
 1

DLF ILS Discovery Interface Task
Group (ILS-DI)

Technical Recommendation

An API for effective interoperation between
integrated library systems and external discovery

applications

Revision 1.1

December 8, 2008

ILS-DI Task Group Members

John Mark Ockerbloom, Univ. of Penn. (chair)

Terry Reese, Oregon State Univ.

Patricia Martin, California Digital Library

Emily Lynema, North Carolina State Univ.

Todd Grappone, Univ. of Southern California

Dave Kennedy, Univ. of Maryland

David Bucknum, Library of Congress

Dianne McCutcheon, National Library of Medicine

 2

Table of Contents

1. Introduction..4

2. Methodology ...6

3. Summary of survey results ..8

4. Levels of interoperability, functions, and bindings10
4.1 Levels of interoperability .. 10
4.2 List of functions by level .. 11

Level 1: Basic Discovery Interfaces..11
Level 2: Elementary OPAC supplement ...11
Level 3: Elementary OPAC alternative ..11
Level 4: Robust/domain specific discovery platforms ..11

4.3 Abstract functions and bindings ... 12

5. Data aggregation ...14
5.1 Rationale and general issues .. 14
5.2 Sample use cases ... 14
5.3 Abstract Functions.. 15

5.3.1 HarvestBibliographicRecords (Level 1) ...15
5.3.2 HarvestExpandedRecords (Level 1)..17
5.3.3 HarvestAuthorityRecords (Level 2) ..19
5.3.4 HarvestHoldingsRecords (Level 2) ...21

5.4 Binding Details ... 22

6. Real Time Search ...25
6.1 Rationale and general issues .. 25
6.2 Sample use cases ... 25
6.3 Abstract Functions.. 26

6.3.1 GetAvailability (Level 1) ...26
6.3.2 GetRecords (Level 2) ...28
6.3.3 Search (Level 2) ...29
6.3.4 Scan (Level 2) ..31
6.3.5 GetAuthorityRecords (Level 2) ..32
6.3.6 SearchCourseReserves (Level 4) ...33
6.3.7. Explain (Level 4) ..35

6.4 Binding Details ... 36
6.4.1 Metadata Schemas ..36
6.4.2 Putting it all together...39

7. Patron functionality ...41
7.1 Rationale and general issues .. 41

 3

7.2 Abstract Functions.. 42
7.2.1 LookupPatron (Level 3) ..42
7.2.2 AuthenticatePatron (Level 3) ..42
7.2.3 GetPatronInfo (Level 3) ...43
7.2.4 GetPatronStatus (Level 3) ..44
7.2.5 GetServices (Level 3) ..45
7.2.6 RenewLoan (Level 3) ...46
7.2.7 HoldTitle (Level 3)...47
7.2.8 HoldItem (Level 3) ..48
7.2.9 CancelHold (Level 3) ...49
7.2.10 RecallItem (Level 3) ..50
7.2.11 CancelRecall (Level 3)..50

7.3 Binding Details ... 51

8. OPAC interaction..52
8.1 Rationale and general issues .. 52
8.2 Sample use cases ... 52
8.3 Abstract Behaviors and Functions... 52

8.3.1 GoToBibliographicRequestPage (Level 1) ..53
8.3.2 OutputRewritablePage behavior...54
8.3.3 OutputIntermediateFormat behavior ..55

9. Summary of Basic Discovery Interfaces compliance.....................57

10. Conclusion ...58

Appendices ..59
Appendix 1: Glossary of Terms ... 59
Appendix 2: Expanded Record using MARCXML and NCIP....................... 64
Appendix 3: Expanded Record using MODS and ISO Holdings (ISO 20775)
... 67
Appendix 4: GetAvailability Responses with DLF:simpleavailability 71
Appendix 5: GetAvailability Responses with NCIP, ISO Holdings (ISO
20775) and DLF:simpleavailability ... 72
Appendix 6: Enriched Scan Response with Subject Authority Index Entries
... 76
Appendix 7: The Berkeley Accord, Spring 2008 77

 4

1. Introduction

Today's libraries are outgrowing their traditional discovery tools. Information about
the resources available to library users is commonly maintained in an Integrated
Library System (ILS) that manages acquisitions, cataloging, circulation, and
reporting. The ILS also provides a discovery interface (commonly known as the
Online Public Access Catalog or "OPAC") that enables patrons to search for
resources. The integrated functions of the ILS have helped streamline library
operations, and the data the ILS manages gives valuable information about a
library's collections. In recent years, however, users have grown to expect more.
They want to be able to see resources available outside the scope of traditional ILS
holdings, including journal articles, resources available at nearby institutions, and
interactive forums. They want options for finding relevant content beyond traditional
author/title/subject searching or generic keyword searches. When they do find
something of interest, they want to use the library's services from wherever they are
to obtain it. They want to integrate their library research and discovery with the
other ways they carry on research and education, which often involve a wide variety
of applications and online services.

The public interfaces currently provided by most ILS's cannot by themselves meet
the demands of users in a world where the availability and sophistication of digital
resources and web applications has increased significantly. This does not simply
reflect badly designed interfaces; it reflects the fact that users now need a wider
variety of capabilities than any one software package can be expected to provide. At
the same time, the bibliographic data and services that the ILS manages are crucial
for the effective use of libraries. These trends imply that the ILS needs to become a
platform that supports appropriate interfaces for discovery applications living on top
of it instead of trying to do everything on its own.

At present, a number of ILS vendors provide proprietary methods for accessing their
underlying data stores. These may consist of command-line API tools accessible only
for a special fee to trained users, or direct SQL queries against the ILS's database
tables. While these methods provide much needed hooks into the ILS, making library
resources more widely usable requires a larger, standards-based API. To enable
outward integration, organizations will require that ILS's adopt a more standardized
method for providing API access to the data store, moving away from traditional
library-centric protocols like Z39.50 toward an XML-based web services API model.
Such a model will enable developers outside of the library community to more easily
access the information stored within the ILS, creating opportunities for greater
integration with non-library applications like course management tools.

In the summer of 2007, the Digital Library Federation convened the ILS Discovery
Interface Task Group (ILS-DI) to analyze issues involved in integrating integrated
library systems (ILS's) and discovery applications, and to create a technical proposal
for accomplishing such integration. This document is the technical recommendation
of that group. It includes

• An overview of our methodology and approach.
• A summary of a survey of the needs and discovery applications

implemented and desired by both academic and public libraries.

 5

• A set of abstract functions that external discovery applications need to be
able to invoke on ILS's and/or their data to support discovery and
delivery.

• Recommendations for concrete bindings (specific protocols, data
standards, etc.) that can be used to implement these functions in or on
top of existing and/or future ILS's.

• More detailed specification of a specific subset of functions, the "Basic
Discovery Interfaces", that have been agreed to by a group of ILS and
discovery application developers and vendors.

Providing a complete set of binding specifications and reference implementations is
beyond the scope of this small, short-term group, but we hope to provide sufficient
requirements and details to allow others to produce appropriate bindings and
implementations for the full set of recommendations we provide.

The initial recommendation of the group ("revision 1.0") was published in June 2008.
In August 2008, the Digital Library Federation convened a meeting of ILS and
discovery application developers to discuss implementing the “Basic Discovery
Interfaces” subset of the recommendations. One of the outcomes of the meeting
was a small set of recommended changes to our initial Basic Discovery Interfaces
specifications to make them clearer and more useful to implement. Revision 1.1,
this version of the recommendation, incorporates a number of those recommended
changes. We also have added a summary of the requirements for full support of
Basic Discovery Interfaces, and made some slight updates to reflect publication of
some related standards that we cite in this document.

 6

2. Methodology

The ILS-DI group is intended to be a small group working over a short duration:
eight library professionals from various research libraries across the US, working
from mid-2007 to early 2008. We aim to move quickly and work with the resources
available to the library community to produce simple, effective, and practical
recommendations. Towards that end, we aim in our recommendations to

1. Improve discovery and use of library resources via an open-ended

variety of external applications that build on the data and services of
the ILS. Our goal is not to specify or implement the applications themselves,
but to specify interfaces that the applications can use. These applications may
be local or remote, and may interact with more than just a single ILS.

2. Articulate a clear set of expectations so that ILS and discovery

application developers know what services to provide and how they will
interact. This includes describing specific functions and including their
requirements, inputs, and outputs at a level detailed enough that
implementers understand what to implement and clients understand what to
expect. For example, instead of simply saying "support networked search" we
describe the kinds of queries and responses that should be supported in a
search.

3. Make recommendations applicable to both existing and future

systems and technologies. Technologies, protocols, and standards are
changing rapidly, but the basic functional requirements for discovery
applications are in many ways independent of particular technologies.
Therefore, we aim to specify both abstract functions that describe desired
services in a technology-independent manner, and concrete bindings that
implement these functions using a particular technology or standard. For
example, we might specify an abstract function for extracting bibliographic
records from an ILS and then define a particular binding of that function that
provides MARCXML data via the OAI-PMH protocol. Note that bindings, as we
define them, specify the interactions between the client and the
implementation of a function, but do not dictate how the function is
implemented internally.

4. Ensure that the recommendations will be feasible to implement, in

whole or in significant part, in reasonable time and cost. Our aim is to keep
our recommendations as simple and lightweight as possible for the desired
functionality, and where possible be compatible with existing ILS's or a near-
term revision of an ILS. The ILS may well undergo substantial redesign in the
future, but we do not want to make a recommendation that cannot be
implemented without completely reinventing the ILS. To support near-term
prototyping, we suggest at least one binding for each function that uses
current technologies. We also specify various levels of interoperability to
support incremental adoption of the API recommendations. We are also
specifying and promoting specific interfaces for an initial "Basic Discovery
Interfaces" level of interoperability that supports the most crucial services for
external discovery applications, and that we hope can be implemented and
verified rapidly.

 7

5. Support interoperation and cooperation with applications outside the

traditional library domain. Library clientele today use a wide variety of
applications, some designed by libraries and some created by unrelated
entities, to locate interesting and relevant content. Once they find content,
they use additional applications to store, analyze, and reuse it. We want to
make sure that library resources can integrate well in this broader
environment, and avoid having them isolated in a "content silo". We also
want to recognize and reuse the standards and tools that are already in use
or development outside libraries and could work well with library content and
services. We do not want to needlessly limit these recommendations by
requiring the use of standards like MARC or Z39.50 that have very limited use
outside the library domain.

6. Be responsive to the user and developer community. To that end, we

have conducted a survey of library developers and decision-makers, which is
summarized in this report and described in more detail in a separate
document. We have also met with the developers of ILS's and discovery
applications to determine the most important functions for interoperation that
ILS vendors could support. The outcome of that meeting was the "Berkeley
Accord" (see Appendix 7), which includes the functions agreed on. These
functions are represented in this document as the Basic Discovery Interfaces,
or Level 1, interoperability profile.

We hope that these recommendations address many of the needs and desires
exposed in the survey responses, and that the functional definitions supply a
common reference point for rapid prototyping of interfaces and applications and
discussion of present and future ILS capabilities. The recommendations in our report
are meant as a starting point. As new applications and implementations are
developed, we expect that new functions and bindings may be defined and
publicized. Where appropriate, we hope that these can be incorporated into later
documents building on the recommendations we make here.

 8

3. Summary of survey results

In September 2007 the ILS-DI group conducted a library survey to measure
community interest in and current work toward enhancing interaction between the
ILS and external discovery applications. We received well over 100 responses.

Of the responders, more than 40% are considering adopting a new integrated library
system (ILS) within the next 2 years. Of those considering a new ILS, 35% are
evaluating open source options. 77% of responders are currently using external
(non-ILS) discovery applications to supplement the functionality of their OPAC (this
number includes integration of catalog results into a metasearch tool). Only 13% of
responders indicated that their institution has no plans over the next 2 years to
implement an external discovery application that utilizes catalog data. For
institutions already using an external discovery application in addition to (or instead
of) the traditional OPAC, the most common technique for accessing data managed
within the ILS is through data export (27%). Application handoff, where the external
discovery application links back to the OPAC, is commonly used to access
functionality available only within the ILS (20%).

The results of the survey show a strong desire to move beyond the current OPAC
functionality provided as part of the ILS. There was an overwhelming response that
the current ILS search was inadequate and that data within these systems is difficult
to work with, leading to slow adoption of new technology. Responses to open-ended
questions identified several areas as problematic for the current ILS systems.
Recurring themes from the responses include:

• Current systems are built for managing print collections and inventory.
The functionality important for this aspect of collection management is not
adequate for digital resources.

• Current OPACs are limited in their support for multiple metadata
standards and lack support for Functional Requirements for Bibliographic
Records (FRBR).

• The OPAC is limited in that it searches only items owned by the
subscribing institution.

• The OPAC interface is difficult to use and is not intuitive compared to other
search tools (particularly search engines and e-commerce sites). The
more powerful features of the catalog search are mostly hidden or
exposed in such a way as to confuse the users.

• Exploratory searching is difficult, and OPACs often lack basic features like
spell checking and good relevance algorithms. Functionality does not
encourage browsability or serendipity.

• Searching for known items can also be problematic, if users do not know
exact titles or filing rules.

While there were a few (less than 5) responders who thought that the OPAC
experience was adequate to good, the overwhelming response was to the contrary. A
common thread in the responses was that the "siloing" of information in the OPAC
was driving people to use services like Google and Amazon. The siloing effect refers
to the fact that catalog searching is generally limited to locally cataloged resources,
excluding licensed resources or other relevant external content. There were also a
number of responders already looking to broader bibliographic search tools as a
viable alternative to their OPAC. Some of the tools identified were vendor provided,

 9

some were open source search applications, and some were web-based services such
as OCLC's WorldCat.

More detailed survey results are described in a separate document, which will be
made available at the ILS-DI task group's website.

 10

4. Levels of interoperability, functions, and bindings

The remainder of this document contains specific recommendations for abstract ILS
functions that promote interoperability with external discovery applications, and
possible bindings for those functions. Since we do not expect that every ILS will
immediately support all the recommended functions, and since some functions are
more immediately needed, this section defines a series of usage profiles that
represent increasing levels of interoperability. These profiles were derived from our
own experiences building discovery tools, from needs expressed in the survey
responses, and from feedback from ILS and discovery application vendors. This
section also shows how the recommended functions are grouped into these profiles,
and explains the difference between abstract functions and concrete bindings.

4.1 Levels of interoperability

• Level 1: Basic discovery interfaces (BDI): This level represents a minimal
set of functions that are easily implemented and essential to support
applications that provide discovery outside the ILS. The focus is on enabling
external systems that provide new methods of discovery while still relying on
the ILS for other traditional OPAC functionality. Some important functions are
not included at this level, and we encourage vendors and developers to go
beyond it where possible.

• Level 2: Elementary OPAC supplement: This level describes a set of
functions needed for a reasonably broad range of practical discovery
applications that operate in tandem with the OPAC. We assume here, to be
appealing and straightforward for users, a supplement would need to support
essentially the same breadth of discovery as the elementary OPAC alternative
profile below. However, it might not need to support all the delivery functions,
if those were better handled by the underlying OPAC. This use case requires
functions for seamlessly passing control between the OPAC and external
discovery applications, in both directions (not just to the OPAC, as in Level 1).

• Level 3: Elementary OPAC alternative: This level describes a set of
functions needed for a practical discovery application that can operate
completely independently of the OPAC. Such an application would need the
essential discovery and delivery features of an OPAC, including search and
browse, real time availability information, delivery, and patron services. While
not all of the OPAC's functionality has to be replicated in the application,
enough has to be available to make it attractive to users as an alternative to
the normal OPAC interface.

• Level 4: Robust/domain specific discovery platforms: This level
describes functions required to build useful discovery applications beyond the
elementary level. It includes domain-specific functions that might not apply to
all libraries, but that might be important for particular kinds of libraries (such
as academic libraries dealing with course reserves or public libraries dealing
heavily in e-commerce to handle fine transactions.)

Several ILS and application vendors and developers have pledged native support for
Level 1 as described in this document. We therefore give special attention to the

 11

specifications of Level 1 functions in order to support rapid and uniform
implementation, in addition to summarizing these specifications in section 9.

4.2 List of functions by level

 Level 1: Basic Discovery Interfaces

• HarvestBibliographicRecords (Data Aggregation, section 5.3.1)
• HarvestExpandedRecords (Data Aggregation, section 5.3.2)
• GetAvailability (Real Time Search, section 6.3.1)
• GoToBibliographicRequestPage (OPAC interaction, section 8.3.1)

 Level 2: Elementary OPAC supplement

All of the above, plus

• HarvestAuthorityRecords (Data Aggregation, section 5.3.3)
• HarvestHoldingsRecords (Data Aggregation, section 5.3.4)
• GetRecords (Real Time Search, section 6.3.2)
• Search (Real Time Search, section 6.3.3)
• Scan (Real Time Search, section 6.3.4)
• GetAuthorityRecords (Real Time Search, section 6.3.5)
• Either OutputRewritablePage or OutputIntermediateFormat (OPAC

Interaction, sections 8.3.2 and 8.3.3)

 Level 3: Elementary OPAC alternative

All of the above, plus

• LookupPatron (Patron Functionality, section 7.2.1)
• AuthenticatePatron (Patron Functionality, section 7.2.2)
• GetPatronInfo (Patron Functionality, section 7.2.3)
• GetPatronStatus (Patron Functionality, section 7.2.4)
• GetServices (Patron Functionality, section 7.2.5)
• RenewLoan (Patron Functionality, section 7.2.6)
• HoldTitle (Patron Functionality, section 7.2.7)
• HoldItem (Patron Functionality, section 7.2.8)
• CancelHold (Patron Functionality, section 7.2.9)
• RecallItem (Patron Functionality, section 7.2.10)
• CancelRecall (Patron Functionality, section 7.2.11)

 Level 4: Robust/domain specific discovery platforms

All of the above, plus

• SearchCourseReserves (Real Time Search, section 6.3.6; for academic
libraries)

• Explain (Real Time Search, section 6.3.7)

 12

• Both OutputRewritablePage and OutputIntermediateFormat (OPAC
Interaction, sections 8.3.2 and 8.3.3)

4.3 Abstract functions and bindings

As noted earlier, this recommendation specifies both abstract functions (which do not
specify a particular technology to use, but impose requirements on what any
technology implementing them should do) and possible concrete bindings (which
specify particular technologies and interface details specific to those technologies).
For some bindings, we specify full details; for others, we simply note the possibility
of creating such bindings. Since the functions are abstract and multiple bindings are
possible, any ILS interface that implements this recommendation must fully and
openly specify its function bindings and how they can be used.

In the sections that follow, we group similar functions into 4 broad categories for
comprehensibility (Data aggregation, Real Time search, Patron functionality, and
OPAC interaction). Most of these categories contain functions across several levels in
the usage profiles.

This section describes the basic template we use for the description of abstract
functions and bindings.

Rationale and general issues

Each category section opens with an explanation of the purpose of the category of
functions. Where appropriate, example use cases for these functions are also
discussed. These are intended to aid in understanding the rationale and use of the
functions in the section.

Abstract functions

Each abstract function specification should include the following pieces of
information.

The name of the abstract function
This is an abstract name used for reference in this specification. Bindings do not
necessarily have to use this name, but it can simplify matters if they do.

Summary
A short synopsis of what the function does.

Parameters
For each possible input to the function, we give its name, what kind of parameter it
is, whether it is required or optional, and a short summary of its purpose.

Returns
A summary of the output of the function, if any.

Exceptional conditions
For each applicable exceptional condition, we give an abstract exception name, and a
summary of the conditions under which the exception may arise. Note that bindings

 13

do not have to actually model these as exceptions in their underlying protocol or
programming language, nor do they have to use the exact names for the exceptions.
Alternative mechanisms for dealing with exceptions may include null or otherwise
distinguished return values, auxiliary functions that signal the occurrence or
possibility of exceptional cases, or even appropriate interface documentation.
Bindings may also implement more specific exceptions than the ones defined here.

Side effects
If the function has any noticeable or lasting effect other than returning information,
that should be noted here. If not, "None" should be stated here.

Rationale
A short summary of why the function is needed. This should be relatively short, if it
appears at all; the rationale may already be covered in the general overview.

Notes
Paragraphs under the Notes heading go into more detail about the required behavior
of the function. They may also note some of the required data and services implied
by the functions, give some examples of how the function might be implemented or
used in practice, and give other hints for implementation and use.

Possible Bindings

We here name and briefly describe one or more ways in which this function could be
bound to a particular technology. Some of these may be more fully specified in the
general Binding details subsection below.

Binding details

We may have a general Binding details subsection after the abstract function
descriptions in each section. It can be useful to distance the bindings specifications
slightly from the function specifications, both because it helps avoid unnecessarily
tying abstract functions to a particular technology and because the same general
binding details may be used for multiple functions in a given category.

 14

5. Data aggregation

Many external discovery applications need to maintain external copies of ILS data. In
this section, we define standard functions for extracting, or harvesting, ILS data in
bulk.

5.1 Rationale and general issues

Many external discovery applications need data managed by the ILS to build their
own independent index of metadata. They may, for instance, build indexes that
support rapid search and retrieval techniques not supported by the ILS itself. They
may need a selective index of ILS metadata, or an aggregated index that combines
ILS metadata with information from other sources. Bibliographic metadata is of
particular interest, though authority, holdings, and other item metadata (such as
circulation information) can also be used by external applications.

While data harvested from the ILS might not be as current as the data within the
ILS, it is good enough for many purposes. This is particularly true since bibliographic
and authority metadata does not change frequently. Applications that need up-to-
the-minute ILS data can use real time search and query functions (the subject of the
next section). Real time queries can use the identifiers of harvested records to
retrieve additional or updated information related to harvested records as needed.
These identifiers may exist outside the actual metadata records (for example, a bibid
not included in a MARC record). Harvesting identifiers that persist over time is often
important for supporting further discovery and services on exported metadata.

Harvesting all of the relevant data from an ILS can be an expensive operation.
Selective harvesting, including incremental harvesting of data that has been added
or changed since a certain date or time, can greatly reduce the cost and should be
supported along with full harvesting. Selective harvesting based on pre-defined sets
may also be useful.

Selectively filtered harvesting may be necessary in some cases if metadata records
in the ILS have been licensed from a third party that does not allow redistribution. If
this is the case, the client doing the harvesting needs to be aware of such filtering.

There may be multiple formats for metadata records. For example, some
bibliographic records may be stored in MARC and others in MODS. It is also useful to
allow a variety of export formats for some records, such as native MARC 21, MARC-
XML, or Dublin Core.

5.2 Sample use cases

Some possible use cases include
• Building a duplicate index of ILS data; for example, a Lucene index of

bibliographic records that can be searched with facets using Solr.
• Making a specialized index of selected material from the ILS; for example, a

catalog of video recordings that supports special searches based on actors,
directors, and other video-specific features.

 15

• Making an aggregated index that includes records from multiple ILS's and
other databases that can be searched in a single operation, without requiring
slower or less reliable federated search mechanisms.

• Building an index of authority records to enable subject-based browsing,
name and subject suggestion features, and other discovery aids.

• Harvesting both bibliographic and licensing information (which may be
managed by the ILS or by another application such as an ERMS) to support
appropriately-scoped discovery services for different audiences and uses of
content.

• Harvesting holdings, item, and circulation information for services tailored to
a specific library environment, such as date-sensitive citation resolvers, or
relevance rankings weighted by usage. While circulation status on an item can
change minute to minute, the status of a typical item does not change
frequently. (Some books stay on the shelves for years without circulating, for
instance).

• Harvesting recently added or changed bibliographic records for current
awareness services.

• Harvesting for external metadata transformation, cleanup, relationship
(FRBRizing), vocabulary mapping and other processing services.

5.3 Abstract Functions

5.3.1 HarvestBibliographicRecords (Level 1)

Summary
Returns a set of bibliographic records (and their identifiers) that are relevant for
discovery in the ILS. When dates are specified for incremental harvesting, records
that are newly available for discovery, have been changed, or are no longer available
for discovery in the ILS are returned.

Parameters

• from (type date or time; optional): Only include records added or that have
changed content or status since the specified time.

• until (type date or time; optional): Only include records added or that have
changed content or status up to a specified time.

• format (type enum; optional): Specifies the metadata format to be returned.
• set (type string; optional): Only include records in the specified set. (In many

cases, this will effectively be an enumerated type.)

Returns
A list of identifiers, each accompanied either by a bibliographic record or a notice
that the associated record is no longer available for discovery.

Exceptional conditions

• NotSupported: The underlying system cannot accurately answer the query
with the supplied parameters.

• InvalidRequest: The underlying system considers the supplied parameters
invalid.

Side Effects
None

 16

Rationale
Many discovery systems need to index bibliographic records independently of the
ILS. This function allows all or part of an ILS' bibliographic records to be exported for
aggregation. The whole catalog can be exported, or just a selection, such as records
that have been changed since an earlier harvest.

Notes

The records should be in a well-specified format, and have all the details that are
relevant to discovery. If MARC records are maintained or produced by the ILS, then
records should be available in MARC or the semantic equivalent. However, the
records may be returned in alternative representations (and some bindings require
this). For example, a MARC record stored as relational table elements could be
returned in some procedural bindings as native Marc21 binary format, but in other
bindings, such as the OAI-PMH binding, the "marc21" MARC XML schema would be
returned.

This function should return records that are available for discovery. Records that are
in the ILS but are suppressed from user display, for example, are not available for
discovery. In incremental harvesting, records not available for discovery should be
identified as deleted records. It is permissible for records to be included that are
available for discovery, but have restricted export conditions. The documentation or
binding used for this interface should make it clear whether or not such records are
included, and under what conditions.

Each record must have a unique identifier, and that identifier is assumed to persist
(if not forever, then as long as the records are managed by the underlying ILS, and
the ILS undergoes no major changes), so that it can be used in later queries and
services. The ILS' "bib id" might serve as this identifier if it is reasonably stable. The
identifier is unique within the ILS, not necessarily globally.

To support the from and until parameters for incremental harvesting, the underlying
system must keep track of when bibliographic records were last changed (or added
for the first time). Any change that results in a different bibliographic record value,
or a different status value (such as suppressed to unsuppressed) should be tracked,
so that harvesters may keep up to date records. Tracking deleted records (or
records withdrawn from discovery) is necessary at least for a time. The ILS should
document how long such records are tracked, and track them at least long enough
that they will be noted in a reasonably scheduled incremental harvest..

The NotSupported condition may be needed to signal the caller that a date or set
restriction can't actually be calculated correctly. The caller may be able to get an
answer by removing the parameter that can't be handled. There may also be an
InvalidRequest response indicating that the system recognizes the request to be
invalid (which is distinct from not supporting the request). These two conditions may
be further specialized, into messages indicating unsupported sets, time formats,
metadata formats, etc. We do not at this time specify the full set of conditions.

The set parameter may be relevant for exporting well-defined subsets of the catalog.
For example, for supporting a video catalog, an ILS might place some bibliographic
records in the "video" set, and support full or incremental harvesting of just those
records.. We do not here specify which sets are defined, and how they are defined,

 17

but making it possible and convenient for special-purpose subsets to be available for
applications that need them is a useful ILS feature.

It may be useful for there to be functions that return the sets and metadata formats
available for harvesting, but it is not required in this profile. (In the OAI-PMH
binding, the ListSets and ListMetadataFormats verbs are suitable for this.)

Possible Bindings

• OAI-PMH binding (recommended): The functionality above maps fairly
straightforwardly to OAI-PMH. Detailed specification will be given in an OAI-
PMH binding profile (specified in section 5.4 below, "Binding details"). This
binding is required for full Basic Discovery Interface support. This implies
that BDI implementations must make Dublin Core records available, as
required by OAI-PMH, as well as MARC XML records where applicable.

• Other bindings: Since this is an expensive, data-intensive operation, it may
sometimes also be useful to have more specific library implementations closer
to the ILS. A Java or Perl object library can be more efficient in some cases,
for example. However, a web service binding (whether OAI-PMH or some
other implementation) is likely to be more portable and robust.

5.3.2 HarvestExpandedRecords (Level 1)

Summary
Returns a set of bibliographic records and supplementary information about the
associated holdings and items that are relevant for discovery in the ILS. When dates
are specified for incremental harvesting, records that are newly available for
discovery, have been changed, or are no longer available for discovery in the ILS are
returned.

Parameters

• from (type date or time; optional): Only include records added or that have
changed content or status since the specified time.

• until (type date or time; optional): Only include records add or that have
changed content or status up to a specified time.

• format (type enum; optional): Specifies the metadata format to be returned.
• set (type string; optional): Only include records in the specified set.

Returns
A list of identifiers, each accompanied either by an expanded record or a notice that
the associated record is no longer available for discovery.
The expanded records must include (where available):

• The bibliographic identifier
• The bibliographic record (identical to what is available via

HarvestBibliographicRecords)
• Any associated holdings records, where required. (See the notes for details.)
• Identifiers for any items associated with this record

For each of these items (or, where more suitable, for the entire record), the
expanded records should include (where available):

• Location (library building, and location within building
• Call number and scheme (e.g. LC, Dewey, SuDoc, NLM...)
• Format

 18

• Availability (available, not available, unknown). This may further include the
following:

• Status message (if not already part of location, 'checked out' vs. 'on
order', for example)

• Whether the item circulates
• Due date
• Number of holds

• Barcode
• Item notes
• Item creation date/time
• Total number of loans
• Item last activity date/time
• Other special information about the item kept by the ILS and important for

discovery

Exceptional conditions

• NotSupported: The underlying system cannot accurately answer the query
with the supplied parameters.

• InvalidRequest: The underlying system considers the supplied parameters
invalid.

Side Effects
None

Rationale
Searchable indexes to library holdings often need information beyond the
bibliographic record. Searchers may want to filter or sort by location, availability,
usage, and other ancillary data kept by an ILS but not present in the bibliographic
record. We therefore need ways of extracting this information as well.

Notes
Each record should have a unique bibliographic identifier, and that identifier is
assumed to persist (if not forever, then as long as the records are managed by the
underlying ILS, and the ILS undergoes no major changes), so that it can be used in
later queries and services. The ILS' "bib id" might serve as this identifier, for
instance, if it is reasonably stable. In some ILS's, holdings and item identifiers do not
persist as long as bibliographic identifiers, but they should be stable enough to
normally be consistent in the time period between harvests.

If MARC holdings records are maintained or produced by the ILS, then those records
must be included in the expanded records in MARC or the semantic equivalent.
However, the records may also be made available in alternative representations.
We strongly encourage the inclusion of holdings information in the expanded records
in the most useful and informative formats, and specifically require including MARC
holdings records when available (translated to XML in XML-based protocols).

To support the from and until parameters for incremental harvesting, the underlying
system must track when the bibliographic and/or marc holding records were last
changed (or added for the first time). Any change that results in a different
bibliographic record value, or a different status value (such as suppressed to
unsuppressed) should be tracked, so that harvesters may keep up to date records.
In addition, new or changed information associated with a bibliographic record, such
as an item's call number, location, or circulation status, should also trigger that

 19

record to be included in the next incremental harvest. Tracking deleted records (or
records withdrawn from discovery) is necessary at least for a time. The ILS should
document how long such records are tracked, and track them at least long enough
that they will be noted in a reasonably scheduled incremental harvest.
Of the optional extended information examples given above, the most important
elements, based on the libraries and applications we have surveyed, appear to be
call number, location, format (if maintained at the item level), and availability status,
as these are commonly used for display or filtering. Although availability status can
change from minute to minute, some discovery applications use it in their search
indexing to provide quick filtering of relevant materials. (In most libraries, only a
small fraction of items change their availability status on any give day.) A discovery
application can supplement harvested availability status with real time queries, or
frequent incremental record harvesting, to keep discovery displays up to date.

It is possible that an implementation of HarvestExpandedRecords may offer multiple
record formats in the return values, with more or less expanded details provided in
each. The more information is returned, the more useful the records may be for the
clients, but the more work is required both to pull together the records.

Possible Bindings

• OAI-PMH binding (recommended): The functionality above maps fairly
straightforwardly to OAI-PMH. Detailed specification will be given in an OAI-
PMH binding profile (specified in section 5.4 below). This binding is required
for full Basic Discovery Interface support. This implies that BDI
implementations must make Dublin Core records available, as required by
OAI-PMH, as well as MARC XML records where applicable.

• Other bindings: Since this is an expensive, data-intensive operation, it may
sometimes also be useful to have more specific library implementations closer
to the ILS. A Java or Perl object library can be more efficient in some cases,
for example. However, a web service binding (whether OAI-PMH or some
other implementation) is likely to be more portable and robust.

5.3.3 HarvestAuthorityRecords (Level 2)

Summary
Returns a set of authority records (and their identifiers) that are relevant for
discovery in the ILS. When dates are specified for incremental harvesting, records
that are newly available for discovery, have been changed, or are no longer available
for discovery in the ILS are returned.

Parameters

• from (type date or time; optional): Only include records added or that have
changed content or status since the specified time.

• until (type date or time; optional): Only include records added or that have
changed content or status up to a specified time.

• format (type enum; optional): Specifies the metadata format to be returned.
• set (type string; optional): Only include records in the specified set. (In many

cases, this will effectively be an enumerated type.)

Returns

 20

A list of authority records and their identifiers.

Exceptional conditions

• NotSupported: The underlying system cannot accurately answer the query
with the supplied parameters.

• InvalidRequest: The underlying system considers the supplied parameters
invalid.

Side Effects
None

Rationale
ILS authority records give important supplementary information to the bibliographic
records. For instance, they provide alternative forms of names and subjects, which
are very important to support in a robust search (since users may well use the
alternate forms rather than the "authorized" forms). They also include a wealth of
other information, such as notes on scope and relationships between entities that
can be indexed externally and used to suggest authoritative forms of names and
subjects for users working with natural language searches.

While some authority records are available from third parties, these records are not
easily downloadable in many cases. Furthermore, the authority records stored
directly in the ILS often form a customized set of information about authorized and
related headings of particular relevance to the resources managed by that ILS.

Notes
The records should be in a well-specified format, and have all the details that are
relevant to discovery. The exact representation of the records may change, however.
For example, a MARC record stored as relational table elements could be returned as
native marc21, or in the "marc21" XML schema used by OAI-PMH.

Each record should have a unique identifier, and that identifier is assumed to persist
(if not forever, then as long as the records are managed by the underlying ILS, and
the ILS undergoes no major changes), so that it can be used in later queries and
services. The ILS' "authority id" may serve as this identifier if it is reasonably stable.

To support the from and until parameters, the underlying system must track when
authority records were last changed (or added for the first time).

The NotSupported condition may be needed to signal the caller that a date or set
restriction can't actually be calculated correctly. The caller may be able to get an
answer by removing the parameter that can't be handled. There may also be an
InvalidRequest response indicating that the system recognizes the request to be
invalid (which is distinct from not supporting the request). These two conditions may
be further specialized, into messages indicating unsupported sets, time formats,
metadata formats, etc. We do not at this time specify the full set of conditions.

It may be useful to define sets for different kinds of authorities, so that, for instance,
name and subject authority records can be harvested separately if desired.

Possible Bindings

• OAI-PMH binding: The functionality above maps fairly straightforwardly to
OAI-PMH. Using the OAI-PMH binding, authority records could be defined as a

 21

specific set or class of records to be harvested. Detailed specifications of an
OAI-PMH binding can be found below in section 5.4, "Binding details".

• Other bindings: Since this is an expensive, data-intensive operation, it may
sometimes also be useful to have more specific library implementations closer
to the ILS. A Java or Perl object library can be more efficient in some cases,
for example. However, a web service binding (whether OAI-PMH or some
other implementation) is likely to be more portable and robust.

5.3.4 HarvestHoldingsRecords (Level 2)

Summary
Returns a set of structured (generally MARC) holdings records (and their identifiers)
that are available for discovery in the ILS. When dates are specified for incremental
harvesting, records that are newly available for discovery, have been changed, or
are no longer available for discovery in the ILS are returned.

Parameters

• from (type date or time; optional): Only include records added or changed
since the specified time.

• until (type date or time; optional): Only include records added or changed up
to the specified time

• format (type string; optional): Specifies the metadata format to be returned
• set (type string; optional): Only include records in the specified set.

Returns
A list of holdings records and identifiers for holdings and associated bibliographic
records.

Exceptional conditions

• NotSupported: The underlying system cannot accurately answer the query
with the supplied parameters.

• InvalidRequest: The underlying system considers the supplied parameters
invalid.

Side Effects
None

Rationale
Many discovery applications can use data from MARC holdings records to provide
such information as call numbers, location of materials and extent of serial holdings.
This function allows all or part of an ILS' MARC holdings records to be harvested for
aggregation. The full set of holdings in the catalog can be harvested, or just a
selection, such as records that have been changed since an earlier query. While
holdings information may be returned in HarvestExpandedRecords (see above), it
can also be useful to have a function specifically for retrieving holdings information.

Notes
The records should be in a well-specified format (generally based on MARC holdings)
and have all the details that are relevant to determine the extent of holdings
inasmuch as the data from the ILS can provide. The exact representation of the
records may change, however. For example, a MARC record stored as relational table
elements could be returned as a MARC holdings record in native MARC21 or MARC

 22

XML or in ISO 20775, an XML holdings schema.

Each holdings record should have a unique identifier, and that identifier is assumed
to persist (within the underlying ILS), so that it can be used in later queries. In order
for external applications to correctly associate these holdings records with a
bibliographic record, the unique identifier of the associated bibliographic record must
also be included.

To support the from parameter for incremental harvesting, the underlying system
must track when holdings records were last changed (or added). The NotSupported
exception may be needed to signal the caller that a date or set restriction can't
actually be calculated correctly. The caller may be able to get an answer by removing
the parameter that can't be handled.

If the implementation of HarvestExpandedRecords includes holdings records, it is
permissible for this function to be implemented by the same underlying method, as
this function effectively returns a subset of the data in HarvestExpandedRecords in
that case.

Possible Bindings

OAI-PMH binding: The functionality above can be implemented in OAI-PMH.
Holdings export support could be implemented as a set within the larger context of
available records. Detailed specification will be given in an OAI-PMH binding profile
(specified in the following section).

5.4 Binding Details

OAI binding
OAI-PMH gives a fairly straightforward binding for the Data Aggregation functionality.

The HarvestBibliographicRecords function, for instance, can be bound to OAI-PMH's
ListRecords function, with the since parameter modeled by ListRecords's from
element, and the set parameter modeled by ListRecords's setSpec element. The
exceptions above would be implemented by the more specific error messages of OAI-
PMH (badArgument, noRecordsMatch, etc.)

In the return value, the OAI-PMH record header identifier would consist of a constant
prefix followed by the bibliographic identifier, and the record metadata element
would consist of an XML encoding of the bibliographic record. In the common case
where the ILS maintained MARC 21 records, OAI-PMH's "marc21" MARC XML record
schema could be used. Note that OAI-PMH requires export of unqualified Dublin
Core versions of the records as well, and support of both the "from" and "until"
options. (Supporting both "from" and "until" is also highly recommended in other
bindings.) Some of our function specifications also require supporting the deleted
records features of OAI-PMH.

If a single OAI-PMH interface binds multiple aggregation functions, it may need to
use set prefixes to distinguish object spaces. If both bibliographic and authority
records are returned via the same interface, for example, the setSpec "bib" could be
used for bibliographic records, and the setSpec "auth" for authority records. Then,
sets in each function would be modeled by subsets; for example, the set "video" in

 23

the HarvestBibliographicRecords function, if defined, would be modeled in the OAI-
PMH interface by the set "bib:video". As an alternative to function-specific sets,
harvesting functions could be handled by different OAI-PMH base URLs, so that
bibliographic records are harvested in one place, authority records in another, and so
on. As another alternative, HarvestBibliographicRecords and
HarvestExpandedRecords could be implemented for the same sets, but return
different metadata formats.

A special-purpose element in the OAI-PMH Identify return value would describe the
functions supported, the set namespaces used, if applicable, and other exceptional
conditions and implementation details a client should be aware of. (This is how the
NotSupported exceptional condition would be handled in this case, since OAI-PMH
does not support general-purpose exception handling.)

We define the element as follows:

• ilsharvest is the top level element. It contains one or more of the following
elements:

o harvestcollection element, identifying a particular collection of
records available for harvesting via this service.

 It has the attribute type which describes the type of collection.
The following attribute values are supported here:
• "bibliographic" for bibliographic records
• "authority" for authority records
• "expanded" for expanded records
• "holdings" for holdings records

 harvestcollection also has an optional set element. The content
is a string that identifies the setspec that should be used to
harvest the collection, if any. (If omitted, it's assumed that all
the records in the service are from this collection.)

 harvestcollection also has an optional fullmdformats element.
The content is one or more fullmdformat elements that
contain strings that identify the recommended metadata
formats for harvesting full information from this collection. This
is to distinguish them from other metadata formats listed in the
OAI ListMetadataFormats request for the set that might contain
reduced information. For example, marc21 format may contain
information that's stripped out of the oai_dc version.

 harvestcollection also has an optional embargoed element,
that specifies what is done with records that should not be
exported externally.
• The embargoed element has an attribute included that

says whether or not embargoed records are included.
Defined values are "true" and "false".

• The suppressed element also has an optional inset element.
Its content is the name of the set used to harvest only
embargoed records, if such a set exists. If available, this
would ordinarily be a subset of the set used for this
collection.

• The embargoed element also has an optional outset
element. Its content is the name of the set used to harvest
only non-suppressed records, if such a set exists. If
available, this would ordinarily be a subset of the set used
for this collection.

 24

 harvestcollection also has an optional notes element. Its
content includes notes about what kinds of records should be
expected in this collection, and other notes about the collection
of interest to harvesters. One possible use of this is to describe
what kinds of information is in the "expanded" set, for instance.
It might be useful to have a structured description of that, but
in this specification we just make it a free-text element.

For HarvestBibliographicRecords, the individual records should be available in the
oai_dc format, and should also be provided in the marc21 format, in addition to
other possible formats. These may either be returned as top-level elements, or
enclosed inside dlf:record elements, as described in section 6.4.

We do not here fully specify the exact format to use for HarvestExpandedRecords,
but it should return XML elements that include both the bibliographic record and the
associated holdings and/or item data for that record. The bibliographic records
embedded in the expanded records should be the same as those returned by
HarvestBibliographicRecords. The top-level structure of the expanded records is
described in section 6.4.2, (Putting it all together), with examples of these records in
Appendixes 2 and 3 (each using different lower-level standards for bibliographic and
item information.) We are not aware of a current standard that includes all of the
information we suggest for HarvestExpandedRecords at all levels, but the XML
structures returned should include references to applicable schemas, documented so
that client implementers know how to retrieve relevant data. Data elements used in
multiple parts of this recommendation, such as in real time availability queries and
search results, should be consistent across functions wherever possible.

 25

6. Real Time Search

6.1 Rationale and general issues

While more and more organizations are looking to build discovery tools that make
use of locally harvested and indexed content from the ILS, accessing real time data
is necessary to integrate these tools with the ILS. Information such as an item's
circulation status or availability are sufficiently ephemeral to require real time data
access to accurately represent an item's current state. The presence of a real time
data access API will complement large scale data harvesting mechanisms provided
by the ILS. Record identifiers that can be used by external discovery applications to
correlate their harvested metadata with metadata stored in the ILS are important
requirements of this functionality.

The capacity to perform rich, real time searches also remains an important feature
for organizations looking to integrate ILS content into other types of applications.
Current generation library tools such as federated search rely on the ability to
perform real time searches against an institution's collections, including the catalog.
Although ILS vendors have provided access to some of this data via Z39.50, the
protocol's library-centric nature makes it marginally useful when dealing with non-
library groups interested in using ILS data.

Developed before the advent of XML or web services, Z39.50 has traditionally
provided the library community with a unified method for retrieving data across
ILS's. However, as the use of XML and XML-based protocols became more
commonplace, the U.S. Library of Congress issued a revision to the Z39.50 protocol
commonly known as the SRU/W standard. Adopted around 2000, the SRU/W
protocol replaces the antiquated Z39.50 protocol, providing access to one's
bibliographic content via an XML-based query service. In this specification, we
encourage adoption of the newer SRU/W standard, which encompasses the
functionality of z39.50. We also recommend that an SRU extension be implemented
for OpenSearch, allowing non-library applications that use the increasingly common
OpenSearch specification to easily include ILS data.

For most of the real time search functions, metadata could be returned in multiple
formats. While MARC, MARCXML, or MODS may be sufficient for bibliographic
information, other standards must be used for availability information and other
item-related data. Dublin Core may also be useful, particularly for course reserve
records. Where possible, API functions should allow a user to request a specific
metadata format, and API providers will need to identify the metadata formats they
support.

6.2 Sample use cases

Some possible use cases include:

• Enabling the ILS as a target for metasearching via a standard federated

search product or other discovery tool. Capabilities should include result
paging, sorting, and a minimum array of query types and limits. Ideally, the
search interface should be at least as feature-full as the OPAC's own search
interface.

 26

• Providing real time access to requested bibliographic record(s) via record
identifiers, including holdings, availability, and circulation information as
needed. For example, an external catalog search tool that uses a Lucene
index for bibliographic metadata might also display current item availability
retrieved via a real time query.

• Integrating course reserve lists maintained in the ILS with course
management systems, via a script or web service that retrieves a list of
reserves by course and/or instructor.

6.3 Abstract Functions

6.3.1 GetAvailability (Level 1)

Summary
Given a set of bibliographic or item identifiers, returns a list with availability of the
items associated with the identifiers.

Parameters

• id: (type string; required): list of either bibliographic or item identifiers
• id_type: (type string; required): defines the type of record identifier ("bib" or

"item") being used in the request.
• return_type (type string; optional): requests a particular level of detail

("bib" or "item) in reporting availability.
• return_fmt (type string: optional): requests a particular format or set of

formats in reporting availability.

Returns

• A list of item availability objects that represent all the availability of the items
associated with the requested bibliographic / item identifiers.

• If no items are associated with a requested system bibliographic identifier,
this may return an empty list or RecordNotFound message as the value in the
hash for that bibliographic identifier. Availability may be reported at the
bibliographic level if a bibliographic identifier is used in the request and there
is not a return_type parameter requesting item-level availability. Returning
bibliographic-level availability if requested is optional for Basic Discovery
Interfaces functionality. The dlf:simpleavailability schema binding supports
bibliographic-level as well as item-level availability, and is described in
Section 6.4.1.

• If no records match any of the requested identifiers, return null or
RecordNotFound message.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• RecordNotFound: Identified record was not found.

Side Effects
None

Rationale
Enables external discovery systems that maintain their own index of bibliographic
information to display real time availability of results, rather than availability data

 27

that is stale.

Notes

• Availability may be shown at the bibliographic level (if the availability data
structure supports this), at the item level, or both. If the identifiers
requested are of id_type "item" or the return_type parameter specifies
"item", then availability information must be shown at the item level if it
exists.

• Data returned from this function for each item should include the following
information, where it exists. (All of this information can be included in a
dlf:availability element.)
• bibliographicIdentifer (required, type string)
• itemIdentifier (required, type string)
• dateAvailable (required when applicable, type dateTime
• status (required, type string). The vocabulary for this return value

depends on the binding; in this recommendation, we show examples from
vocabularies defined for NCIP, ISO 20775, and dif:simpleavailability.

• It is also useful for this function to return additional data on request, such as
the data elements below. Some of this information is included in
dlf:availability; some can only be returned if other return formats are
requested::
• location (optional, type string, repeatable) - use case: patron going to

the stacks to pick something up
• call number (optional, type string) - use case: patron going to the stacks

to pick something up
• circulating (optional, type boolean) - whether material generally

circulates to the primary user population
• holdQueueLength (optional, type int) - number of holdings placed on

title/item

Possible Bindings

• Recommended binding: REST call and XML response
o REST URL template: GET

http://{service}/availability/?id={identifier}+{identifier}+{identifier}
&id_type=[item|bib]&return_type=[item|bib]&return_fmt={format}

o This binding is required for full Basic Discovery Interface support.

The return value should be a dlf:collection XML element with appropriate availability
elements. The default availability element is a dlf:simpleavailability element. The
structure of the dlf:collection element and the dlf:simpleavailability elements are
described in section 6.4.1. It is possible to include the dlf:simpleavailability element
at the bibliographic record level as well as the item level. Examples of valid
GetAvailability responses using dlf:simpleavailability can be found in Appendix 4.

As described in section 6.4.1, multiple representations of availability may be
returned. The simplest possible response, and the one required for full Basic
Discovery Interface support, uses the dlf:simpleavailability element. For more
detailed availability, NCIP or ISO 20775 Holdings schemas could be used. Examples
of valid GetAvailability responses using NCIP, and ISO Holdings (in combination with
dlf:simpleavailability) can be found in Appendix 5.

 28

Other Bindings
• SRU/W: While SRU/W may not be a perfect match for this functionality,

the ability to define and create context sets for rendering data elements
should provide a great deal of flexibility, allowing SRU/W to accommodate
the requested data.

• OpenURL: An OpenURL structure could be used to define a structured
URL to request information, although OpenURL does not define a response
format for the requested data. We do not define a particular OpenURL
structure to use in this document.

6.3.2 GetRecords (Level 2)

Summary
Given a list of record identifiers, returns a list of record objects that contain
bibliographic information, as well as associated holdings and item information. The
caller may request a specific metadata schema for the record objects to be returned.
Individual API providers will need to enumerate the supported metadata schemas.
This function behaves similarly to HarvestBibliographicRecords and
HarvestExpandedRecords in Data Aggregation, but allows quick, real time lookup by
bibliographic identifier.

Parameters

• id: (type string; required) - list of system record identifiers
• schema (type enum; optional) - Defines the metadata schema in which the

records are returned (ex: MARC21, MODS, Dublin Core). If not specified, a
default will be defined by the API provider.

Returns

• A list of record objects that represents the bibliographic record, as well as
associated holdings and item information for each requested bibliographic
identifier (unless the specified return schema does not support it). If a hash is
returned, the bibliographic identifier would be the key.

• If no records match any of the specified identifiers, return an empty list or
RecordNotFound message.

• If no record matches a specific bibliographic identifier, return null or
RecordNotFound message as the corresponding value for that bibliographic
identifier.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• UnsupportedSchema: The requested metadata schema is not supported by

the underlying system.
• RecordNotFound: No records were found when expected.

Side Effects
None

Rationale
For external discovery systems that do not maintain full MARC records in their local
indexes, this function allows quick lookup of this information. Discovery applications
could pass this detailed information to other tools like RefWorks or display the MARC
record directly to users without handing them off to a separate application. This

 29

function also allows external discovery applications to pull records from the ILS
individually if needed to replace data in local indexes.

Notes

• Returned data should include item identifiers and bibliographic identifiers.
• Maximum number of records that can be requested per query may need to be

locally defined.

Possible Bindings

• SRU/W - searchRetrieve operation
o The record schema used must be able to handle more than just

bibliographic information
o The service must allow a request to search by bibliographic identifier

via CQL
• OAI/PMH - GetRecord function

o this function retrieves only 1 record with 1 record identifier at a time
• Web Service Call

o Could be implemented as a web service directly on top of the ILS.
o RESTful URL template: GET

http://{service}/records?id=<identifier>+<identifier>+<identifier>...
[&schema=<x>]

6.3.3 Search (Level 2)

Summary
Returns a list of records in the ILS matching a search query.

Parameters

• query (type string; required): Query string; needs to include both index and
search terms.

• profile (type enum; required): Defines the type of query syntax being
utilized. For example, in SRU/W, users might define the profile as CQL. The
API provider would need to enumerate supported profile types.

• schema (type enum; optional): Defines the metadata schema in which the
records will be returned (ex: MARC21, MODS, Dublin Core). If not specified, a
default will be defined by the API provider.

• recordType: (type enum; optional): Specifies the type for the returned
records [brief, expanded]. The API provider would need to enumerate
supported and default record types.

• offset: (type int; optional): First record in a search result list to return.
• max: (type int: optional): Specifies the maximum number of records to be

returned in the query response. The API provider will need to establish a
default.

• sort: (type string; optional): Specifies a sort type (e.g. title, date, relevance,
etc.)

Returns

• A list of record objects that match the query. The level of information included
in those records is defined by the recordType parameter.

• When requested, the expanded record type should return records that include
all available bibliographic, holdings, and item/circulation information (the
same metadata returned for the GetRecords function).

 30

• When requested, we recommend that the brief record type should return
records that include title, author, imprint, isbn/issn, and bibliographic
identifier.

• If no records match query, returns an empty list or a RecordNotFound
message.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• UnsupportedProfile: The requested profile is not supported by the

underlying system.
• UnsupportedSchema: The requested metadata schema is not supported by

the underlying system.
• UnsupportedType: The requested record type is not supported by the

underlying system.
• UnsupportedQuery: The query as requested (index, truncation, etc.) is not

supported by the underlying system.
• RecordNotFound: No records were found.

Side Effects
None

Rationale
Some external discovery applications, metasearch for example, may want to obtain
results from the ILS on the fly for integration, rather than maintaining a separate
index of ILS data. Enabling machine-readable access to ILS data on the fly is crucial
for sending catalog data out of the catalog. Some external discovery applications
(particularly non-library applications) may be able to interact more easily with a real
time search service that provides for a simple query mechanism. Searching and
accessing course reserves materials is particularly relevant to integration with
campus course management systems at institutions where reserves are managed via
the ILS.

Notes

• Returned data should include item identifiers and bibliographic identifiers.
• Maximum number of records that can be requested per query may need to be

locally defined.
• To properly support Unicode searching, the API provider should specify

whether the indexed data uses composed or decomposed Unicode characters
(provider may support search for both) and whether diacritics have been
stripped in indexing process.

• Optimally, the API provider should perform the same transformation on the
incoming query string as used when data is being indexed.

• In addition to more traditional indexes like title or author, support for
instructor and course/section indexes would allow this function to retrieve
records by their association with reserves. However, to obtain course reserves
records that contain reserves information in addition to bibliographic
information, the SearchCourseReserves function is recommended.

Possible Bindings

• SRU/W searchRetrieve operation
o SRU: GET/POST

http://{service}/sru?operation=searchRetrieve&version=1.2&query=ti
tle=science\[&maximumRecords=20&recordSchema=dc\]

 31

o Needs to support instructor/course indexes if ILS supports course
reserve functionality

• OpenSearch
o Could be implemented as a web service directly on top of the ILS.

• Web Service call
o Could be implemented as a web service directly on top of the ILS.
o RESTful URL template: GET

http://{service}/search?query=<query>&profile=<x>[&schema=<x>
&recordType=(expanded|brief)&sort=<x>&max=<x>&offset=<x>]

6.3.4 Scan (Level 2)

Summary
Given a query, returns the index entries (and number of matching bibliographic
records) that are nearest to where the query would appear in the index.

Parameters

• query (type string; required): query string; needs to include both index and
search terms

• profile (type enum; required): defines the type of query syntax being
utilized. For example, in SRU/W, users would define profile as CQL. The API
provider would need to enumerate supported profile types.

• schema (type enum; optional): Defines the metadata schema for the records
to be returned (ex: SRU, <record>, RSS/Atom). If not specified, a default will
be defined by the API provider.

• position: (type int; optional): The position within the list of returned index
entries where the requested term(s) should occur. If position = 1, the
requested term should be the first term in the list returned. The default value
is 1.

• max: (type int: optional): Maximum number of index entries to be returned.
If not specified, a default will be defined by the API provider.

Returns
A list of index entries with number of matching bibliographic records near the user's
query term[s]. SRU/W has a pre-defined schema for a Scan response that can be
extended through use of the <sru:extraTermData> element. See Appendix 6 for an
example of how this might look.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• UnsupportedQuery: The query as requested (index, etc.) is not supported

by the underlying system.
• UnsupportedProfile: The requested profile is not supported by the

underlying system.
• UnsupportedSchema: The requested metadata schema is not supported by

the underlying system.

Side Effects
None

 32

Rationale
Sometimes it is desirable to browse a list of possible headings, rather than view a list
of individual records. For example, browsing the shelf by call number is a popular
feature that can help mimic the physical experience of browsing the shelves without
going to the library. Scan can also help support direct lookup of a title or author to
help determine for sure whether that title or author is part of a library's collection.

Notes
The API provider must specify which indexes are available to scan. We recommend
that a minimum set of indexes would include title, author, subject, and call number.
For the author and subject indexes, this recommendation assumes that the index has
been enriched with entries that represent cross-references and see also headings
from authority records.

To properly support Unicode searching, the API provider should specify whether the
indexed data uses composed or decomposed Unicode characters (provider may
support search for both) and whether diacritics have been stripped in indexing
process.

Optimally, the API provider should perform the same transformation on the incoming
query string as used when data is being indexed.

Possible Bindings

• SRU/W scan operation
• SRU: GET/POST

http://{service}/sru?operation=scan&version=1.2&scanClause=subject=d
eforestation&responsePosition=1&maximumTerms=25

• A pre-defined SRU schema exists for this response. See
http://www.loc.gov/standards/sru/specs/scan.html. In this scenario, one
could use the <sru:extraTermData> element combined with MADS
elements for each term returned to list an identifier for the authority, and
to enable information like 'see also' or 'see related headings'. For
example, the <mads:related> element would be included if an index entry
represents an authorized subject heading with several 'see also' headings.
The <mads:authority> element would be included if an index entry
represents an un-authorized 'see' heading that has been included in the
index. In that scenario, the <mads:authority> element would recommend
the authorized heading that should be used in place of the index entry.

• OpenSearch
• Web Service Call

• Could be implemented as a web service directly on top of the ILS.
• RESTful URL template: GET

http://{service}/scan?query=<query>&profile=<x>[&schema=<x>&max
=<x>&position=<x>]

6.3.5 GetAuthorityRecords (Level 2)

Summary
Given a list of authority record identifiers, returns a list of record objects that contain
the authority records. The function user may request a specific metadata schema for

 33

the record objects. Individual API providers will need to enumerate the schemas
supported in that system.

Parameters

• id (type [string]; required) - list of authority record identifiers
• schema (type enum; optional) - Specifies the metadata schema of records to

be returned (ex: MARC21, MARCXML, MADS, Dublin Core). If not specified, a
default will be defined by the API provider.

Returns

• A list/hash of record objects that represents the full authority record for each
requested authority record identifier. If using a hash, the authority record
identifier would the key.

• If no records match any of the specified identifiers, return an empty list or
RecordNotFound message.

• If no record matches a specific authority record identifier, return null or
RecordNotFound message as the corresponding value for that identifier.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• UnsupportedSchema: The requested metadata schema is not supported by

the underlying system.
• RecordNotFound: No records were found for this query.

Side Effects
None

Rationale
Some external discovery tools are built using authority records. This function allows
these systems to retrieve a full authority record on-the-fly, even if the full record is
not stored locally. It also allows locally cached records to be updated on an individual
basis.

Notes

• Returned data should include authority record identifiers.

Possible Bindings

• SRU/W - searchRetrieve operation
o must be able to make a request to search by authority record identifier

via CQL
• Web Service Call

o Could be implemented as a web service directly on top of the ILS.
o RESTful URL template: GET

http://{service}/authorities?id=<identifier>+<identifier>+<identifier
>...[&schema=<x>]

6.3.6 SearchCourseReserves (Level 4)

Summary
Retrieves course reserve records by specifying instructor and/or course and section.
API providers must enumerate the types of course reserve searches supported.

 34

Parameters
• query (type string; required) - Query string; needs to include both index and

search terms
• profile (type enum; required) - Defines the type of query syntax being

utilized. For example, in SRU/W, users would define profile as CQL.
• recordType: (type enum; optional) - Specifies the type for the returned

records. For example, brief or expanded. The API provider would need to
enumerate supported record types.

• schema (type enum; optional) - Specifies the metadata schema of records to
be returned (ex: Atom, RSS, Dublin Core, MARCXML). If not specified, a
default will be defined by the API provider.

Returns
A list of course reserve record objects that matched the user's query. The level of
information included in those records is defined by the recordType parameter.

• When requested, the expanded record type should return objects that include
all available information about course, section, and instructor, as well as a list
of bibliographic records with associated holdings/item information that are
associated with those courses.

• When requested, we recommend that the brief record type should return
records that include all available information about course, section, and
instructor, and a summary of the number of items on reserve for that
course/section/instructor.

• If no records match query, returns an empty list or a RecordNotFound
message.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.
• UnsupportedProfile: The requested profile is not supported by the

underlying system.
• UnsupportedQuery: The requested search type is not supported by the

underlying system.
• UnsupportedType: The requested record type is not supported by the

underlying system.
• UnsupportedSchema: The requested metadata schema is not supported by

the underlying system.
• RecordNotFound: No records could be found matching the request.

Side Effects
None

Rationale
Searching and accessing course reserve materials is particularly relevant to
integration with campus course management systems. While not all course reserve
systems are managed through the ILS, this section of the API is relevant for those
institutions where it is. (Any other system that manages course reserves could also
implement this.) It may be possible to utilize course and/or instructor querying via
the Search function defined previously, but the records returned in that case will
simply be a list of bibliographic records. This function provides the ability to retrieve
course and instructor information in combination with bibliographic records.

Notes

 35

• It would be useful to be able to search by department, course, section, and
instructor in combination (combining this with keyword searching would allow
even greater flexibility).

• Course level records should return a system identifier for a course.

Bindings

• OpenSearch
• SRU/W searchRetrieve operation

o Only if course/instructor indexes are searchable in SRU/W
implementation. Also need to define the XML response to come back.

o http://{service}/sru?operation=searchRetrieve&version=1.2&query=c
ourse=eng*\[&recordSchema=dc\]

• REST Web Service Call
o http://{service}/reserves?query=<query>&profile=<x>[&schema=<s

chema>&recordType=(brief|expanded)]
• Specific course:

http://{service}/reserves?course=eng201&profile=CQL&schema=dc&reco
rdType=brief

• More RESTful access to a specific course (not using a query language):
http://{service}/reserves/course/eng201?schema=dc&recordType=brief

6.3.7. Explain (Level 4)

Summary
Explain, in machine-readable format, the real time search functionality that is
supported by a given ILS/metadata provider.

Parameters
None

Returns
Summary of real time search functionality supported. This should describe the
functions, metadata schemes, character encoding, indexes, and other default
parameter values.

Exceptional conditions

• NotSupported: The underlying system does not support this type of request.

Side Effects
None

Rationale
Since some API providers may only implement some of the functionality described,
this is a standard way of identifying which parts of the functionality are available.

Bindings

• SRU/W explain operation
• OpenSearch

• May be able to provide a simplified version of this via an OpenSearch
description document.

 36

• http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_
description_document

• REST Web Service Call
• http://{service}/explain/

6.4 Binding Details

• SRU/W: http://www.loc.gov/standards/sru/
• OpenSearch: http://a9.com/-/company/opensearch.jsp

6.4.1 Metadata Schemas

In the abstract functions specified for the Real Time Search section, there are several
different types of metadata that might be transmitted between the ILS and the
requesting application. Where possible, it seems most efficient and re-usable to take
advantage of pre-existing defined schemas to represent this data. The members of
this task group are making recommendations for possible schemas that could
describe the desired information, however, we do not want to limit API implementers
and users to a single metadata schema. In some cases, the method of
implementation (ex: SRU vs. OAI-PMH) may constrain the data schemas that can be
used.

In general, we need to be able to describe bibliographic information, structured
MARC holdings information, item information, availability information, authority
information, and course reserve information in a standardized format. We must also
consider what metadata should be included in the response for a Scan request.

Bibliographic information
Libraries have been exchanging bibliographic information for a long time, so there
are many available schemas. Full bibliographic metadata should be returned in the
GetRecords and Search (when full record type is specified) functions for Real Time
Search. We strongly encourage API implementers to provide access to bibliographic
information in an XML format, in addition to (or instead of) the traditional marc21
(z39.2/ISO 2709). Other recommended schemas include:

• MARCXML: http://www.loc.gov/standards/marcxml/
• schema: http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd

• MODS: http://www.loc.gov/standards/mods/
• schema: http://www.loc.gov/standards/mods//v3/mods-3-3.xsd

• Dublin Core: http://dublincore.org/
• schema: http://dublincore.org/schemas/xmls/simpledc20021212.xsd

Structured Holdings information
MARC Holdings information has been less frequently included (and in less
standardized ways) through common data interchange protocols like z39.50. While
there is a stable marc21 holdings format, other XML options for fully describing
holdings information are still being standardized. Full holdings information should be
returned in the GetRecords and Search (when expanded record type is specified)
functions for Real Time Search. Other recommended schemas include:

• MARCXML: http://www.loc.gov/standards/marcxml/
• schema: http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd

 37

• ISO holdings (ISO 20775): http://www.loc.gov/standards/iso20775/
• For our examples, we used the schema at

http://www.loc.gov/standards/isohold/N130_ISOholdings_v6_1.xsd
• MODS: http://www.loc.gov/standards/mods/v3/mods-holdings.html

• Since MODS only allows for structured enumeration and chronology by
bringing in information specified with an external schema, we recommend
use of MARCXML or ISO Holdings rather than MODS where possible.

Item information
In addition to structured MARC holdings, bibliographic records are also usually
associated with item information describing physical items. Most ILS’s maintain this
valuable information in an un-standardized format not associated with traditional
MARC formats. Very few standardized schemas exist that can fully describe item
information and it has not been historically exchanged between libraries. Full item
and circulation information should be returned for the GetRecords and Search
functions (when expanded record type is specified), as well as for the
HarvestExpandedRecords function specified in section 5.3.2. This information could
also be returned for GetAvailability queries. Recommended schemas include:

• ISO holdings (ISO 20775): http://www.loc.gov/standards/iso20775/
• For our examples, we used the schema at

http://www.loc.gov/standards/isohold/N130_ISOholdings_v6_1.xsd
• NCIP Item element (see the Item Element Type in section 6.3):

http://www.niso.org/kst/reports/standards?step=2&gid=None&project_key=8
8add52c35a51f8acb31225a533599dfc679f913

o xsd schema:
http://ncip.envisionware.com/documentation/ncip_v1_0.xsd

o dtd schema:
http://ncip.envisionware.com/documentation/ncip_v1_0.dtd

Availability information
Availability information is a specific subset of item information that describes the
current circulation status of a physical item. While both NCIP and ISO Holdings
schemas can express most desired availability information, these standards are too
complex for a quick implementation of Level 1 GetAvailability functionality. As an
alternative, we define a simple availability schema that is used to describe the
required data elements for a GetAvailability response. This schema is required for full
Basic Discovery Interface support and can also be returned for functions such as
GetRecords, Search, and HarvestExpandedRecords, preferably in addition to a more
detailed item element.

• <dlf:simpleavailability> - used to enclose basic information about
availability. Depending on the context where it is used, it might describe
availability at the level of a particular physical item or at the level of the
bibliographic record.

• <dlf:identifier> - encloses the identifier of the resource described.
(required, minOccurs=1, maxOccurs=1)

• <dlf:availabilitystatus>: encloses one of the following string values:
"unknown", "available", "not available", or "possibly available". These
correspond to status codes in the ISO Holdings schema. For errors
(such as an unknown identifier or an unreachable database),
"unknown" may be used. For resources that may only be partially
available (as can occur for multi-item resources) or whose availability

 38

may be conditional on the status of the user, "possibly available" may
be used. (required, minOccurs=1, maxOccurs=1)

• <dlf:availabilitymsg>: Encloses a human-readable message with
more information on the item's availability, such as instructions for
obtaining the item, reasons that the item is not available, or
explanation of errors or unclear availability status. (optional)

• <dlf:location>: Encloses a human-readable message with more
information on the item's location. (optional)

• <dlf:dateavailable>: For items expected to be available at a future
date (such as the due date), this contains the date or the date and
time at which it is expected to be available. This element does not
need to be included when describing availability at the bibliographic
record level where multiple items might have different due dates. Date
and time formats should correspond to the W3C profile of ISO 8601
given at http://www.w3.org/TR/NOTE-datetime. Examples of valid
strings in this profile are "2008-04-21" and "2008-04-21T13:00-
05:00". (required when applicable and known, minOccurs=0,
maxOccurs=1)

Scan information
The Scan function represents a different type of search functionality than provided
by the other Real Time Search functions, in that it returns index entries, rather than
full records. We strongly encourage API implementers to enrich these index entries
with related or authorized forms of headings when users are scanning controlled
indexes, such as author and subject. One schema that we recommend is the SRU/W
Scan record format for returning index entries, with additional term data added to
use recording using MADS or MARCXML.

Appendix 6 shows an example of what such a record might look like.

Authority information
Full authority records should be returned in the GetAuthorityRecords function for
Real Time Search. Like bibliographic and holdings information, authority information
can be expressed using the marc21 authority format
(http://www.loc.gov/marc/authority/). However, we strongly encourage API
implementers to make the metadata available in an XML format. Other
recommended schemas include:

• MARCXML: http://www.loc.gov/standards/marcxml/

• schema: http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd
• MADS: http://www.loc.gov/standards/mads/

• Schema: http://www.loc.gov/standards/mads/mads.xsd

Course reserve information
As some institutions maintain course reserve records within the ILS, there is a need
to access these records as well. While individual items on reserve could be
represented with standard bibliographic / item information, course reserves also
involve information about courses and instructors. Course reserve records should be
returned in the SearchCourseReserves function for Real Time Search.

The members of this task group have not discovered a previously existing, openly
available metadata schema that will handle course reserve information. We

 39

encourage the development and promulgation of such schemas.

A data schema used to describe course reserve information could be hierarchical in
nature, based at the course at the root level, and would need to take the following
metadata into account.

Course

• Code (ex: eng221)
• Department
• Name (Introduction to Biology)
• Section (may be multiple Section elements per course)

o Number (ex: 001)
o Instructor
o Time Period (ex: Spring Session 2007-2008)
o Number of reserve materials

• Record - if recordType=expanded, include 1 or more record elements that
represent expanded bibliographic records associated with a section

6.4.2 Putting it all together

Since no single metadata schema recommended above specifies all the information
we would like to see made available for the GetRecords and Search functions (as well
as HarvestExpandedRecords in the Data Aggregation section), a technique is needed
to combine data elements from multiple schemas. We propose the use of very simple
XML elements to help bring these schemas together, nested according to the
indentation shown below. This schema can also be used in the GetAvailability
response.

• <dlf:collection> - use to enclose a group of records
• <dlf:record> - use to enclose an expanded record that may include

bibliographic, marc holdings, and item/circulation information
• <dlf:bibliographic> - use to enclose the bibliographic

description in the record. This element should include an "id"
attribute that contains the bibliographic identifier. In the
response to functions that do not require bibliographic
descriptions to be returned, such as GetAvailability, the
element may be empty (but should still include the id
attribute). (required, minOccurs=1, maxOccurs=1)

• <dlf:simpleavailability> - use to enclose basic information
about availability. At this level, it describes the availability of
the bibliographic resource in general. The same element can
also be used under dlf:item (see below) to describe the
availability of a particular accessible item within this
bibliographic resource. The structure of this element is
described in section 6.4.1 above.

• <dlf:holdings> - use to enclose structured holdings
information described with schemas such as MARC holdings and
ISO Holdings. (optional, minOccurs=0. maxOccurs=1)

 <dlf:holdingset> - use to represent a set of holdings,
that represent the entire record or a specific set of items
within that record. If there are multiple holdings records
that refer to different sets of items, they should appear

 40

in separate dlf:holdingset elements. (required,
minOccurs=1)

 <dlf:holdingsrec> - use to enclose a
representation of a specific holdings record for a
particular set of items. (required, minOccurs=1).
If ISO Holdings schema is used, this will contain
a <holdingsSimple> element to describe
individual items or a <holdingsStructured>
element to describe marc holdings information
for continuing resources. If MARC holdings is
used, this element will contain an appropriate
MARC xml representation, such as marc21.

 <dlf:items> - use when a structured holdings
record is associated with a particular set of items.
When used in a dlf:holdingset element, contains
a list of empty dlf:item elements, each with an id
attribute that contains the item id of an item
associated with this particular holding. These
items are described in detail in an element within
the dlf:holdingsrec (such as holdingsSimple) or in
a dlf:items element outside of the dlf:holdings
element (optional, minOccurs=0)

• <dlf:items> - use to enclose metadata for individual physical
items associated with the bibliographic record. No more than
one dlf:item element may be included per item in this element.
(optional in general, but required by some functions
minOccurs=0, maxOccurs=1)

• <dlf:item> - use to declare and/or describe individual
physical items. Must include an id attribute with the item
id. It may also contain metadata about the item. (Some
functions, like GetAvailability, require availability
metadata to be returned here, for example).. The
dlf:item element may contain multiple elements
describing the item in different formats. Types of
elements used for descriptions include
holdings:copyInformation (defined for ISO Holdings),
ncip:LookupItemResponse (defined for NCIP), or
dlf:simpleavailability (defined above).

Some examples of how a response including expanded records might look are given
in Appendix 2 (MARCXML bibliographic record + NCIP item information) and
Appendix 3 (MODS bibliographic record + ISO Holdings item information).

The XML schema definition for the elements described in this section can be found at
http://diglib.org/architectures/ilsdi/schemas/1.1/dlfexpanded.xsd

 41

7. Patron functionality

Discovery applications intended as alternatives to the OPAC will need to allow
patrons to access their account information in the OPAC as well as provide the
circulation and delivery functionality available in the OPAC. In this section, we will
define standard functions for interacting with ILS's circulation/delivery mechanisms
and for accessing patron account information.

7.1 Rationale and general issues

As an increasing number of institutions implement external discovery applications
and move away from reliance on the integrated OPAC, they are remembering that
patrons use the OPAC for more than just discovery - they also use it to manage their
account and request delivery of discovered materials. In order for discovery
applications to be used as OPAC alternatives, they need to be able to provide the
same level of discovery to delivery functionality that the out-of-the-box OPAC
provides. In addition, it is becoming increasingly desirable to enable patrons to
access account information outside of the library web site in the online environments
where they spend time: places like the campus portal, learning management
systems, or even Facebook. Discovery applications will need to interact with the ILS
in order to perform these functions. There are three categories of these functions
that are specified in this section: patron authentication, patron account retrieval, and
circulation/delivery transactions.

Patron authentication: Discovery applications that make use of ILS patron
information or allow a patron to perform some circulation activity will first need to
authenticate with the ILS. This is necessary to obtain the ILS patron identifier that
will be required to perform these patron account and circulation functions. There are
a few different use cases for obtaining the patron identifier from the ILS. For
instance, the discovery application may utilize the ILS as the authoritative source of
user information, and so may pass user credentials to the ILS, so that the ILS can
verify the credentials, and provide a persistent patron id back to the discovery
application. Or, the discovery application may use a different authoritative source of
user data, such as a campus directory, and may need the ILS to resolve the
directory id into the patron's ILS id. Or, the discovery application may need to verify
that a patron has an account in the ILS.

Patron account retrieval: Discovery applications may need to retrieve information
about a patron, after that patron has been authenticated in the ILS. For instance, the
discovery application may show a patron their library fines, current loans and status
of hold requests.

Circulation/delivery: The ILS can be configured with complex circulation logic and
policies that affect how an ILS handles these types of requests. For instance, the ILS
may be able to determine what the 'best' copy of a title is when a patron places a
hold request. Or the ILS may determine that an item cannot be picked up at a
certain location due to paging policies. Or a consortial ILS may be able to determine
from which location to place a hold request when a title is held by multiple consortial
members. To be clear, discovery applications should not try to replicate this logic.
Rather, discovery applications should request the ILS to perform these functions for
them. These functions are already implemented in the OPAC interface of the ILS. The
ILS should also expose the same logic to discovery applications via API requests.

 42

The functions that are being discussed in this section may alter data in the ILS. In
addition, these functions will be performed with respect to individual patrons in the
ILS. It is therefore very important that security and patron privacy are taken into
consideration when implementing these functions.

7.2 Abstract Functions

7.2.1 LookupPatron (Level 3)

Summary
Looks up a patron in the ILS by an identifier, and returns the ILS identifier for that
patron, aka the patron identifier.

Parameters

• id (type string; required): an identifier used to look up the patron in the
ILS

• id_type (type string; optional): the type of the identifier, as defined in
the ILS; e.g. Barcode, local_id

Returns
The ILS patron identifier that matches the lookup query is returned.
If no match is found, a PatronNotFound message is returned.

Exceptional conditions

• NotSupported: The function is not supported by the ILS.
• PatronNotFound: The requested patron could not be identified.

Side Effects
None

Rationale
Discovery applications will need to know the patron's primary ILS identifier in order
to perform other patron functions.

Notes

• The id types will be defined by the ILS and may vary between ILS vendors
and also between ILS installations. Therefore, there should be no constraints
placed on the id_type field.

• The ILS may choose whether or not to use id_type based on how ids are
stored in the ILS.

Possible Bindings

• NCIP: Lookup User Service
• must use either Unique User Id or Visible User Id

• SIP2: there is no binding for this function in the SIP2 protocol

7.2.2 AuthenticatePatron (Level 3)

Summary

 43

Authenticates a user's login credentials and returns the identifier for the patron.

Parameters

• username (type string; required)
• password (type string; required)

Returns

• The ILS patron identifier that matches the patron credentials.
If the username is not found or the password does not match,
PatronNotFound message is returned.

Exceptional conditions

• NotSupported - the function is not supported by the ILS
• NotAuthorized - the client attempting to use this function is not authorized

by the ILS. Note that this condition refers to authorization of the client
application, not the end user.

• PatronNotFound: The requested patron could not be identified.

Side Effects
No direct required side effects, though some ILS's may consider the application to be
authorized after this function is invoked.

Rationale
The discovery application may use the ILS as its authoritative source of user data.

Possible Bindings

• NCIP: Authenticate User service
• SIP2: Login command

7.2.3 GetPatronInfo (Level 3)

Summary
Returns specified information about the patron, based on options in the request. This
function can optionally return patron's contact information, fine information, hold
request information, loan information, and messages.

Parameters

• patronId (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

• showContact (type boolean; default true; optional): whether or not to
return patron's contact information in the response

• showFines (type boolean; default false; optional): whether or not to return
fine information in the response

• showHolds (type boolean; default false; optional): whether or not to return
hold request information in the response

• showLoans (type boolean; default false; optional): whether or not to return
loan information in the response

• showRecalls (type boolean; default false; optional): whether or not to return
recall information in the response

• showMessages (type boolean; default false; optional): whether or not to
return patron messages in the response

 44

Returns
• Requested information is returned about the patron
• If no match is found on the patronId, return PatronNotFound message
• Response should be well formatted to include identifiers for holds and loans.

Exceptional conditions

• NotSupported - This function is not supported by the ILS.
• NotAuthorized - The client attempting to use this function is not authorized

by the ILS.
• PatronNotFound: The requested patron could not be identified.

Side Effects
None

Rationale
Discovery application may need to display user's account information.

Notes

• Response should be well structured so that discovery application can retrieve
hold and loan identifiers from the response, in order to perform RenewLoan
and CancelHold functions.

Possible Bindings
• NCIP: Lookup User Service partially implements this function

• Has the ability to return fines, holds and loans.
• Does not have the ability to return messages or recalls.

• SIP2: Patron Information command partially implements this function
• Has the ability to return fines, holds, loans, and recalls.
• Does not have the ability to return messages.

7.2.4 GetPatronStatus (Level 3)

Summary
Returns a patron's status information from the ILS.

Parameters

• patronId (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

Returns

• Returns a message with patron's borrower type, status, and expiration
information.

• If no match found, returns PatronNotFound message

Exceptional conditions
• NotSupported - the function is not supported by the ILS
• NotAuthorized - the client attempting to use this function is not authorized

by the ILS
• PatronNotFound: The requested patron could not be identified.

Side Effects
None

 45

Rationale
Discovery applications may need to know patron's status in order to make
authorization decisions.

Notes

• The response may be a subset of the response for the GetPatronInfo function.

Possible Bindings
• NCIP - Lookup User Service
• SIP2 - Patron Status Request command

7.2.5 GetServices (Level 3)

Summary
Returns information about the services available on a particular item for a particular
patron.

Parameters

• patronId: (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

• itemId: (type string; required): system item identifier

Returns

• An enumerated list of services available for a particular patron and a
particular item.

Exceptional conditions

• NotSupported - the function is not supported by the ILS
• NotAuthorized - the client attempting to use this function is not authorized

by the ILS
• PatronNotFound: The requested patron could not be identified.
• RecordNotFound: The requested item could not be identified.

Side Effects
This function has no side effects.

Rationale
Which services are currently available to a patron at a particular moment in time for
a particular item is a complex calculation made by the ILS for every single
transaction. This function calculates whether the patron has the ability to perform
certain services (for example, a hold, recall, request, or check out), which may be
depend on whether the patron's account is blocked (for unpaid fines or other
reasons). Service availability may also depend on whether the patron's status in the
system (for example, grad student, faculty, undergraduate) has the ability to
perform the requested service for the requested item. (For example, circulation
policies may be calculated based on patron and item type.)

Returns
The response should include multiple <availableFor> elements to describe the
services available to the patron. Examples of services it might be useful to identify

 46

are: loan, request, recall, in building use, reproduce (some special collections
materials can't be photocopied).

• Both NCIP and ISO Holdings (ISO 20775) specify a possible list of
enumerated values that could serve as the starting point for a vocabulary of
available services. The existing values are listed below.
• ISO Holdings (http://www.loc.gov/standards/iso20775/)

o loan
o physical copy
o digital copy
o online access
o reference look-up
o other
o unspecified

• NCIP
http://www.niso.org/kst/reports/standards?step=2&gid=None&project_ke
y=88add52c35a51f8acb31225a533599dfc679f913

o Available For Supply Without Return
o In Library Use Only
o Limited Circulation, Long Loan Period
o Limited Circulation, Normal Loan Period
o Limited Circulation, Short Loan Period
o No Reproduction
o Not For Loan
o Overnight Only
o Renewals Not Permitted
o Supervision Required
o Term Loan
o Use Only In Controlled Access
o User Signature Required

Possible Bindings

• This functionality is not specified by NCIP or SIP2.
• Web service call - this function could be implemented as an XML based web

service on top of the ILS.
o RESTful URL template: GET

http://{service}/patron/<patronid>/item/<itemid>/services

7.2.6 RenewLoan (Level 3)

Summary
Extends the due date for a patron's existing loan.

Parameters

• patronId: (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

• itemId: (type string; required): system item identifier
• desired due date (type date, optional): the date the patron would like the

item returned by

Returns

 47

New loan message with the new due date.
If no items match the item identifier, returns RecordNotFound message.

Exceptional conditions

• NotRenewable - the item is not able to be renewed by the ILS
• NotSupported - the function is not supported by the ILS
• NotAuthorized - the client attempting to use this function is not authorized

by the ILS
• PatronNotFound: The requested patron could not be identified.
• RecordNotFound: The requested item could not be identified.

Side Effects
Date and loan are both updated.

Rationale
Patrons will want to renew their loans through their accustomed library interface.

Notes

• In discovery applications that do not support patron and circulation functions
(and thus are not OPAC alternatives), it may still be useful to hand off control
to the underlying OPAC to process renewals. Such application handoff is
described in section 8.

Possible Bindings
• NCIP - Renew Item Service
• SIP2 - Renew command

7.2.7 HoldTitle (Level 3)

Summary
Creates, for a patron, a title-level hold request on a given bibliographic record in the
ILS.

Parameters

• patronId (type string; required): the ILS identifier for the patron for whom
the request is placed

• bibId (type string; required): the ILS identifier for the bibliographic record on
which the request is placed

• requestLocation (type string; required): IP address where the end user
request is being placed

• pickupLocation (type string; optional): an identifier indicating the location
to which to deliver the item for pickup

• neededBeforeDate (type date or time; optional): date after which hold
request is no longer needed

• pickupExpiryDate (type date or time; optional): date after which item
returned to shelf if item is not picked up

Returns

• If a hold request is successfully placed, a response message indicates where
the item may be picked up and the date it expects the item to be available

• A restricted access message - qualified success message that title is not
holdable, but is accessible under certain conditions (i.e. does not circulate)

 48

• Title level hold not available message - message indicating the this title is not
requestable, but item level hold requests may be available

• NotHoldable message - error message that title is not holdable by this patron

Exceptional conditions

• NotSupported: the function is not supported by the ILS
• NotAuthorized: the client attempting to use this function is not authorized

by the ILS
• NotHoldable - the title cannot be held by the patron

Side Effects
A hold request is placed on a title in the ILS.

Rationale
Patrons will want to place hold requests on the titles that they discover. The
discovery application should not have to replicate the functionality that the ILS
provides in terms of determining best item. This function allows discovery application
to initiate a hold request with a patron id and bib id. A title-level hold request is a
hold request that is placed on the bibliographic record, rather than on an individual
item record, in the ILS.

Request location is required in order to allow ILS to determine pickup locations and
apply paging rules.

Possible Bindings

• NCIP - Request Item Service (though it needs to allow for specifying pickup
location)

• SIP2 - Hold command
• Web service call - this function could be implemented as an XML based web

service on top of the ILS

7.2.8 HoldItem (Level 3)

Summary
Creates, for a patron, an item-level hold request on a specific item of a bibliographic
record in the ILS.

Parameters

• patronId (type string; required): the ILS identifier for the patron for whom
the request is placed

• bibId (type string; required): the ILS identifier for the bibliographic record on
which the request is placed

• itemId (type string; required): the ILS identifier for the specific item on
which the request is placed

• pickupLocation (type string; optional): an identifier indicating the location
to which to deliver the item for pickup

• neededBeforeDate (type date or time; optional): date after which hold
request is no longer needed

• pickup expiry date (type date or time; optional): date after which item
returned to shelf if item is not picked up

Returns

 49

• If a hold request is successfully placed, a response message indicates where
the item may be picked up and the date it expects the item to be available

• A restricted access message - qualified success message that title is not
holdable, but is accessible under certain conditions (i.e. does not circulate)

• NotHoldable message - error message that title is not holdable by this patron

Exceptional conditions
• NotSupported - The ILS does not support this type of hold request.
• NotHoldable - the item cannot be held by the patron

Side Effects
Hold request is placed on an item in the ILS.

Rationale
Patrons will want to place hold requests on the items that they discover This function
allows the user to determine which item is the best option to request.

An item-level hold request is a hold request that is placed on a specific item, rather
than on the bibliographic record, in the ILS.

Possible Bindings

• NCIP - Request Item Service (though it needs to allow for specifying
pickup location)

• SIP2 - Hold command
• Web service call - this function could be implemented as an XML based web

service on top of the ILS

7.2.9 CancelHold (Level 3)

Summary
Cancels an active hold request for the patron.

Parameters

• patronId (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

• itemId: (type string; required): system item identifier

Returns
Confirmation message indicating success or failure.
If no patron records match the patron identifier, returns PatronNotFound message.
If no items match the item identifier, returns RecordNotFound message.

• NotSupported: the function is not supported by the ILS
• NotAuthorized: the client attempting to use this function is not authorized

by the ILS
• NotCanceled: the hold could not be canceled by the ILS
• PatronNotFound: The requested patron could not be identified.
• RecordNotFound: The requested item could not be identified.

Side Effects
Hold request is canceled.

 50

Rationale
Patrons will want to cancel holds as well as make them.

Possible Bindings

• NCIP - Cancel Request Item Service
• SIP2 - Hold command

7.2.10 RecallItem (Level 3)

Summary
Initiates a recall of an item that is loaned out.

Parameters

• itemId (type string; required): the ILS identifier for the specific item on
which the recall is placed

• desiredDueDate (type date or time; optional)

Returns

• If recall is successfully placed on the item, a message will be returned
indicating an estimated delivery date

• If not eligible for recall, an error message is returned to this effect.

Exceptional conditions
• NotSupported - the function is not supported by the ILS
• NotAuthorized - the client attempting to use this function is not authorized

by the ILS

Rationale
If patrons discover items they want that are on loan, they may want to recall them.

Possible Bindings

• NCIP - Recall Item Service
• SIP2 - there is no binding for this function in the SIP2 protocol

7.2.11 CancelRecall (Level 3)

Summary
This function cancels an active recall request for the patron.

Parameters

• patronId (type string; required): the unique patron identifier in the ILS; the
same identifier returned by LookupPatron or AuthenticatePatron

• itemId: (type string; required): system item identifier

Returns
Confirmation message indicating success or failure of the cancellation.
If no patron records match the patron identifier, returns PatronNotFound message
If no items match the item identifier, returns RecordNotFound message.

Exceptional conditions

• NotSupported - the function is not supported by the ILS

 51

• NotAuthorized - the client attempting to use this function is not authorized
by the ILS

• NotCanceled - the item was not able to be canceled by the ILS
• PatronNotFound: The requested patron could not be identified.
• RecordNotFound: The requested item could not be identified.

Side Effects
Recall is canceled

Rationale
Patrons may need to cancel as well as make recalls.

Possible Bindings

• NCIP - Cancel Recall Item Service
• SIP2 - there is no binding for this function in the SIP2 protocol

7.3 Binding Details

• NCIP - http://www.niso.org/committees/committee_at.html
• SIP2 -

http://multimedia.mmm.com/mws/mediawebserver.dyn?6666660Zjcf6lVs6EV
s66S0LeCOrrrrQ-

 52

8. OPAC interaction

In this section, we define standard functions and behaviors for interactions between
discovery applications and the traditional ILS OPAC. These include functionality for
transferring the user from the discovery application to an appropriate context in the
OPAC for further requests or information on discovered content. They also include
functionality for transfers in the other direction, from the OPAC to discovery
applications, and for embedding external information within an OPAC application.

8.1 Rationale and general issues

The ILS today includes a public catalog interface (the OPAC) that will continue to be
provided and used in many libraries. Users of the OPAC may want to access the
additional information and services provided by external applications, either jumping
out from the OPAC to these applications, or by embedding application content into
OPAC displays, to provide seamless discovery services.

In addition, the OPAC may continue to be the easiest place to provide certain kinds
of library services (such as patron requests). In such cases, one might need to be
able to carry a user context from an external application into the OPAC, and later
back to the external application.

8.2 Sample use cases

Some possible use cases include

• Adding links to external resources from within the OPAC (e.g. "See comments
on this book; buy on Amazon; try this search again on WorldCat")

• Embedding additional information on items in the OPAC (e.g. tags,
LibraryThing-like services)

• Embedding alternate formats for reuse (e.g. formatted citations, links to
download cites into citation manager, etc.)

• Linking back to an OPAC's book information page, request page, or other
results page from an external application.

8.3 Abstract Behaviors and Functions

Practically speaking, the ability to embed external information and links into an OPAC
application may be better understood as a behavior of an ILS OPAC than a function,
and the recommended bindings reflect this understanding. (That is to say, they give
a general mechanism for embedding content and links into a user interface, rather
than specifying a particular output for a particular input.) From an abstract point of
view, however, it can be useful to consider two kinds of functions that model these
behaviors and take different kinds of parameters.

An incoming-oriented function that models how ILS applications can be linked to or
embedded from external applications is essentially a behavior that takes request
parameters, specifying the ILS function or display that is being linked to or
embedded. Essentially, this kind of function points into the ILS from an external
application.

 53

An outgoing-oriented function that models how external content or links are
embedded into a page is essentially a behavior that takes output configuration
parameters, which control the final form of output. This could consist of the content
to be embedded, for instance, or a second function that transforms the default
content into the desired content. Essentially, this kind of function points out of the
ILS into an external application.

 The Level 1 (Basic Discovery Interfaces) profile requires that inbound links be
possible to any item in the OPAC for further user requests.

The Level 2 (Elementary OPAC Supplement) profile requires that either
OutputRewritablePage or OutputIntermediateFormat be implemented. The Level 4
profile calls for both of those two behaviors.

8.3.1 GoToBibliographicRequestPage (Level 1)

Summary
Outputs an OPAC display page for the bibliographic item with the supplied identifier,
with links for making requests on that item.

Parameter

• bibid (type string; required): the ILS identifier for the desired bibliographic
item

Returns
A web page with information about the identified item, with links for patron requests
on it.

Exceptional condition

• RecordNotFound: No record was found for the specified ID.

Side Effects
None

Rationale
This function allows the OPAC to supply information and services for an item found in
a discovery application. It is a simple, easy-to-implement way of providing patron
services to users when it is not practical to do it directly in the discovery application.

Possible Bindings

URL template (recommended binding for level 1): All that is really necessary to
implement this function is a stable URL that, given a bibliographic ID, will land the
user on a bibliographic information page for the title with that ID. (The URL would
also vary depending on the location of the OPAC.) Note that, in order for this to
work, the URL cannot require any transient information (such as a session ID) and
must work for all unsuppressed bibliographic records in the system. ISBNs, LCCNs,
and other identifiers that may exist for some records but not others, are not
appropriate here. For compatibility with other functions, it needs to use the same
bibliographic identifiers returned in functions like HarvestBibliographicRecords.

 54

In order for clients to use this function, ILS vendors should specify in some standard
form the pattern to use for URLs of this type in their system, with parameters for the
OPAC service and the bibliographic ID. Machine-readable patterns could be
particularly useful, but not required. One possibly relevant machine-readable pattern
is the OpenSearch URL template, which uses braces to define parameters. We
recommend that templates use {service} to denote the particular ILS service being
linked to (which will vary by ILS instance, and consist of a domain name and possibly
a path prefix), and {bibid} to denote the bibliographic identifier for the item being
linked to. For example, one ILS might declare the pattern

 {service}/cgi-bin/Pwebrecon.cgi?DB=local&CMD=id"{bibid}"

and another ILS might simply use

 {service}/{bibid}

Given a service parameter of "http://catalog.example.com" and a bibid parameter of
"12309906" these would imply URL values of

 http://catalog.example.com/cgi-bin/Pwebrecon.cgi?DB=local&CMD=id"12309906"

and

 http://catalog.example.com/12309906

respectively.

OpenURL: An OpenURL could also be used for this functionality, with the idea that
the same OpenURL structure could be used not only for links to a generic OPAC
page, but also to more directly request specific patron information and services, by
supplying appropriate service parameters. (For example, an OpenURL could specify
that a particular user wanted to renew or hold a particular book, which could allow
for a more targeted transition to an OPAC request page than a generic URL that
simply lands on the book's information page.) An OpenURL that is in a form
compatible with HTTP GET (i.e. a bare URL, not a POSTed form or XML-based data
structure) could be one valid form of URL template, and thus satisfy the previous
recommended binding. We would welcome the suggestion and adoption of an
OpenURL profile for this function and more sophisticated OPAC transfers. We do not,
however, require OpenURL implementations for Level 1.

8.3.2 OutputRewritablePage behavior

(Level 2 requires this or OutputIntermediateFormat; Level 4 requires both)

Summary
Outputs an OPAC display page in a form that includes embedded links or other
content based on the display and on local customization.

Returns
A display with appropriate content embedded.

Sample associated outbound-oriented function

 55

OutputRewritableBibliographicPage

Parameter: bibid (type string; optional)
Returns a bibliographic display that includes the bibid in an

addressable location.

This function can be thought of as a refinement of the
GoToBibliographicRequestPage function that uses the OutputRewritablePage
behavior.

This function is given as an example; others may be defined as well by future
interoperability standards.

Exceptional conditions

• NotSupported: The type of page requested is not rewritable.

Side Effects
None

Rationale
Outputting a page that can be rewritten allows a library to seamlessly add new
services to its displays by embedding or linking them into the OPAC's own display
pages.

Possible Bindings
Below are general notes on possible bindings. A particular ILS would need to specify
a detailed binding describing exactly how an output page could be rewritten.

HTML/JavaScript binding (for outgoing behavior): If an ILS writes out HTML
with the option of including library-added header content, then the library can load
and execute its own JavaScript code to modify the page to include new links and
content. The components of the page need to be addressable, which can be done in
various ways, including unique and predictable identifiers on each component of the
page that might be rewritten or used in a page rewrite. For example, the
OutputRewritableBibliographicPage would need to include, at the very least, the bibid
in a well-defined location that would be available for the JavaScript to use.

OpenURL binding (for incoming): OpenURLs may be a useful way of requesting a
particular bibliographic, search, or other OPAC display. Details would need to be
worked out.

8.3.3 OutputIntermediateFormat behavior

(Level 2 requires this or OutputRewritablePage; Level 4 requires both)

Summary
Outputs an OPAC display page in a semantically-oriented form that can be arbitrarily
transformed to user output.

Returns

 56

Information in an appropriate structured data format.

Sample associated outbound-oriented function

OutputIntermediateBibliographicPage
Parameter: bibid (type string; optional)
Returns a data structure that includes complete bibliographic

information sufficient for translation into a user output page.

This function is given as an example; others may be defined as well in later
versions of this recommendation.

Exceptional conditions

• NotSupported: The type of page requested is not available.

Side Effects
None

Rationale
Outputting a semantic format allows arbitrary rewriting to many different formats,
including HTML for web browsers, web pages customized for mobile phones, RSS
feeds, components that can be embedded in larger portal views, or XML elements for
Ajax-driven applications.

Possible Bindings

Below are general notes on possible bindings. A particular ILS would need to specify
a detailed binding describing exactly how an output page could be rewritten.

XML/XSLT binding (for outgoing behavior): Supporting output of OPAC pages in
XML, using a server configuration (such as Cocoon) that allows the inclusion of
custom XSLT stylesheets to transform the XML to HTML, is a common way of
implementing this sort of behavior in a variety of systems. A fully specified binding
would need to give a complete specification of the XML schema used for output.

OpenURL binding (for incoming behavior): OpenURLs may be a useful way of
requesting a particular bibliographic, search, or other OPAC display. Details would
need to be worked out.

 57

9. Summary of Basic Discovery Interfaces compliance

In order to fully support the Basic Discovery Interfaces described in this document,
an ILS must support (either on its own or with additional software) the Level 1
functions described in this document, using the recommended bindings for those
functions. (In other words, the recommended bindings become required for full BDI
compliance). To summarize these requirements:

HarvestBibliographicRecords and HarvestExpandedRecords must be supported
for all records available for discovery via OAI-PMH. The implementation needs to
realistically support incremental harvesting of record additions, updates, and
deletions (where “deletions” include records that are no longer available for
discovery). The use of the "deleted" OAI-PMH attribute is required to indicate
records in this category, and the ILS should document how long "deleted" records
are tracked. The records returned must include all the information in the underlying
bibliographic records that are relevant to discovery. Required record formats
include Dublin Core (which is required by the OAI-PMH standard), as well as MARC
XML if the underlying ILS maintains or produces MARC records. For
HarvestExpandedRecords, the underlying ILS must return records that include
bibliographic records, item identifiers, and MARC holdings information where
available, and the expanded records must reference schema definitions for their
contents.

GetAvailability must be supported for all bibliographic records and items available
for discovery, via a REST URL request and an XML response that conforms to the DLF
XML schema, using the dlf:simpleavailability element, as defined in this document.
If item-level identifiers or an item-level response are specified in the request, the
return value must be at item-level granularity. Supporting bibliographic-level
responses for availability in other cases is optional.

GoToBibliographicRequestPage must be supported for all bibliographic records
relevant to discovery, using a templated URL. The ILS should document the form of
this template. The OpenSearch URL template language is one form that this
documentation can take.

 58

10. Conclusion

This recommendation is just the start of the work needed to develop a
comprehensive interoperability standard. It provides an overview of functionality that
is known to be needed for enhanced interoperability at this point in time. However, it
is not a fully specified standard; it does not have complete binding specifications for
the functions that we define, and in some cases the suggested standards for bindings
do not yet provide all of the functionality desired.

The functionality in this recommendation may be implemented within the ILS or by
third-party packages on top of an ILS. In fact, some libraries and other third parties
are already developing functionality surrounding record harvesting and real time
availability as an overlay to their ILS. While it would be most convenient for the ILS
to provide these interfaces natively, we also encourage libraries, vendors, and other
developers to cooperate in designing and building suitable interfaces that can be
implemented quickly. As there may be a variety of bindings for these abstract
functions, the particular bindings used for implementation must have complete,
openly accessible specifications without intellectual property restrictions on their use.
To be fully compliant with a profile within this recommendation, the ILS interface
must implement the functions and specify the bindings used in precise enough detail
that users of the interface can use it with confidence.

We recommend a group review, accept, and publish qualifying bindings for existing
functions, and proposed new functions in new documents following up this
recommendation.

To be successful, these recommendations need to be followed up by implementation.
We recommend that reference implementations be built for these functions soon.
Ideally, these would be available as open source for public specification and reuse. At
this writing, one prototype implementation exists for Level 1 functionality, and the
Digital Library Federation intends to convene a workshop to assist developers that
with to implement Level 1 capabilities for their ILS's and discovery applications. We
hope that these activities will help develop a community that can support and build
on the interoperability recommendations we make here.

This recommendation, along with related materials from the ILS-DI Task Group and
other interested parties, is hosted at the Digital Library Federation's web site at
<http://diglib.org/>. We hope that this recommendation helps lead to the
development of ILS's that are more responsive to the needs of libraries and their
users and make library content easier to discover and use effectively in the
networked era.

 59

Appendices

Appendix 1: Glossary of Terms

Abstract function
The description of a process in terms of its core characteristics, separated from the
technologies that might be used to deliver its functionality.

Acquisition
The process of obtaining resources for the library’s collection, typically including
ordering, receiving and payment.

API
Application Programming Interface. A language and message format used by an
application program to communicate with the operating system or some other
control program such as a database management system (DBMS) or communications
protocol. Functions in one program can also be called for by other programs and
shared.

Atom
An XML-based file format that allows information from web-pages to be syndicated
between applications.

Authority record
A record that shows the preferred form of a personal or corporate name, geographic
region or subject. It also includes variant forms of the preferred form as cross
references.

Barcode
A printed code, consisting of lines and spaces that can be read by a bar code scanner
(reader), affixed to physical materials in a library collection to identify particular
items for tracking and circulation.

Bath profile
A Z39.50 specification supporting library applications and resource discovery. It
describes and specifies a subset of ANSI/NISO Z39.50-1995, Information Retrieval
(Z39.50): Application Service Definition and Protocol Specification (ISO 23950). The
profile defines searching across multiple servers to improve search and retrieval
among library catalogues, union catalogues, and other electronic resources
worldwide.

Bibliographic identifier
A unique identifier which unambiguously identifies a bibliographic record within an
ILS catalog and is assumed to persistent, at least as long as the records are
managed within the ILS.

Bibliographic metadata
Information about a resource that serves the purpose of discovery, identification and
selection of the resource. Includes elements such as title, author, subjects, etc.

Bindings: see Concrete bindings

 60

Call number scheme
A classification scheme, usually consisting of a numeric or alphanumeric notation,
which categorizes or subdivides a subject area. Most classification schemes were
originally intended to organize physical items on library shelves.

Catalog
A compilation of records describing the holdings of a given library or group of
libraries.

Circulation
The process of lending library materials.

Concrete bindings
The specific technologies used to deliver specified abstract functionalities.

Course reserves
A selection of materials that instructors set aside, usually in the library, for the
students in a class to read. Some ILS's have system modules that help manage
circulation of the materials.

Discovery application
A computer application designed to simplify, assist and expedite the process of
finding information resources.

Dublin Core
A fifteen element metadata set for use in resource description intended to facilitate
discovery of electronic resources.

ERMS
Electronic Resources Management System. Used to manage a library’s electronic
resources, primarily e-journals and databases. Systems can include features to track
trials, license terms and conditions, usage, cost, and access.

FRBR
Functional Requirement for Bibliographic Records. A conceptual model for the
aggregation and display of bibliographic records. An entity-relationship model, with
four primary entities - work, expression, manifestation, and item - which represent
the products of intellectual or artistic endeavor.

Harvesting see Metadata harvesting

Holdings
Resources owned by a library. May be represented in MARC holdings and/or item
records within an ILS.

ILS
Integrated Library System. A group of automated library subsystems working
together and communicating within the same set or system of software to control
such activities as circulation, cataloging, acquisitions, serial control and a public
access catalog.

 61

ISO 20775
An XML schema designed to express holdings, item, and availability information.

Item
A physical object in a library. Information about an item is recorded in an item
record within an ILS which is used to manage circulation of the physical object.

Location
Where an item is kept in the library. Location codes are used in an ILS to show
where the item is located in the library.

Lucene
An open source text search engine library written entirely in Java that can be used
for applications that require fielded and full-text search, especially cross-platform.

MADS
Metadata Authority Description Schema. An XML schema for an authority element
set that may be used to provide metadata about agents (people, organizations),
events, and terms (topics, geographics, genres, etc.). MADS was created to serve as
a companion to the Metadata Object Description Schema (MODS).

MARC holdings
A record structure and encoding standard to record holdings information for library
resources, including serials and nonserial resources.

MARC 21
A recent version of standard data formats for MAchine-Readable Cataloging. A
record structure and encoding standard for electronic bibliographic records developed
by the Library of Congress which provides the mechanism by which computers
exchange, use, and interpret bibliographic information. There are also MARC21
formats for authority data, holdings data, classification data and community
information.

MARCXML
A metadata scheme for working with MARC data in a XML environment. The schema
supports all MARC encoded data regardless of format. The recommended MARC XML
schema is defined by the Library of Congress, and is known as the "marc21" format
in the OAI-PMH implementation guidelines.

Metadata
Structured information that describes an information resource. “Data about data”
which includes data associated with either an information system or an information
object for purposes of description, administration, legal requirements, technical
functionality, use and usage, and preservation.

Metadata harvesting
A technique for extraction of metadata from individual repositories for collection into
a central catalog.

MODS
Metadata Object Description Schema. Intended to be able to carry selected data
from existing MARC 21 records as well as to enable the creation of original resource
description records. Includes a subset of MARC fields and uses language-based tags

 62

rather than numeric ones, in some cases regrouping elements from the MARC 21
bibliographic format. Expressed in an XML schema language.

NCIP
NISO Circulation Interchange Protocol (NCIP). A standard which defines a protocol
for the exchange of messages between and among computer-based application to
enable them to perform functions necessary to lend and borrow items, to provide
controlled access to electronic resources, and to facilitate co-operative management
of these functions.

OAI-PMH
OAI-Protocol for Metadata Harvesting. Protocol for application-independent
interoperability framework based on metadata harvesting, open standards HTTP
(Hypertext Transport Protocol) and XML (Extensible Markup Language). Includes
standards for data providers who administer systems that wish to expose metadata
and service providers that use harvested metadata.

OPAC
Online Public Access Catalog. A library catalog which can be searched online and is a
module of the ILS.

OpenURL
A protocol for “actionable” URLs that delivers appropriate data or services based on
encoded resource metadata. It is often used to refer library users to an appropriate,
context-sensitive accessible instance of a resource or library service.

OpenSearch
A collection of technologies developed by Amazon that allow publishing of search
results in a format suitable for syndication and aggregation.

Open Source
A concept through which programming code is made available through a license that
supports the users freely copying the code, making changes it, and sharing the
results. Changes are typically submitted to a group managing the open source
product for possible incorporation into the official version. Development and support
is handled cooperatively by a group of distributed programmers, usually on a
volunteer basis.

REST
Representational State Transfer. It generally attempts to emulate HTTP and similar
protocols by constraining the interface to a set of well-known, standard operations
(e.g., GET, PUT, DELETE) with a focus on interacting with stateful resources, rather
than messages or operations. It can be used a simple way of implementing web
services, often taking URLs as input and returning XML streams as output.

RSS
Really Simple Syndication. An XML format used for distribution or syndication of
frequently updated Web content such as news items, blogs, and podcasts. Several
versions of RSS exist.

SIP2
Standard Interface Protocol Version 2. Standard for the exchange of circulation data
and transactions between different systems.

 63

Solr
An open source enterprise search server based on the Lucene Java search library.

SRU
Search/Retrieve via URL. A standard search protocol for Internet search queries,
utilizing CQL (Common Query Language), standard query syntax for representing
queries. A variation of SRW, currently with more active development.

SRW
Search/Retrieve Webservice. A web services implementation of the Z39.50 protocol
that specifies a client/server-based protocol for searching and retrieving information
from remote databases. It specifies procedures and structures for a client system to
search a database provided by a server, retrieve database records identified by a
search, scan a term list, and sort a result set. The protocol addresses
communication between corresponding information retrieval applications, the client
and server (which may reside on different computers); it does not address
interaction between the client and the end-user. It is a variation of SRU.

Unicode
A universal character-encoding standard used for representation of text for computer
processing. Unicode provides a unique numeric code (a code point) for every
character, no matter what the platform, no matter what the program, no matter
what the language. The standard was developed by the Unicode Consortium.

Web Service
Software system designed to support interoperable machine to machine exchange of
data/information, typically using the XML, SOAP, WSDL and UDDI open standards.

XML
EXtensible Markup Language. An open standard for describing data from the World
Wide Web Consortium. Used for defining data elements on a Web page, business-to-
business documents, and other hierarchically structured text and data. XML uses a
similar tag structure to HTML; however, whereas HTML specifically describes
elements on web pages, XML can be used to describe arbitrary elements, in a more
constrained syntax, and supports links to definitions of the structure and meaning of
the elements.

XSL
EXtensible Stylesheet Language. An XML-based style sheet language.

XSLT
XSL Transformations. A language used to transform XML documents into XHTML
documents or to other XML documents.

Z39.50
A NISO and ISO standard protocol that specifies a client/server-based protocol for
cross-system searching and retrieving information from remote databases. It
specifies procedures and structures for a client system to search a database provided
by a server, retrieve database records identified by a search, scan a term list, and
sort a result set.

 64

Appendix 2: Expanded Record using MARCXML and NCIP

This response shows bibliographic and item information (assuming no MARC holdings
exist) for 1 item associated with 1 bibliographic record. This response could be used
with HarvestExpandedRecords in the Data Aggregation section or with Search or
GetRecords in the Real Time Search section.

The NCIP schema examples we give in this document are not normative, but are
based on our understanding of the schema at this time. ILS's and clients using the
NCIP XML standards should use official published versions of their schemas, even if
they differ from what we show here.

<dlf:collection xmlns:dlf="http://diglib.org/ilsdi/1.1"
 xmlns:marcxml="http://www.loc.gov/MARC21/slim"
 xmlns:ncip="http://ncip.envisionware.com/documentation/ncip_v1_0.xsd" >
 <dlf:record>
 <dlf:bibliographic id="92005291">
 <marcxml:record>
 <marcxml:recordTypeType>Bibliographic</marcxml:recordTypeType>
 <marcxml:leader>01142cam 2200301 a 4500</marcxml:leader>
 <marcxml:controlfield tag="001"> 92005291 </marcxml:controlfield>
 <marcxml:controlfield tag="003">DLC</marcxml:controlfield>
 <marcxml:controlfield
tag="005">19930521155141.9</marcxml:controlfield>
 <marcxml:controlfield tag="008">920219s1993 caua j 000 0 eng
</marcxml:controlfield>
 <marcxml:datafield tag="010" ind1=" " ind2=" ">
 <marcxml:subfield code="a"> 92005291 </marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="020" ind1=" " ind2=" ">
 <marcxml:subfield code="a">0152038655 :</marcxml:subfield>
 <marcxml:subfield code="c">$15.95</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="040" ind1=" " ind2=" ">
 <marcxml:subfield code="a">DLC</marcxml:subfield>
 <marcxml:subfield code="c">DLC</marcxml:subfield>
 <marcxml:subfield code="d">DLC</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="042" ind1=" " ind2=" ">
 <marcxml:subfield code="a">lcac</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="050" ind1="0" ind2="0">
 <marcxml:subfield code="a">PS3537.A618</marcxml:subfield>
 <marcxml:subfield code="b">A88 1993</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="082" ind1="0" ind2="0">
 <marcxml:subfield code="a">811/.52</marcxml:subfield>
 <marcxml:subfield code="2">20</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="100" ind1="1" ind2=" ">
 <marcxml:subfield code="a">Sandburg, Carl,</marcxml:subfield>
 <marcxml:subfield code="d">1878-1967.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="245" ind1="1" ind2="0">
 <marcxml:subfield code="a">Arithmetic /</marcxml:subfield>
 <marcxml:subfield code="c">Carl Sandburg ; illustrated as an
anamorphic adventure by Ted Rand.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="250" ind1=" " ind2=" ">
 <marcxml:subfield code="a">1st ed.</marcxml:subfield>

 65

 </marcxml:datafield>
 <marcxml:datafield tag="260" ind1=" " ind2=" ">
 <marcxml:subfield code="a">San Diego :</marcxml:subfield>
 <marcxml:subfield code="b">Harcourt Brace
Jovanovich,</marcxml:subfield>
 <marcxml:subfield code="c">c1993.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="300" ind1=" " ind2=" ">
 <marcxml:subfield code="a">1 v. (unpaged) :</marcxml:subfield>
 <marcxml:subfield code="b">ill. (some col.) ;</marcxml:subfield>
 <marcxml:subfield code="c">26 cm.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="500" ind1=" " ind2=" ">
 <marcxml:subfield code="a">One Mylar sheet included in
pocket.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="520" ind1=" " ind2=" ">
 <marcxml:subfield code="a">A poem about numbers and their
characteristics. Features anamorphic, or distorted, drawings which can be
restored to normal by viewing from a particular angle or by viewing the image's
reflection in the provided Mylar cone.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="650" ind1=" " ind2="0">
 <marcxml:subfield code="a">Arithmetic</marcxml:subfield>
 <marcxml:subfield code="x">Juvenile poetry.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="650" ind1=" " ind2="0">

 <marcxml:subfield code="a">Children's poetry,
American.</marcxml:subfield>

 </marcxml:datafield>
 <marcxml:datafield tag="650" ind1=" " ind2="1">
 <marcxml:subfield code="a">Arithmetic</marcxml:subfield>
 <marcxml:subfield code="x">Poetry.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="650" ind1=" " ind2="1">
 <marcxml:subfield code="a">American poetry.</marcxml:subfield>
 </marcxml:datafield>
 <marcxml:datafield tag="650" ind1=" " ind2="1">

 <marcxml:subfield code="a">Visual perception.</marcxml:subfield>

 </marcxml:datafield>

 <marcxml:datafield tag="700" ind1="1" ind2=" ">
 <marcxml:subfield code="a">Rand, Ted,</marcxml:subfield>
 <marcxml:subfield code="e">ill.</marcxml:subfield>
 </marcxml:datafield>
 </marcxml:record>
 </dlf:bibliographic>
 <dlf:items>
 <dlf:item id="S02420717N">
 <ncip:LookupItemResponse>
 <ncip:UniqueItemId>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
<ncip:ItemIdentifierValue>S02420717N</ncip:ItemIdentifierValue>
 </ncip:UniqueItemId>
 <ncip:HoldPickupDate>2008-04-13T12:00:00-05:00</ncip:HoldPickupDate>
 <ncip:DateRecalled>2008-04-01T12:00:00-05:00</ncip:DateRecalled>
 <ncip:ItemOptionalFields>
 <ncip:BibliographicDescription>
 <ncip:BibliographicRecordId>

 66

<ncip:BibliographicRecordIdentifier>92005291</ncip:BibliographicRecordIdentifie
r>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
 </ncip:BibliographicRecordId>
 </ncip:BibliographicDescription>
 <ncip:ItemUseRestrictionType>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/itemuserestrictiontype/
itemuserestrictiontype.scm</ncip:Scheme>
 <ncip:Value>in-library use only</ncip:Value>
 </ncip:ItemUseRestrictionType>
 <ncip:CirculationStatus>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/circulationstatus/circu
lationstatus.scm</ncip:Scheme>
 <ncip:Value>On Hold</ncip:Value>
 </ncip:CirculationStatus>
 <ncip:HoldQueueLength>2</ncip:HoldQueueLength>
 <ncip:ItemDescription>
 <ncip:CallNumber>QA241 .S53 2007</ncip:CallNumber>
 <ncip:CopyNumber>copy 1</ncip:CopyNumber>
 <ncip:ItemDescriptionLevel>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/itemdescriptionlevel/it
emdescriptionlevel.scm</ncip:Scheme>

 <ncip:Value>Item</ncip:Value>

 </ncip:ItemDescriptionLevel>
 <ncip:VisibleItemId>
<ncip:VisibleItemIdentifierType>Barcode</ncip:VisibleItemIdentifierType>
<ncip:VisibleItemIdentifier>S02420717N</ncip:VisibleItemIdentifier>
 </ncip:VisibleItemId>
 </ncip:ItemDescription>
 <ncip:Location>

 <ncip:LocationType>Permanent Location</ncip:LocationType>

 <ncip:LocationName>
 <ncip:LocationNameInstance>
 <ncip:LocationNameLevel>1</ncip:LocationNameLevel>
 <ncip:LocationNameValue>D. H. Hill
Library</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 <ncip:LocationNameInstance>

 <ncip:LocationNameLevel>2</ncip:LocationNameLevel>
<ncip:LocationNameValue>Stacks</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 </ncip:LocationName>
 </ncip:Location>
 <ncip:SensitizationFlag />
 </ncip:ItemOptionalFields>
 </ncip:LookupItemResponse>
 </dlf:item>
 </dlf:items>
 </dlf:record>

 </dlf:collection>

 67

Appendix 3: Expanded Record using MODS and ISO Holdings
(ISO 20775)

This response shows bibliographic and item information (assuming no MARC holdings
exist) for 1 item associated with 1 bibliographic record. This response could be used
with HarvestExpandedRecords in the Data Aggregation section or Search or
GetRecords in the Real Time Search section.

Note that we specifically give the item id of the item mentioned in the holdings in the
dlf:holdingset element after the dlf:holdingsrec element. Among other things, this
lets clients who don't know how to interpret the ISO holdings record still retrieve the
item ID from the simpler enclosing DLF schema. We also give the item id of the
items associated with the bibliographic record in a dlf:items element as a child of the
dlf:record element. Normally, only the latter is required; in this case, we have a
slightly redundant output to show how items would be associated with a particular
holdings record when the ILS maintains this information. If there is additional
information about the items to be shown, it would be included in the dlf:item
elements of the dlf:items element directly underneath dlf:record, with only an ID
specified in the dlf:item elements within the dlf:holdingset element.

The ISO Holdings schema examples we give in this document are not normative, but
are based on our understanding of the schema at this time. ILS's and clients using
the ISO holdings XML standard should use official published versions of that schema,
even if they differ from what we show here.

<dlf:collection xmlns:dlf="http://diglib.org/ilsdi/1.1"
 xmlns:mods="http://www.loc.gov/mods/v3"
 xmlns:holdings="http://www.loc.gov/standards/iso20775/" >
 <dlf:record>
 <dlf:bibliographic id="11761548">
 <mods:mods xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="3.0"
xsi:schemaLocation="http://www.loc.gov/mods/v3
http://www.loc.gov/standards/mods/v3/mods-3-0.xsd">
 <mods:titleInfo>
 <mods:title>Sound and fury :</mods:title>
 <mods:subTitle>the making of the punditocracy /</mods:subTitle>
 </mods:titleInfo>
 <mods:name type="personal">
 <mods:namePart>Alterman, Eric</mods:namePart>
 <mods:role>
 <mods:roleTerm type="text">creator</mods:roleTerm>
 </mods:role>
 </mods:name>
 <mods:typeOfResource>text</mods:typeOfResource>
 <mods:genre authority="marcgt">bibliography</mods:genre>
 <mods:originInfo>
 <mods:place>
 <mods:placeTerm authority="marccountry"
type="code">nyu</mods:placeTerm>
 </mods:place>
 <mods:place>
 <mods:placeTerm type="text">Ithaca, N.Y</mods:placeTerm>
 </mods:place>
 <mods:publisher>Cornell University Press</mods:publisher>
 <mods:dateIssued>c1999</mods:dateIssued>
 <mods:dateIssued encoding="marc">1999</mods:dateIssued>

 68

 <mods:issuance>monographic</mods:issuance>
 </mods:originInfo>
 <mods:language>
 <mods:languageTerm authority="iso639-2b"
type="code">eng</mods:languageTerm>
 </mods:language>
 <mods:physicalDescription>
 <mods:form authority="marcform">print</mods:form>
 <mods:extent>vii, 322 p. ; 23 cm.</mods:extent>
 </mods:physicalDescription>
 <mods:note type="statement of responsibility">Eric
Alterman.</mods:note>
 <mods:note>Includes bibliographical references (p. 291-312) and
index.</mods:note>
 <mods:subject authority="lcsh">
 <mods:topic>Journalism</mods:topic>
 <mods:topic>Political aspects</mods:topic>
 <mods:geographic>United States.</mods:geographic>
 </mods:subject>
 <mods:subject authority="lcsh">
 <mods:geographic>United States</mods:geographic>
 <mods:topic>Politics and government</mods:topic>
 <mods:temporal>20th century.</mods:temporal>
 </mods:subject>
 <mods:subject authority="lcsh">
 <mods:topic>Mass media</mods:topic>
 <mods:topic>Political aspects</mods:topic>
 <mods:geographic>United States.</mods:geographic>
 </mods:subject>
 <mods:subject authority="lcsh">
 <mods:topic>Television and politics</mods:topic>
 <mods:geographic>United States.</mods:geographic>
 </mods:subject>
 <mods:subject authority="lcsh">
 <mods:topic>Press and politics</mods:topic>
 <mods:geographic>United States.</mods:geographic>
 </mods:subject>
 <mods:subject authority="lcsh">
 <mods:topic>Talk shows</mods:topic>
 <mods:geographic>United States.</mods:geographic>
 </mods:subject>
 <mods:classification authority="lcc">PN4888.P6 A48
1999</mods:classification>
 <mods:classification edition="21"
authority="ddc">071/.3</mods:classification>
 <mods:recordInfo>
 <mods:recordContentSource>DLC</mods:recordContentSource>
 <mods:recordCreationDate
encoding="marc">990730</mods:recordCreationDate>
 <mods:recordChangeDate
encoding="iso8601">20000406144503.0</mods:recordChangeDate>
 <mods:recordIdentifier>11761548</mods:recordIdentifier>
 </mods:recordInfo>
 </mods:mods>
 </dlf:bibliographic>
 <dlf:holdings>
 <dlf:holdingset>
 <dlf:holdingsrec>
 <holdings:holding>
 <holdings:holdingsSimple>
 <holdings:copiesSummary>
 <holdings:copiesCount>1</holdings:copiesCount>
 <holdings:status>
 <holdings:availableCount>0</holdings:availableCount>
 <holdings:availableFor>1</holdings:availableFor>

 69

 </holdings:status>
 <holdings:reservationQueueLength>2</holdings:reservationQueueLength>
 <holdings:onOrderCount>1</holdings:onOrderCount>
 </holdings:copiesSummary>
 <holdings:copyInformation>
 <holdings:pieceIdentifier>
 <holdings:value>S02420717N</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>barcode</holdings:text>
 </holdings:typeOrSource>
 </holdings:pieceIdentifier>
 <holdings:resourceIdentifier>
 <holdings:value>11761548</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>bibliographic</holdings:text
 </holdings:typeOrSource>
 </holdings:resourceIdentifier>
 <holdings:form>
 <holdings:value>text</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>marc formats</holdings:text>
 </holdings:typeOrSource>
 </holdings:form>
 <holdings:sublocation>D. H. Hill
Library</holdings:sublocation>
 <holdings:sublocation>Stacks</holdings:sublocation>
 <holdings:shelfLocator>QA241 .S53
2007</holdings:shelfLocator>
 <holdings:note>Water damage to back cover.</holdings:note>
 <holdings:availabilityInformation>
 <holdings:status>
<holdings:availabilityStatus>2</holdings:availabilityStatus>
 <holdings:availableFor>1</holdings:availableFor>
 <holdings:dateTimeAvailable>2008-05-10T12:00:00-
05:00</holdings:dateTimeAvailable>
 </holdings:status>
 <holdings:reservationPolicy>1</holdings:reservationPolicy>
 <holdings:reservationQueue>2</holdings:reservationQueue>
 </holdings:availabilityInformation>
 </holdings:copyInformation>
 </holdings:holdingsSimple>
 <holdings:summaryPolicy>
 <holdings:form>
 <holdings:value>text</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>marc formats</holdings:text>
 </holdings:typeOrSource>
 </holdings:form>
 <holdings:availability>
 <holdings:availableFor>1</holdings:availableFor>
 <holdings:text>loans for 30 days</holdings:text>
 </holdings:availability>
 <holdings:reservationPolicy>1</holdings:reservationPolicy>
 </holdings:summaryPolicy>
 <holdings:summaryHistory>
 <holdings:countPeriod>
 <holdings:countPeriodStart>2001-01-15T12:00:00-
05:00</holdings:countPeriodStart>
 <holdings:countPeriodEnd>2008-04-15T12:00:00-
05:00</holdings:countPeriodEnd>
 <holdings:totalCirculation>
 <holdings:totalCirculationCount>56

</holdings:totalCirculationCount>
 <holdings:totalLoansCount>53</holdings:totalLoansCount>
 </holdings:totalCirculation>

 70

<holdings:totalReservationCount>10</holdings:totalReservationCount>
 <holdings:copiesCount>
<holdings:totalCopiesHeld>1</holdings:totalCopiesHeld>
 </holdings:copiesCount>
 </holdings:countPeriod>
 </holdings:summaryHistory>
 <holdings:lastActivityInfo>
 <holdings:lastActivityDate>2008-04-01T12:00:00-
05:00</holdings:lastActivityDate>
 <holdings:lastActivityType>
 <holdings:value>loan</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>something here</holdings:text>
 </holdings:typeOrSource>
 </holdings:lastActivityType>
 </holdings:lastActivityInfo>
 </holdings:holding>
 </dlf:holdingsrec>
 <dlf:items>
 <dlf:item id ="S02420717N" />
 </dlf:items>
 </dlf:holdingset>
 </dlf:holdings>
 <dlf:items>
 <dlf:item id ="S02420717N" />
 </dlf:items>
 </dlf:record>
</dlf:collection>

 71

Appendix 4: GetAvailability Responses with
DLF:simpleavailability

Here we give example responses for 2 items associated with 1 bibliographic record.
These responses satisfy the Basic Discovery Interfaces profile. Example 2, showing a
bibliographic-level availability summary, is optional in the BDI profile.

Example 1: A response for 2 copies of the same book, showing item-level availability:

<dlf:collection xmlns:dlf="http://diglib.org/ilsdi/1.1">
 <dlf:record>
 <dlf:bibliographic id="92005291" />
 <dlf:items>
 <dlf:item id="S02420717N">
 <dlf:simpleavailability>
 <dlf:identifier>S02420717N</dlf:identifier>
 <dlf:availabilitystatus>not available</dlf:availabilitystatus>
 <dlf:availabilitymsg>Held for Patron (2
requests)</dlf:availabilitymsg>
 <dlf:location>D. H. Hill Library</dlf:location>
 </dlf:simpleavailability>
 </dlf:item>
 <dlf:item id="S01149512N">
 <dlf:simpleavailability>
 <dlf:identifier>S01149512N</dlf:identifier>
 <dlf:availabilitystatus>available</dlf:availabilitystatus>
 <dlf:location>D. H. Hill Library, Call # QA107 .S73</dlf:location>
 <dlf:availabilitymsg>library use only</dlf:availabilitymsg>
 </dlf:simpleavailability>
 </dlf:item>
 </dlf:items>
 </dlf:record>
</dlf:collection>

Example 2: A response for the same book, showing bibliographic-level availability:

<dlf:collection xmlns:dlf="http://diglib.org/ilsdi/1.1">
 <dlf:record>
 <dlf:bibliographic id="92005291" />
 <dlf:simpleavailability>
 <dlf:identifier>92005291</dlf:identifier>
 <dlf:availabilitystatus>available</dlf:availabilitystatus>
 <dlf:availabilitymsg>1 copy available, library use
only</dlf:availabilitymsg>
 <dlf:location>D. H. Hill Library, Call # QA107 .S73</dlf:location>
 </dlf:simpleavailability>
 </dlf:record>
</dlf:collection>

 72

Appendix 5: GetAvailability Responses with NCIP, ISO Holdings
(ISO 20775) and DLF:simpleavailability

Here we give example responses for 2 items associated with 1 bibliographic record,
utilizing the more complex NCIP or ISO Holdings schemas in addition to the required
dlf:simpleavailability response. Note that the Basic Discovery Interfaces profile
requires using only the dlf:simpleavailability schema. These schemas, however,
may be used if the client requests these formats.

The NCIP and ISO Holdings schema examples we give in this document are not
normative, but are based on our understanding of the schema at this time. ILS's
and clients using these standards should use official published versions of their
schemas, even if they differ from what we show here.

Example 1: A response using only the NCIP schema, for the same book and items used in
Appendix 4:

<dlf:collection
 xmlns:dlf="http://diglib.org/ilsdi/1.1"
 xmlns:ncip="http://ncip.envisionware.com/documentation/ncip_v1_0.xsd" >
 <dlf:record>
 <dlf:bibliographic id="92005291" />
 <dlf:items>
 <dlf:item id="S02420717N">
 <ncip:LookupItemResponse>
 <ncip:UniqueItemId>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
<ncip:ItemIdentifierValue>S02420717N</ncip:ItemIdentifierValue>
 </ncip:UniqueItemId>
 <ncip:ItemOptionalFields>
 <ncip:BibliographicDescription>
 <ncip:BibliographicRecordId>
<ncip:BibliographicRecordIdentifier>92005291</ncip:BibliographicRecordIdentifie
r>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
 </ncip:BibliographicRecordId>
 </ncip:BibliographicDescription>
 <ncip:ItemUseRestrictionType>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/itemuserestrictiontype/
itemuserestrictiontype.scm</ncip:Scheme>
 <ncip:Value>Limited Circulation, Normal Loan Period </ncip:Value>
 </ncip:ItemUseRestrictionType>
 <ncip:CirculationStatus>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/circulationstatus/circu
lationstatus.scm</ncip:Scheme>
 <ncip:Value>On Hold</ncip:Value>
 </ncip:CirculationStatus>
 <ncip:HoldQueueLength>2</ncip:HoldQueueLength>
 <ncip:ItemDescription>
 <ncip:CallNumber>QA241 .S53 2007</ncip:CallNumber>
 <ncip:VisibleItemId>
<ncip:VisibleItemIdentifierType>Barcode</ncip:VisibleItemIdentifierType>
<ncip:VisibleItemIdentifier>S02420717N</ncip:VisibleItemIdentifier>
 </ncip:VisibleItemId>
 </ncip:ItemDescription>
 <ncip:Location>
 <ncip:LocationType>Permanent Location</ncip:LocationType>
 <ncip:LocationName>
 <ncip:LocationNameInstance>

 73

 <ncip:LocationNameLevel>1</ncip:LocationNameLevel>
 <ncip:LocationNameValue>D. H. Hill
Library</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 <ncip:LocationNameInstance>
 <ncip:LocationNameLevel>2</ncip:LocationNameLevel>
<ncip:LocationNameValue>Stacks</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 </ncip:LocationName>
 </ncip:Location>
 </ncip:ItemOptionalFields>
 </ncip:LookupItemResponse>
 </dlf:item>
 <dlf:item id="S01149512N">
 <ncip:LookupItemResponse>
 <ncip:UniqueItemId>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
<ncip:ItemIdentifierValue>S01149512N</ncip:ItemIdentifierValue>
 </ncip:UniqueItemId>
 <ncip:ItemOptionalFields>
 <ncip:BibliographicDescription>
 <ncip:BibliographicRecordId>
<ncip:BibliographicRecordIdentifier>92005291</ncip:BibliographicRecordIdentifie
r>
 <ncip:UniqueAgencyId>ncsu</ncip:UniqueAgencyId>
 </ncip:BibliographicRecordId>
 </ncip:BibliographicDescription>
 <ncip:ItemUseRestrictionType>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/itemuserestrictiontype/
itemuserestrictiontype.scm</ncip:Scheme>
 <ncip:Value>In Library Use Only</ncip:Value>
 </ncip:ItemUseRestrictionType>
 <ncip:CirculationStatus>
<ncip:Scheme>http://www.niso.org/ncip/v1_0/imp1/schemes/circulationstatus/circu
lationstatus.scm</ncip:Scheme>
 <ncip:Value>Available On Shelf</ncip:Value>
 </ncip:CirculationStatus>
 <ncip:ItemDescription>
 <ncip:CallNumber>QA107 .S73</ncip:CallNumber>
 <ncip:VisibleItemId>
<ncip:VisibleItemIdentifierType>Barcode</ncip:VisibleItemIdentifierType>
<ncip:VisibleItemIdentifier>S01149512N</ncip:VisibleItemIdentifier>
 </ncip:VisibleItemId>
 </ncip:ItemDescription>
 <ncip:Location>
 <ncip:LocationType>Permanent Location</ncip:LocationType>
 <ncip:LocationName>
 <ncip:LocationNameInstance>
 <ncip:LocationNameLevel>1</ncip:LocationNameLevel>
 <ncip:LocationNameValue>D. H. Hill
Library</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 <ncip:LocationNameInstance>
 <ncip:LocationNameLevel>2</ncip:LocationNameLevel>
 <ncip:LocationNameValue>Reference
Material</ncip:LocationNameValue>
 </ncip:LocationNameInstance>
 </ncip:LocationName>
 </ncip:Location>
 </ncip:ItemOptionalFields>
 </ncip:LookupItemResponse>
 </dlf:item>
 </dlf:items>
 </dlf:record>
</dlf:collection>

 74

Example 2: A response using both the ISO 20775 and dlf:simpleavailability schemas, for the
same book and items used in Appendix 4:

<dlf:collection xmlns:dlf=http://diglib.org/ilsdi/1.1

xmlns:holdings=http://www.loc.gov/standards/iso20775/ >
 <dlf:record>
 <dlf:bibliographic id="92005291" />
 <dlf:items>
 <dlf:item id="S02420717N">
 <dlf:simpleavailability>
 <dlf:identifier>S02420717N</dlf:identifier>
 <dlf:availabilitystatus>not available</dlf:availabilitystatus>
 <dlf:availabilitymsg>Held for Patron (2
requests)</dlf:availabilitymsg>
 <dlf:dateavailable>2008-05-10T12:00:00-05:00</dlf:dateavailable>
 <dlf:location>D. H. Hill Library</dlf:location>
 </dlf:simpleavailability>
 <holdings:copyInformation>
 <holdings:pieceIdentifier>
 <holdings:value>S02420717N</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>barcode</holdings:text>
 </holdings:typeOrSource>
 </holdings:pieceIdentifier>
 <holdings:resourceIdentifier>
 <holdings:value>92005291</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>bibliographic</holdings:text>
 </holdings:typeOrSource>
 </holdings:resourceIdentifier>
 <holdings:sublocation>D. H. Hill Library</holdings:sublocation>
 <holdings:sublocation>Stacks</holdings:sublocation>
 <holdings:sublocation>Held for patron</holdings:sublocation>
 <holdings:shelfLocator>QA241 .S53 2007</holdings:shelfLocator>
 <holdings:availabilityInformation>
 <holdings:status>
 <holdings:availabilityStatus>2</holdings:availabilityStatus>
 <holdings:availableFor>1</holdings:availableFor>
 <holdings:dateTimeAvailable>2008-05-10T12:00:00-
05:00</holdings:dateTimeAvailable>
 </holdings:status>
 <holdings:reservationPolicy>1</holdings:reservationPolicy>
 <holdings:reservationQueue>2</holdings:reservationQueue>
 </holdings:availabilityInformation>
 </holdings:copyInformation>
 </dlf:item>
 <dlf:item id="S01149512N">
 <dlf:simpleavailability>
 <dlf:identifier>S01149512N</dlf:identifier>
 <dlf:availabilitystatus>available</dlf:availabilitystatus>
 <dlf:location>D. H. Hill Library, Call # QA107 .S73</dlf:location>
 <dlf:availabilitymsg>library use only</dlf:availabilitymsg>
 </dlf:simpleavailability>
 <holdings:copyInformation>
 <holdings:pieceIdentifier>
 <holdings:value>S01149512N</holdings:value>
 <holdings:typeOrSource>
 <holdings:text>barcode</holdings:text>
 </holdings:typeOrSource>
 </holdings:pieceIdentifier>
 <holdings:resourceIdentifier>
 <holdings:value>92005291</holdings:value>
 <holdings:typeOrSource>

 75

 <holdings:text>bibliographic</holdings:text>
 </holdings:typeOrSource>
 </holdings:resourceIdentifier>
 <holdings:sublocation>D. H. Hill Library</holdings:sublocation>
 <holdings:sublocation>Stacks</holdings:sublocation>
 <holdings:shelfLocator>QA107 .S73</holdings:shelfLocator>
 <holdings:availabilityInformation>
 <holdings:status>
 <holdings:availabilityStatus>1</holdings:availabilityStatus>
 <holdings:availableFor>6</holdings:availableFor>
 </holdings:status>
 <holdings:policy>In Library Use Only</holdings:policy>
 <holdings:reservationPolicy>2</holdings:reservationPolicy>
 </holdings:availabilityInformation>
 </holdings:copyInformation>
 </dlf:item>
 </dlf:items>
 </dlf:record>
</dlf:collection>

 76

Appendix 6: Enriched Scan Response with Subject Authority
Index Entries

<sru:scanResponse xmlns:sru="http://www.loc.gov/standards/sru/"

xmlns:mads="http://www.loc.gov/standards/mads/">
<sru:version>1.1</sru:version>
 <sru:terms>
 <sru:term>
 <sru:value>Revolutionary War, American, 1775-1783</sru:value>
 <sru:numberOfRecords>0</sru:numberOfRecords>
 <sru:extraTermData>
 <mads:authority>

 <mads:topic>United States</mads:topic>
 <mads:topic>History</mads:topic>
 <mads:temporal>Revolution, 1775-1783</mads:temporal>
 </mads:authority>
 <mads:identifier type="lccn">sh85140139</mads:identifier>
 </sru:extraTermData>
 </sru:term>

 <sru:term>
 <sru:value>Revolutions</sru:value>
 <sru:numberOfRecords>236</sru:numberOfRecords>
 <sru:extraTermData>
 <mads:related type="narrower">
 <mads:topic>Coups d'e?tat</mads:topic>
 </mads:related>

 <mads:related type="other">
 <mads:topic>Government, resistance to</mads:topic>
 </mads:related>
 <mads:identifier type="lccn">sh85113507</mads:identifier>
 </sru:extraTermData>
 </sru:term>
 </sru:terms>
 <sru:echoedScanRequest>

 <sru:version>1.1</sru:version>
 <sru:scanClause>dc.subject="revolutionary war"</sru:scanClause>
 <sru:responsePosition>1</sru:responsePosition>
 <sru:maximumTerms>2</sru:maximumTerms>
 </sru:echoedScanRequest>
</sru:scanResponse>

 77

Appendix 7: The Berkeley Accord, Spring 2008

The following agreement was announced on April 4, 2008 by Peter Brantley,
executive director for the Digital Library Federation

ILS Basic Discovery Interfaces: A proposal for the ILS community.

On March 6, representatives of the Digital Library Federation (DLF), academic
libraries, and major library application vendors met in Berkeley, California to discuss
a draft recommendation from the DLF for standard interfaces for integrating the data
and services of the Integrated Library System (ILS) with new applications supporting
user discovery. Such standard interfaces will allow libraries to deploy new discovery
services to meet ever-growing user expectations in the Web 2.0 era, take full
advantage of advanced ILS data management and services, and encourage a strong,
innovative community and marketplace in next-generation library management and
discovery applications.

At the meeting, participants agreed to support a set of essential functions through
open protocols and technologies by deploying specific recommended standards.

These functions are:

1. Harvesting. Functions to harvest data records for library collections, both in full,
and incrementally based on recent changes. Harvesting options could include either
the core bibliographic records, or those records combined with supplementary
information (such as holdings or summary circulation data). Both full and differential
harvesting options are expected to be supported through an OAI-PMH interface.

2. Availability. Real-time querying of the availability of a bibliographic (or
circulating) item. This functionality will be implemented through a simple REST
interface to be specified by the ILS-DI task group.

3. Linking. Linking in a stable manner to any item in an OPAC in a way that allows
services to be invoked on it; for example, by a stable link to a page displaying the
item's catalog record and providing links for requests for that item. This functionality
will be implemented through a URL template defined for the OPAC as specified by the
ILS-DI task group.

Next steps:

The DLF ILS-Discovery Interface (ILS-DI) committee will prepare a recommendation
with a new interoperability profile, "ILS Basic Discovery Interfaces" or "ILS-BDI",
that includes the functions above, along with specifications of the proposed
technologies (or "bindings", in the language of the recommendation).

ILS and application developers and vendors will support the ILS-BDI using the
recommended bindings in future products.

The DLF will publicize these recommendations, and encourage further enhancements
and cooperation between libraries, vendors, and applications developers in building
more advanced, interoperable architectures for bibliographic discovery and use.

 78

We are all committed to providing the best library services for research and learning.
The agreement we are making now is an important step in advancing these services
for the library users of today and tomorrow.

- Digital Library Federation, March 2008

Signers of the Berkeley Accord as of April 4, 2008:

1. Talis
2. Ex Libris
3. LibLime
4. BiblioCommons
5. SirsiDynix
6. Polaris Library Systems
7. VTLS
8. California Digital Library
9. OCLC
10. AquaBrowser

