellow" top="red" />,

$block2 := <block back="red" right="yellow" front="red"
left="white" bottom="red" top="green" />,

$block3 := <block back="green" right="white" front="red"
left="yellow" bottom="white" top="green" />,

$block4 := <block back="yellow" right="red" front="red"
left="white" bottom="white" top="green" />

Next a for clause introduces variables which each range over the rotations of the corresponding
block:

for $R1 in blocks:Placements($block1),
$R2 in blocks:Rotations($block2),
$R3 in blocks:Rotations($block3),
$R4 in blocks:Rotations($block4)

The rotations were defined with two different functions Placements() and Rotations().
The first was applied to the block which was chosen to be at the bottom. Elimination of
identical solutions is one of the general backtracking programming techniques recognized and
recommended by Bitner and Reingold [6]. The general principle of such branch merging is, when
possible, to avoid searching branches of the search space which are isomorphic to branches that
have already been searched. In order to avoid solutions which are identical modulo turning the
tower around or upside down, the Placements() function returns only three different rotations
determined by the pair of opposite faces of the cube which are are not visible, that is, one
at the top and the other at the bottom. These rotations were realized as a sequence of three
block elements generated from a given input element $block as follows:

declare function blocks:Placements($block as element(block)) as element(block)+
{ <block top="{$block/@top}" bottom="{$block/@bottom}"

left="{$block/@left}" right="{$block/@right}"
front="{$block/@front}" back="{$block/@back}" />,

<block top="{$block/@left}" bottom="{$block/@right}"
left="{$block/@bottom}" right="{$block/@top}"
front="{$block/@front}" back="{$block/@back}" />,
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<block top="{$block/@front}" bottom="{$block/@back}"
left="{$block/@left}" right="{$block/@right}"
front="{$block/@bottom}" back="{$block/@top}" /> };

Notice how location path expressions are applied to the parameter $block to insert its colors
in the attributes of the constructed elements.

The function Rotations(), which is used to generate the 24 possible rotations for each of
the three remaining blocks was the most tedious part of the program to write. It simply lists
the four possible rotations, for each choice of the six sides of a block facing up, as follows:

declare function blocks:Rotations($block as element(block)) as element(block)+
{ (: ’top’ facing up: :)

<block top="{$block/@top}" bottom="{$block/@bottom}"
left="{$block/@left}" right="{$block/@right}"
front="{$block/@front}" back="{$block/@back}" />,

<block top="{$block/@top}" bottom="{$block/@bottom}"
left="{$block/@front}" right="{$block/@back}"
front="{$block/@right}" back="{$block/@left}" />,

<block top="{$block/@top}" bottom="{$block/@bottom}"
left="{$block/@right}" right="{$block/@left}"
front="{$block/@back}" back="{$block/@front}" />,

<block top="{$block/@top}" bottom="{$block/@bottom}"
left="{$block/@back}" right="{$block/@front}"
front="{$block/@left}" back="{$block/@right}" />,

(: ... 16 SIMILAR ROTATIONS EXCLUDED ... :)
(: ’back’ facing up: :)

<block top="{$block/@back}" bottom="{$block/@front}"
left="{$block/@left}" right="{$block/@right}"
front="{$block/@top}" back="{$block/@bottom}" />,

<block top="{$block/@back}" bottom="{$block/@front}"
left="{$block/@top}" right="{$block/@bottom}"
front="{$block/@right}" back="{$block/@left}" />,

<block top="{$block/@back}" bottom="{$block/@front}"
left="{$block/@right}" right="{$block/@left}"
front="{$block/@bottom}" back="{$block/@top}" />,

<block top="{$block/@back}" bottom="{$block/@front}"
left="{$block/@bottom}" right="{$block/@top}"
front="{$block/@left}" back="{$block/@right}" /> };

After having introduced different block rotations for variables $R1, $R2, $R3, and $R4 using
the above functions, those of their combinations that were compatible with each other were
returned as solutions, as follows:

where blocks:RotationsCompatible(($R1, $R2, $R3, $R4))
return <solution>{$R1, $R2, $R3, $R4}</solution>

The compatibility of the rotated blocks was tested with the function RotationsCompatible().
This was done by checking that each block differed from the preceding ones by the color of
each of its visible faces, as follows:

declare function blocks:RotationsCompatible($blocks as element(block)+)
as xs:boolean {

every $i in 2 to count($blocks) satisfies
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not($blocks[$i]/@left = $blocks[position() lt $i]/@left) and
not($blocks[$i]/@right = $blocks[position() lt $i]/@right) and
not($blocks[$i]/@front = $blocks[position() lt $i]/@front) and
not($blocks[$i]/@back = $blocks[position() lt $i]/@back) };

A quantified expression (every $i in ... satisfies ...) and the use of general
comparisons to test the attributes of the ith block against all preceding blocks provided an
intuitive way to express the condition of rotation compatibility.

Altogether, the FLWOR expression described above found a single solution shown below:

<solution>
<block bottom="green" back="white" front="yellow"

left="yellow" right="red" top="green"/>
<block bottom="red" back="red" front="green"

left="white" right="yellow" top="red"/>
<block bottom="yellow" back="green" front="white"

left="red" right="green" top="white"/>
<block bottom="white" back="yellow" front="red"

left="green" right="white" top="red"/>
</solution>

The evaluation of this program took about 2.3 s. The program was also optimized by replacing
the call of the RotationsCompatible() function by a conjunction of 12 specialized conditions
which did not use quantification (every-in). The optimized conditions use value comparisons
between the attributes of the first and the second block, and general comparisons to compare
the attributes of the third and of the fourth block against their predecessors. The resulting
program is less elegant, but on the other hand it runs clearly faster, in about 1.2 s. With larger
instances it would be reasonable to extend partial solutions gradually, similarly to Sections 4.1
and 4.3, by generating only rotations which are compatible with previous ones, instead of the
above “generate-and-test-all” approach.

A generalization of Instant Insanity with arbitrarily many cubes and equally many colors is
known to be NP-hard [27]. Finding a solution to the above 4-cube puzzle manually, by playing
with a set of cubes, is not too tedious; actually it is quite fun. On the other hand, checking
that there are no other solutions seems reasonable to do programmatically instead of manually.
Below we have an example of a puzzle which has indeed two unique solutions.

4.3. Tricky Triangles

Next we present an XQuery solution to a “Tricky Triangles” puzzle (trademark of Dan Gilbert
Art Group). A Tricky Triangles puzzle consists of nine triangular cards decorated with figures,
say, of animals; see Fig. 16. The task is to arrange the cards into a 3 × 3 triangle so that the
figures at the joining edges match. The cards of the specific puzzle considered here contain
figures of five different kinds of dolphins: a dark blue, a light blue, a white, and two green
ones, big and small. To make it easy to test which figures match, their parts were encoded as
opposite integers, as shown in Table I. Notice that the puzzle shown in Fig. 16 is assembled
incorrectly: the second row contains a mismatch between the rear of the light-blue dolphin (4)
and the tail of a dark-blue dolphin (-2).
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Figure 16. A “Tricky Triangles” puzzle (published with Dan Gilbert’s permission). Numbers used for
encoding figures have been added on top of the original pieces.

Table I. The encoding used for parts of dolphin figures

Dolphin Head Front Rear Tail
Dark blue 1 -1 2 -2
Light blue 3 -3 4 -4
Green, big NA 5 -5 NA
Green, small 6 -6 NA NA
White 7 -7 8 -8

Our XQuery solution represents the cards by empty card elements. Parts of the
figures are represented by attributes side1, side2 and side3 in a clock-wise order
of card edges. For example, the top-most card of Fig. 16, and the one below
it, are represented by the elements <card side1="-4" side2="-6" side3="5"/> and
<card side1="6" side2="4" side3="-3"/>. The nine cards are introduced to the program
as the value of the below global variable:

declare variable $cards := (
<card side1="1" side2="7" side3="6"/>, <card side1="7" side2="-2" side3="6"/>,
<card side1="-4" side2="-6" side3="5"/>, <card side1="-1" side2="-5" side3="2"/>,
<card side1="-2" side2="-6" side3="5"/>, <card side1="-1" side2="-8" side3="2"/>,
<card side1="4" side2="-3" side3="6"/>, <card side1="8" side2="3" side3="-7"/>,
<card side1="8" side2="-5" side3="-7"/> );
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The solution needs to consider rotations of cards, which are generated using the below
rotations() function. The function returns a new card element, which represents the three
rotations of its input $card by its child elements of type turn:

declare function tr:rotations($card as element(card)) as element(card) {
<card>
<turn side1="{$card/@side1}" side2="{$card/@side2}" side3="{$card/@side3}"/>
<turn side1="{$card/@side3}" side2="{$card/@side1}" side3="{$card/@side2}"/>
<turn side1="{$card/@side2}" side2="{$card/@side3}" side3="{$card/@side1}"/>

</card> };

Based on the above constructs, the program solves the puzzle by generating satisfying
arrangements of rotated cards using a solutions() function, whose code is given in Fig. 17.
The function is invoked as follows:

1 let $cardsRotated := $cards/tr:rotations(.)
2 return tr:solutions($cardsRotated)

XPath 2.0 and XQuery allow arbitrary expressions as location path steps, including user-
defined functions. This convenient feature is applied above on line 1 to replace each of the
empty card elements by a non-empty one which represents rotations by its child elements.

The solution is based on placing cards (possibly rotated) in the nine slots of the big triangle,
starting from top. Subsequent slots are filled in an order which allows the next card to be
chosen from among those that match an edge of a previously placed card; see, e.g., lines 8 and
11 in Fig. 17. The role of the variables used by function solutions() as place-holders of the
slots is shown in Fig. 18. When a turn of a card has been selected (e.g., on line 4), that card
is excluded from further consideration (e.g., on line 5). This is conveniently expressed as a
node-sequence difference (except) between $cards and the parent card element of the chosen
turn element. The chosen turn element retains its identity as a part of the XML structure,
which allows its parent element be accessed via the XPath parent axis.

An assignment statement can be simulated within a FLWOR expression using let clauses;
see lines 5, 9, 12, etc. Technically each of these let clauses introduces a new variable $cards
with a new scope. That is, occurrences of $cards in the right-hand side expression of a let
clause refer to its previous value, while occurrences of $cards in subsequent clauses of the
FLWOR expression refer to the new variable declared by this let clause.

Tricky Triangles give raise to surprisingly many ways of arranging cards. Any of the nine
cards can be placed in the first slot as three rotations. The next slot can be filled by any of
the remaining eight cards, each again as three rotations, and so fourth. Thus there are in total

(3 · 9) · (3 · 8) · · · (3 · 1) = 39 · 9! = 7, 142, 567, 040

different arrangements. This number counts rotations of the entire puzzle as different
arrangements. Disregarding them, the number of unique arrangements is “only”
7, 142, 567, 040/3 = 2, 380, 855, 680. The strategy of placing cards one-by-one in slots whose
neighboring cards restrict the number of matching possibilities was quite effective for
reducing the search. The number of possible values that are examined for the ith variable,
for i = 1, . . . , 9, is shown in Table II both for a brute-force strategy that generates all
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1 declare function tr:solutions($cards as element(card)+) as element(solution)* {
2
3 (: Start from the top card, $c1: :)
4 for $c1 in $cards/turn
5 let $cards := $cards except $c1/parent::card
6
7 (: Then try matching rotations for the middle card of the second row: :)
8 for $c3 in $cards/turn[@side1 = -$c1/@side2]
9 let $cards := $cards except $c3/parent::card

10
11 for $c2 in $cards/turn[@side1 = -$c3/@side3]
12 let $cards := $cards except $c2/parent::card
13
14 for $c4 in $cards/turn[@side3 = -$c3/@side2]
15 let $cards := $cards except $c4/parent::card
16
17 for $c6 in $cards/turn[@side1 = -$c2/@side2]
18 let $cards := $cards except $c6/parent::card
19
20 for $c5 in $cards/turn[@side1 = -$c6/@side3]
21 let $cards := $cards except $c5/parent::card
22
23 for $c7 in $cards/turn[@side3 = -$c6/@side2]
24 let $cards := $cards except $c7/parent::card
25
26 for $c8 in $cards/turn[@side1 = -$c4/@side2 and
27 @side3 = -$c7/@side1]
28 let $cards := $cards except $c8/parent::card
29
30 for $c9 in $cards/turn[@side3 = -$c8/@side2]
31 return <solution>{$c1, $c2, $c3, $c4, $c5, $c6, $c7, $c8, $c9}</solution> };

Figure 17. An XQuery function for solving “Tricky Triangles”

$c1

$c3

$c9$c7$c5

$c2 $c4

$c8$c6

Figure 18. The role of variables used for solving “Tricky Triangles”
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Table II. Number of possible assignments to different card positions

Strategy 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
all-inclusive 27 648 13,608 244,944 4 · 106 4 · 107 4 · 108 2 · 109 7 · 109

tr:solutions() 27 48 81 129 138 135 123 12 6

possibilities without considering the matching of figures, and the strategy used by function
tr:solutions(). (Numbers above a million are approximate values in the table.)

Bitner and Reingold have mentioned this kind of search rearrangement as one of the general
backtrack programming techniques, and given it the following description [6]:

In general, nodes of low degree should occur early in the search tree, and nodes of
high degree should occur later. Since preclusion frequently occurs at a fixed depth,
fewer nodes may need to be examined. When faced with the choice of several ways
of extending the partial solution (i.e. which square to tile next or in which column
to place the next queen [. . . ]), we choose the one that offers the fewest alternatives.

Similar search rearrangement for solving Sudoku puzzles is considered in Section 4.4.
The described XQuery program is quite efficient; it uses about 0.8 s of execution time and

about 30 MB of main memory to find two unique solutions to the puzzle, which are represented
by the below elements:

<solution>
<turn side1="6" side2="1" side3="7" />
<turn side1="-2" side2="-6" side3="5" />
<turn side1="-1" side2="-8" side3="2" />
<turn side1="-5" side2="-7" side3="8" />
<turn side1="3" side2="-7" side3="8" />
<turn side1="6" side2="4" side3="-3" />
<turn side1="-6" side2="5" side3="-4" />
<turn side1="7" side2="-2" side3="6" />
<turn side1="-1" side2="-5" side3="2" />

</solution>
<solution>
<turn side1="-1" side2="-8" side3="2" />
<turn side1="7" side2="6" side3="1" />
<turn side1="8" side2="-5" side3="-7" />
<turn side1="-2" side2="-6" side3="5" />
<turn side1="4" side2="-3" side3="6" />
<turn side1="-6" side2="5" side3="-4" />
<turn side1="2" side2="-1" side3="-5" />
<turn side1="6" side2="7" side3="-2" />
<turn side1="8" side2="3" side3="-7" />

</solution>

The program produces actually six different solutions, by presenting the above unique solutions
as three rotations (of the entire puzzle). There does not seem to be an obvious trick to avoid
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1 7 9

3 2 8

9 6 5

5 3 9

1 8 2

6 4

3 1

4 7

7 3

<board>
<row>1,0,0,0,0,7,0,9,0</row>
<row>0,3,0,0,2,0,0,0,8</row>
<row>0,0,9,6,0,0,5,0,0</row>
<row>0,0,5,3,0,0,9,0,0</row>
<row>0,1,0,0,8,0,0,0,2</row>
<row>6,0,0,0,0,4,0,0,0</row>
<row>3,0,0,0,0,0,0,1,0</row>
<row>0,4,0,0,0,0,0,0,7</row>
<row>0,0,7,0,0,0,3,0,0</row>

</board>

Figure 19. The “AI Escargot” Sudoku [29] (left; published with Arto Inkala’s permission) and its
representation as an XML document (right)

this. If the puzzle had a slot at the center of symmetry, identical solutions could be avoided
by placing each card in the center slot as one rotation only. This approach works on some
similar puzzles, like the “Ferocious Big Cats Nature Puzzle” (trademark of Lagoon Puzzles).
The latter puzzle consists of nine square tiles, instead of triangles, decorated with images of
tigers, lions, and panthers, which are to be arranged as a matching 3× 3 square.

4.4. Sudoku puzzles

A Sudoku puzzle consists of a 9× 9 grid of cells, some of which have been filled with numbers
from 1 to 9; see Fig. 19. The task is to fill the remaining cells with numbers from 1 to 9 so
that each number appears exactly once in each row, in each column, and in each of the nine
3×3 sub-grids. (We call these sub-grids “boxes”, and the entire 9×9 grid a “board”). Sudoku
puzzles are published in newspapers and in dedicated specialty magazines world-wide. They
have become so popular that computer security expert Ben Laurie has stated, according to
Norvig [40], that Sudoku is “a denial of service attack on human intellect”.

We describe a straight-forward XQuery program for solving Sudoku puzzles. The program
uses empty cell elements with attributes rowNum, colNum, val, and box to represent the
contents of the cells. The contents of empty cells is represented with val="0". For example,
the sixth and the seventh cell of the first row in Fig. 19 are represented by the below elements:

<cell rowNum="1" colNum="6" val="7" box="2" />
<cell rowNum="1" colNum="7" val="0" box="3" />

The XML format of Sudoku boards accepted as input by our program is shown in Fig. 19.
When the parameter $SudoDoc has been bound to the URI of such an input document, the
contents of the board are first transformed into a sequence of cell elements as follows:

let $cells := sudo:preprocess(doc($SudoDoc)//row)

The preprocess() function is relatively straight-forward; its declarations are shown in Fig. 20.
The function iterates over the rows of the input board, and their numbers (line 6). The contents
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1 declare namespace sudo="http://www.uef.fi/cs/XQueryTesting/sudoku";
2 declare variable $SudoDoc external;
3
4 (: Return the cells of the rows adorned with row, column and box numbers :)
5 declare function sudo:preprocess($rows as element(row)+) as element(cell)+ {
6 for $row at $rowNum in $rows
7 let $colContents := tokenize(string($row), ",\s*")
8 for $colCont at $colNum in $colContents
9 return <cell rowNum="{$rowNum}" colNum="{$colNum}"

10 val="{xs:integer($colCont)}" box="{sudo:boxNum($rowNum, $colNum)}" /> };
11
12 declare function sudo:boxNum($rowNum as xs:integer, $colNum as xs:integer)
13 as xs:integer { (: box number in 1,2,...,9 :)
14 (($rowNum - 1) idiv 3)*3 + ($colNum - 1) idiv 3 + 1 };

Figure 20. Declarations for loading a Sudoku board as an XML document

of each row is split into a sequence, $colContents, of strings which are separated by a comma
followed by zero or more white-space characters, using the built-in function tokenize() on
line 7. Finally, each of these content strings with its row and column number are used to
create a corresponding cell element (lines 9–10). The expression xs:integer($colCont) is
a type constructor, which casts its argument value to an integer. This is not necessary for the
solution, but it provides an easy trick to get rid of leading or trailing white-space that could
remain at the start of the first cell or at the end of the last cell as the result of splitting the
contents of a row. The idiv operator used on line 14 stands for truncating integer division.

After input preprocessing, the puzzle is solved with a simple recursive solution() function.
The function takes two input sequences. The first of them consists of the cells which have not
been assigned a value yet, and the other of the cells which have been assigned a value. The
solution() function is shown in Fig. 21, and it is invoked as follows:

let $freeCells := $cells[@val = 0],
$fixedCells := $cells except $freeCells

for $solution in sudo:solution($freeCells, $fixedCells)
return sudo:displayCells($solution/*)

The displayCells() function is a straight-forward routine for displaying the values of the
cells, which comprise the contents of a board, as a grid. For completeness also the code of the
displayCells() function is shown in Fig. 22.

When all cells have been filled, the solution() function returns the solution as a board
element which contains the filled cells (lines 3–4 in Fig. 21). Otherwise the function picks the
first of the unfilled cells and tries to fill it with numbers not already used in the same row,
cell or box (lines 6–11). The bar ‘|’ is a node sequence union operator. So the expression
($thisRow | $thisCol | $thisBox)/@val evaluates to the values of any cell that appears
in the same row, column or box with the chosen $cell. For each digit which is not among
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1 declare function sudo:solution($freeCells as element(cell)*,
2 $fixedCells as element(cell)+) as element(board)*
3 { if ( empty($freeCells) ) then (: the board is complete :)
4 <board>{$fixedCells}</board>
5 else
6 let $cell := $freeCells[1] (: pick the first unfilled cell :)
7 let $thisRow := $fixedCells[@rowNum eq $cell/@rowNum],
8 $thisCol := $fixedCells[@colNum eq $cell/@colNum],
9 $thisBox := $fixedCells[@box eq $cell/@box]

10 let $forbiddenVals := ($thisRow | $thisCol | $thisBox)/@val
11 for $val in (1 to 9)[not(. = $forbiddenVals)]
12 let $fixedCells2 :=
13 ($fixedCells, <cell val="{$val}">{ $cell/@*[name() ne "val"] }</cell>)
14 return sudo:solution($freeCells except $cell, $fixedCells2) };

Figure 21. The solution() function for solving Sudoku boards

1 declare variable $line-btw-boxes := "---------------------&#10;";
2
3 declare function sudo:displayCells($cells as element(cell)+) as xs:string+
4 { for $rowNum in (1 to 9)
5 return ( sudo:displayRow($cells[@rowNum = $rowNum]),
6 if ($rowNum eq 3 or $rowNum eq 6) then $line-btw-boxes
7 else () ) };
8
9 declare function sudo:displayRow($cells as element(cell)+) as xs:string+

10 { for $colNum in (1 to 9)
11 return ($cells[@colNum = $colNum]/@val, (: + add a bar btw boxes: :)
12 if ($colNum eq 3 or $colNum eq 6) then "|" else () ), "&#10;" };

Figure 22. Declarations for displaying Sudoku grids

these forbidden values, the function is invoked recursively, the chosen cell with its assigned
value added to the sequence of the filled cells (lines 12–13), and removed from the sequence of
the unfilled cells (line 14). The function name() invoked without an argument evaluates to the
name of the context node. So the expression $cell/@*[name() ne "val"] on line 13 copies
the attributes of the element $cell, except the val attribute, which is assigned a new value
by the element constructor.

Because the solution() function places the cells as the children of its result board element
in an irregular order, the display routine processes the rows (lines 4–5 in Fig. 22) and their
columns (lines 10–11) explicitly in the order of their numbers.

Human solvers seldom resort to brute-force search similar to the solution() function.
Rather, they apply sophisticated strategies for shortening the deduction of the missing values
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1 (: Return unfilled cells which have maximally many values in their row, column and box :)
2 declare function sudo:mostConstrainedFreeCells(
3 $freeCells as element(cell)+, $fixedCells as element(cell)+) as element(cell)* {
4 let $maxNumOfConstraints := max(for $cell in $freeCells
5 return sudo:numOfConstraints($cell, $fixedCells))
6 for $cell in $freeCells
7 where sudo:numOfConstraints($cell, $fixedCells) eq $maxNumOfConstraints
8 return $cell };
9

10 declare function sudo:numOfConstraints(
11 $cell as element(cell), $fixedCells as element(cell)+) as xs:integer {
12 let $neighbors := $fixedCells[@rowNum eq $cell/@rowNum or
13 @colNum eq $cell/@colNum or
14 @box eq $cell/@box]
15 return count(distinct-values($neighbors/@val)) };

Figure 23. Functions for greedy selection of cells by the number of their constraints

of cells; see, e.g., [15]. No advanced strategies were considered in our XQuery implementation,
except for a straight-forward search rearrangement by choosing the next cell to be filled from
among those which have the smallest number of possible assignments left. This greedy strategy
was realized by a function mostConstrainedFreeCells() shown in Fig. 23, which returns a
sequence of those currently unfilled cells that have a maximal number of different values
assigned in the neighborhood consisting of their row, column and box. The function is invoked
from the solution() function (as a replacement of line 6 in Fig. 21) as follows:

(: pick some maximally constrained cell :)
let $cell := sudo:mostConstrainedFreeCells($freeCells, $fixedCells)[1]

An auxiliary function numOfConstraints() (lines 10–15 in Fig. 23) counts how many different
numbers have been assigned in the row, column and box of a given cell. This function is first
used to find the maximum number of constraints among any unfilled cells (lines 4–5), and then
to select those of them that have this many constraints (lines 6–8).

The efficiency of the program and the effectiveness of the greedy search rearrangement varies
considerably based on the puzzle instance. Results of a few sample runs are shown in Table III.
The puzzles identified as easy004 and hard004 are the puzzles published with number 004,
respectively, under the “Easy” and the “Hard” category by Livewire Puzzles§. Escargot is the
puzzle shown in Fig. 19, which was published by Inkala in 2006 as “the most difficult Sudoku
puzzle” [29]. Fiendish 2 is a puzzle found with that name in [54]. Inkala10 is another difficult
puzzle by Inkala taken from [39]. The puzzles named minimal17 and double16 are from [17,
p. 83]. The first one of them is an example of a correct puzzle with only 17 fixed cells, which

§http://www.puzzles.ca/sudoku.html

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 00:1–99
Prepared using speauth.cls



36 P. KILPELÄINEN

Table III. XQuery time and memory usage on some Sudoku puzzles

PUZZLE UNOPTIMIZED WITH SEARCH REARRANGEMENT
time memory time (% or unopt) memory (% or unopt)

easy004 1.1 s 36 MB 1.2 s 120% 48 MB 133%
hard004 2.9 s 146 MB 1.6 s 55% 82 MB 56%
Escargot 4.0 s 272 MB 4.8 s 120% 344 MB 126%
Fiendish 2 6.9 s 357 MB 4.0 s 58% 344 MB 96%
Inkala10 7.1 s 356 MB 4.4 s 62% 344 MB 97%
minimal17 145.3 s 401 MB 90.3 s 62% 381 MB 95%
double16 158.5 s 411 MB 26.1 s 16% 354 MB 86%

seems to be the minimum for a puzzle with a single solution [17]. The double16 puzzle has
only 16 initially fixed cells and yields two alternative solutions.

The generalized version of Sudoku is, again, known to be a computationally hard problem.
Yato and Seta have shown that finding solutions to Sudoku puzzles which use n2 symbols on
an n2 × n2 grid is NP-hard [56].

5. Discussion

We have seen examples of several XQuery features which are convenient for solving recreational
problems and puzzles. In this section we discuss the usability of XQuery as a tool for problem
solving, based on these examples.

Compositionality and orthogonality of combining sequence-valued expressions facilitates the
writing of programs in general. Generation and filtering of sequences yield easy solutions
for some problems; see, e.g., Section 3.1. The FLWOR expression, which provides built-in
support for creating and testing multiple variable bindings, is an easy means to simulate
non-deterministic search; this was especially present in Section 4. Easy application of an
expression to each item of a sequence, either using a FLWOR expression (e.g., line 2 of the
permutations() function on page 13) or as a location path step applicable to a sequence of
nodes (e.g., in the invocation of the rotations() function on page 29) is a convenient feature.
The existential semantics of general comparisons provides a compact and natural expression
for many conditions, and quantified Boolean expressions likewise. The latter were applied
especially in the solution of the stamp problem (Fig. 7 of page 19), and the features were used
together in the RotationsCompatible() function (on page 26).

In general, XML/XPath trees provide a generic representation of symbolic data, and user-
defined recursive functions provide a generic means of repetition. Both were utilized in most
of examples above.

XQuery has also drawbacks and limitations which we shall be aware of, too. One is that
XQuery provides no support for solution-at-a-time processing. XQuery expressions which
evaluate to a complete sequence of values cannot be used to specify infinite results in
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the style of lazy functional programming or the backtracking of Prolog. Another high-level
restriction is that XQuery does not comprise a real constraint solver. Solutions based on
binding variables to values from a finite set of candidates support solving smallish instances of
integer programming. On the other hand, many practical optimization problems can be cast
and solved as instances of linear programming (see, e.g., [16, Chap. 7]), where the variables
take values from uncountable subsets of reals.

The programs that we have seen are mainly brute-force solutions to combinatorial search
problems. Since many of these problems are computationally hard, such solutions are
necessarily applicable to smallish problem instances only, even when optimized with effective
heuristics. Nevertheless, there is a niche for such solutions: some problem instances are too
tedious to solve manually, but not too complex for computerized brute-force search. On such
problem instances, straight-forward computer-based solutions, like those above, can be valuable
help for human problem solving.

The lack of an assignment statement may be the biggest inconvenience for programmers
accustomed with procedural languages. The lack of an assignment statement can largely be
circumvented by the conventions of functional programming, that is, by passing the changed
values as parameters to recursive procedures. This style of programming places challenges
on efficient implementations. For example, the Saxon processor would benefit of a better
implementation of tail recursion. When the depth of recursion exceeds a few thousand
invocations, Saxon may either report a run-time error or throw a StackOverflowError
exception. (This limitation may be inherited from Java [50] through its use as Saxon’s
implementation language.)

A fundamental restriction of XQuery variables is that they are purely a query-level concept.
Variables can be used as a reference to the value that has been bound to them, but they cannot
be manipulated or passed around uninstantiated, for example in a sequence or as a part of a
tree structure. This is in contrast with, say, incomplete data structures, which are a powerful
and efficient Prolog programming technique [49, Chap. 15].

How well would XQuery rate as a problem solving language? A “problem-solving language”
is not a precisely defined concept. Problem solving has traditionally been considered as a sub-
field of Artificial Intelligence (AI). Comparing features of XQuery against features considered
useful for writing AI applications provides one way of reflecting on XQuery’s problem-solving
capabilities. We will consider below features of AI languages as of early 80’s, which Elaine
Rich has analyzed in her textbook [46, Sec. 12.1].

Many of the desirable features of AI languages discussed by Rich are found also in XQuery.
XQuery sequences provide good facilities for manipulating lists, with some reservations on
the lack of nested sequences. The XML Schema type system employed by XQuery provides
a variety of data types to describe the many kinds of information a large system needs. For
example, a rich collection of built-in operations for manipulating dates, times and durations
are available (not considered in this article). XML/XPath trees provide facilities for building
complex knowledge structures. XML elements can be viewed as generic record structures, which
allow arbitrary repetition and nesting of sub-structures, and flexible access via location path
expressions. Ability to decompose the system into manageable units is supported in XQuery by
user-defined functions. Functions and related declarations can also be grouped inside library
modules, which support the development of larger XQuery applications. (Implementation of
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library modules is an optional feature of XQuery.) Recursion and FLWOR expressions provide
flexible control structures, but on the other hand several familiar control structures are excluded
from XQuery. Late binding for such things as the size of a data structure or the type of an
object to be operated on are useful in many AI programs. XQuery supports late binding via
elements and sequences whose size does not need to be known in advance. XQuery also contains
instance-of and typeswitch expressions, which allow different branches of the program to
be evaluated based on the types of expression values.

The rest of Rich’s requirements are not that well satisfied by XQuery. Sufficient efficiency
is a relative notion, which depends on system requirements. We have found the efficiency of
Saxon mostly sufficient for the experiments presented in this article.

Other desirable features of AI programming languages are clearly not met by XQuery.
XQuery includes no features for interaction with the user. Pattern matching to determine
control is not supported either, but XPath location path expressions provide a flexible pattern-
matching based mechanism for accessing contents of XML structures. XQuery does not
comprise a theorem-prover and thus supports no features for guiding deduction, like goal-
directed behavior or attention focusing, unless the generate-and-test capabilities of FLWOR
expressions and quantified Boolean expressions are considered as a form of automated
deduction. Finally, AI programs often need the ability to intermix procedures and data, which
is currently not supported by XQuery. There are plans to include higher order functions in
the next version of XQuery [19]. Higher order functions allow one to pass a function as an
argument to another function and to invoke a function that has been passed as an argument.

Bitner and Reingold [6] have mentioned four generally applicable heuristics for pruning
the search space of backtracking programs. These are preclusion, branch merging, search
rearrangement, and branch and bound. We have encountered examples of the first three of
these heuristics in the XQuery programs above. Branch and bound is a search space pruning
heuristic applicable to optimization problems, using a bound function for the value of the
solutions which are obtainable as completions of a partial solution; see, e.g., [35, Sec. 12.2]. We
did not consider optimization problems, and thus branch and bound was not relevant to our
examples. Branch and bound involves storing partial solutions in a data structure like a priority
queue. It is not difficult to use XQuery sequences (as a 2-heap) to implement priority queues,
but we will not explore this possibility further. It could be an interesting topic of further
study to consider how far XQuery can pushed as a data structure implementation language,
along the lines of functional data structures [42]. Using XQuery as a problem-solving language
may already be considered by some as pushing the language beyond its limits, but we find the
XQuery programs of this article to provide rather natural solutions to the considered problems.

6. Related work

This section lists additional references on the background and works related to this article.
A good discussion of the origins of XQuery and of the design considerations by the W3C

XML Query working group is given by Chamberlin [10]. Fuller’s on-line article [24] gives
practical advice for developing XQuery applications. Bamford et al. [2] describe a number
of XQuery-related projects and application scenarios. They also give an overview of XQuery
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implementation techniques, and review available XQuery implementations as of 2009. Kay
has discussed the design decisions of his Saxon XQuery implementation in [31]. Li, Liao, and
Yang [37] discuss an XQuery implementation using lazy evaluation. Extensions to XQuery to
support client-side programming have been proposed, implemented and demonstrated in [23].

Wan and Dobbie [53] have considered the data mining of association rules using XQuery.
A more efficient implementation of the Apriori algorithm is presented by Romei and Turini
[47], who describe an extension of XQuery, called XQuake, and a related system for XML data
mining.

The use of toy problems and puzzles in computer science education has been discussed and
advocated, for example, by Knuth [32, Ch. 10], Levitin and Papalaskari [36], and Parhami [44].
Puzzles, fun and games have some publications of their own related to computing. An interested
reader is referred to Knuth’s collected writings [34] or the proceedings of a triennial conference
on fun with algorithms [14, 8].

Sudoku solvers have been written in several languages; 24 of them can be found in Rosetta
Code¶, which is a “programming chrestomathy” site. The idea is to present solutions to the
same task in many different languages. Currently (in February 2011) there are 465 tasks for
which solutions in 358 languages are given. The coverage of XQuery is quite modest: only 7
pages are found under the “XQuery” category. (For example, the “Java” category contains 328
pages, and the “Python” category 444 pages. The “Puzzles” category contains no tasks yet,
but 21 pages are listed under the “Games” category.) Norvig has given a careful description
of a Sudoku solver written in Python [40].

Gallopoulos, Houstis and Rice [25] discuss the concept and potential of problem-solving
environments, which are computer systems that provide computational facilities to solve a
class of problems. A case-study based comparison of specific problem-solving technologies is
presented by Dhar and Ranganathan [18]. They compare and discuss integer programming vs
symbol-manipulation based expert systems as tools for solving constraint satisfaction problems,
using assignment of teachers to university courses as a case.

7. Conclusion

XQuery is a specialized XML query language, whose features allow convenient expression of
solutions to many combinatorial search problems. We have demonstrated this by presenting
XQuery solutions to several recreational problems and puzzles, and by discussing the usability
of XQuery as a problem-solving language. XQuery is a relatively new language, and thus the
techniques, tricks and conventions of XQuery programming are likely to mature in the close
future. Improvements to the presented programs are therefore likely, and welcome, both via
better algorithms and heuristics or via better XQuery programming techniques. Some attention
was paid to the efficiency of the presented solutions, but the main concern was in their clarity

¶ http://rosettacode.org/wiki/Main Page
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and simplicity. We hope that this has helped us to demonstrate the suitability and convenience
of XQuery as an interesting tool for experimental problem solving.
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