
C D L UC Curation Center

What is digital curation?

Policies and practices for maintaining and adding value to
trusted digital content now and into the indefinite future

Curation is a superset of preservation

PODS (Permanent Objects, Disposable Systems)

Preservation (curation) is not a place
Systems come and go (but not our system :-)

C D L UC Curation Center

The new curation landscape

Increasing number, size, and diversity of content, and
content producers and consumers

–  More stuff, smaller budget

Inevitability of disruptive changes in technology, user
expectation, institutional mission, and resources

–  “My grant requires a data sustainability plan”
–  “I know I should be doing something more to protect my stuff, but

I don’t know what”
–  “I don’t want to preserve my stuff, just store it forever”

C D L UC Curation Center

Assumptions

Curated content gains
–  Safety through redundancy
–  Meaning through context (description)
–  Utility through service
–  Value through use (feeds back to safety)

Integrated and decentralized curation can be as effective
as centralized curation

Curation stewardship is a relay

C D L UC Curation Center

The micro-services approach

Want low barrier, low commitment tools
Avoid monolithic, single-culture systems
Compose repository function from small,

independent, and interoperable
micro-services – complexity emerges

True success: micro-services absorbed
into the OS infrastructure

C D L UC Curation Center

The wisdom of files

After 30 years, we’re good at modern filesystems
Files and directories (folders) are fast, plentiful, stable,

and highly interoperable across platforms

Native OS tools will create, list, change, and backup

File-based micro-services will be easier…
to develop, maintain, and to escape from

to recombine in flexible ways

to move upstream into use by content producers

C D L UC Curation Center

Curation micro-services

C D L UC Curation Center

Curation throughout the lifecycle

Micro-services can be brought to the content rather than
requiring that content be brought to micro-services.

C D L UC Curation Center

Taking a closer look

What is the thinnest smear of functionality that we
can add to a filesystem to make it an effective
object store?

–  Namaste

–  CAN

–  Pairtree

–  Dflat

–  ReDD

C D L UC Curation Center

Name As Text (Namaste) Tags
Directory-level signature files extending Dublin Core
Kernel metadata

–  [Magic h0] 0=name_version

–  Who h1 1=who

–  What h2 2=what

–  When h3 3=when

–  Where h4 4=where

C D L UC Curation Center

Content Access Node (CAN)
File system conventions (structure and reserved
names) for an instance of a repository.

can/
 0=can_0.01
 can-info.txt
 log/
 store/
 pairtree...

C D L UC Curation Center

Pairtree
Use pairs of object identifier characters to create its
file system path.

pairtree/
 0=pairtree_0.01
 pairtree-info.txt
 pairtree_root/
 id/
 en/
 ti/
 fi/
 er/
 dflat...

C D L UC Curation Center

Dflat
A “digital flat”: a residence for object data and metadata.

dflat/
 0=dflat_0.01
 dflat-info.txt
 v001/
 d-manifest.txt
 delta/
 redd...
 v003/
 manifest.txt
 full/
 data/
 metadata/
 enrichment/
 annotation/

C D L UC Curation Center

Reverse Delta Directory (ReDD)

File-level reverse delta compression.
redd/
 0=redd_0.01
 add/
 delete.txt

C D L UC Curation Center

Putting a repository together

•  A CAN (content access node) is a repository instance

–  A Pairtree with Dflats for leaves,

–  ReDD-tinged versions, and Namaste tags to greet the visitor
who requests a directory listing of the pairpath…

–  0 = one of {bagit, redd, dflat, pairtree, can, etc.}

$ ls 12/34/5
0=dflat_0.01 admin/
1=Twain,_Mark v001/
2=Huckleberry.. v002/
3=1898 v003/
4=12345

C D L UC Curation Center

Performance Scaling
Modern file systems, e.g. ZFS, exhibit good
performance characteristics at reasonable scale

Average CopyTime

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 92 183 274 365 456 547

Average
CopyTime

Average MkDir Time

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 100 199 298 397 496 595

Average
MkDir Time

Traverse Time

0

5000

10000

15000

20000

25000

1 7 13 19 25 31 37 43 49 55 61 67 73

Traverse Time

 2,272,000 files = 28.5 TB
127,058,820 files = 25.7 TB

C D L UC Curation Center

Early success story 1
•  Pairtree (storage service) creates paths from object id/en/ti/fi/er/s,

and the resulting directory collection holds objects of any type

–  We invited UM to co-author the Pairtree specification, and Hathi
Trust uses our software to store Google books

cyocum

Import a pairtree and you can
 Enumerate all objects and their ids
 Produce any object by requested id
 Maintain and back up the tree with

ordinary OS tools
 Rebuild a broken catalog simply by

walking the filesystem

C D L UC Curation Center

Early success story 2
•  BagIt is a file package (“bag”) suitable for disk-based or fast network-

based transfer of generic content

–  We wrote the BagIt specification with the Library of Congress, who
now uses BagIt to receive most of its grant-funded partner content

Our micro-service specifications, and some software, are summarized at
 http://www.cdlib.org/inside/diglib/

Speaking of recycling, we are building on
lots of ongoing success stories:

•  JHOVE/2 (characterization service)
•  ARK/NOID (identity service)
•  XTF (index service)

C D L UC Curation Center

Summary

•  Provide
–  Safety through redundancy
–  Meaning through context
–  Utility through service
–  Value through use

•  Low commitment leads to high integration
•  Complexity through composition, not addition
•  Persistent interfaces, evolving implementations
•  Early prototyping, frequent refactoring

C D L UC Curation Center

Questions?

www.cdlib.org/inside/diglib
Stephen.Abrams@ucop.edu

Patricia.Cruse@ucop.edu
John.Kunze@ucop.edu

